畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2555-2576.doi: 10.11843/j.issn.0366-6964.2025.06.004
李文超1(), 李维俏1, 李欣1, 王家庆1, 张雅为2,*(
), 李俊平3,*(
)
收稿日期:
2024-07-08
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
张雅为,李俊平
E-mail:liwenchao0423@163.com;yawei_542@163.com;lijunping03@163.com
作者简介:
李文超(1984-),女,副教授,博士,主要从事动物细菌耐药性研究,E-mail: liwenchao0423@163.com
基金资助:
LI Wenchao1(), LI Weiqiao1, LI Xin1, WANG Jiaqing1, ZHANG Yawei2,*(
), LI Junping3,*(
)
Received:
2024-07-08
Online:
2025-06-23
Published:
2025-06-25
Contact:
ZHANG Yawei, LI Junping
E-mail:liwenchao0423@163.com;yawei_542@163.com;lijunping03@163.com
摘要:
日粮添加抗生素减少了畜禽生产中动物疾病的发生,发挥了促生长作用,但同时也导致了动物衍生产品和环境中抗生素的残留、动物多重耐药菌增多等问题,对食品安全和畜牧业的发展造成严重影响,威胁着人类健康与生态环境。在国家出台“饲料禁抗、养殖减抗”政策背景下,使用可增强动物抗病力的替抗产品成为研究热点,其中,中药以其来源广、副作用小、不易产生耐药性等优点受到广泛关注,单独使用或与抗菌药物联合使用展现出良好的抗菌效果。文章探讨了我国动物源细菌耐药性的现状,并对能够消减动物源细菌耐药性的中药及其作用机制进行了综述,以期为深入研究与防控动物源细菌耐药性提供科学依据。
中图分类号:
李文超, 李维俏, 李欣, 王家庆, 张雅为, 李俊平. 动物源细菌耐药性及中药消减耐药性的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2555-2576.
LI Wenchao, LI Weiqiao, LI Xin, WANG Jiaqing, ZHANG Yawei, LI Junping. Research Progress on Antimicrobial Resistance of Animal-derived Bacteria and Elimination of Antimicrobial Resistance by Traditional Chinese Medicine[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2555-2576.
表 1
2012—2022年中国部分省份动物源大肠杆菌耐药率"
年份 Year | 区域 Region | 来源 Provenance | 类别 Category | 多重耐药率 Multidrug resistance rate | 参考文献 References | |||||||
β-内酰胺类 β-Lactams | 喹诺酮类 Quinolones | 氨基糖苷类 Aminoglycosides | 大环内酯类 Macrolides | 四环素类 Tetracyclines | 酰胺醇类 Amphenicols | 多肽类 Polypeptides | 磺胺类 Sulfonamides | |||||
2012 | 辽宁 | 禽 | 27.2~91.1 | 34.4~37.8 | 19.5~75.2 | — | 72.5 | 42.1~48 | 13.6 | 76.2 | 18.87 | [ |
2013 | 西藏 | 牛 | 100 | 90.9~100 | 90.9 | — | 81.8 | — | — | — | 100 | [ |
2014 | 广东 | 猪、鸡 | 30.5 | 11 | 6.8 | — | 78.8 | 17.8 | — | 48.3 | 52.5 | [ |
2016 | 河北、河南、四川 | 猪 | 94.4 | 59.3 | 68.5 | 61.1 | 100 | 61.1 | 100 | 85.2 | 97 | [ |
2015—2017 | 山东、安徽、山西 | 鸡 | 87.1 | 77.1 | 60.7 | — | 89.3 | 69.1 | 17 | — | — | [ |
2018—2019 | 宁夏 | 牛 | >90 | 75.8 | >70 | 69.35 | 100 | 98.39 | — | 95.16 | — | [ |
2018—2019 | 河南、湖北等31省 | 猪 | 43.56 | 81.56 | — | — | 96.26 | 82.04 | 3.79 | 80.38 | 90.54 | [ |
2019 | 安徽、河北、山西、陕西 | 猪 | 16.7 | 46.6 | 68.2 | 48.5 | 73.5 | 56.1 | — | 71.6 | 78.7 | [ |
2020 | 浙江 | 猪、鸡 | 78.27 | 27.79 | 68.92 | — | 92.92 | 83.11 | 1.36 | 93.05 | 88.68 | [ |
2020 | 四川 | 鹿 | 24.2 | 15.92 | 6.37 | — | 24.89 | 10.19 | — | 85.99 | 24.2 | [ |
2021—2022 | 四川、重庆、安徽 | 鸭 | 72.1 | 59.2 | 62.7 | 15.9 | 88.1 | 72.1 | 2.5 | 88.1 | 88.1 | [ |
2021—2022 | 四川 | 犬 | 76.3 | 25.93 | 33.33 | — | 64.44 | 30.37 | — | 59.26 | 54.81 | [ |
表 2
国内部分地区动物源ARGs的流行情况"
年份 Year | 区域 Region | 来源 Provenance | 基因 Gene | 耐药菌阳性率(基因检出率) Antimicrobial resistance gene prevalence (gene detection rate) | 参考文献 References |
2015 | 山东 | 猪 | blaCTX-M-55、blaCTX-M-14、blaCTX-M-15 | 56.7%(32.4%、29.4%、20.6%) | [ |
2014—2016 | 福建 | 猪 | blaCTX-M-14、blaCT-M-65、blaCTX-M-55 | 32.7%(18.0%、12.1%、7.5%) | [ |
2015—2017 | 陕西和甘肃 | 猪 | blaCTX-M-14、 blaCTX-M-15 | 9.6%(52.3%、34.1%) | [ |
2017—2018 | 青海和甘肃 | 鸡、犬、猪、牦牛 | TEM、CTM、SHV | 55.5%患病;健康5.6%(82.3%、43.5%、19.4%) | [ |
2016—2021 | 湖南 | 鸡、猪、牛 | blaCTX-M-55 | 6.66%(42.9%) | [ |
2008—2014 | 上海、山西、四川、山东 | 鸡 | blaCTX-M-55、blaCTX-M-65、blaTEM | 34.3%、17.9%、86.0% | [ |
2014—2015 | 山东 | 鸡 | blaCTX-M、blaTEM-1、blaSHV-5、 | 88.8%(100%、74.65%、3.52%) | [ |
2015—2019 | 广东、山东、新疆、黑龙江 | 鸡 | blaTEM、blaCTX-M和blaOXA | 78.6%(100%、74.6%和3.64%) | [ |
2019 | 山西 | 鸡 | blaTEM、blaOXA和blaCTX-M-1/9 | 83.8%(93.33%、53.33%、86.67%) | [ |
2021 | 山东 | 禽 | blaCTX-M-55、blaNDM-5、blaNDM-4 | 3.5%(34.2%、66.7%、33.3%) | [ |
2015—2017 | 中国16省 | 牛(奶) | blaCTX-M-15 | 19.7% | [ |
2019—2020 | 宁夏、陕西、青海、内蒙 | 羊 | blaCTX-M-55、blaCTX-M-15 | 13.4%(61.5%、19.2%) | [ |
2013—2015 | 陕西 | 犬 | blaTEM-1、blaSHV-12、blaCTX-M-15、blaCTX-M-123 | 24.2%(77.5%、35%、77.5%、35%) | [ |
2014 | 广州 | 犬、猫 | blaCTX-M | 23.2(100%) | [ |
2012—2017 | 北京 | 犬、猫 | blaCTX-M-65、blaCTX-M-15和blaNDM | 34.65%(43.18%、40.91%)和2.36% | [ |
2009—2014 | — | 鸡 | mcr-1 | 5.2%~30% | [ |
2015 | 山东 | 鸡 | blaNDM、mcr-1 | 43.6%、67.9% | [ |
2014—2015 | 中国24省 | 猪、禽 | mcr-4;mcr-5 | 41.4%、11.5%;33.1%、5.6% | [ |
2016 | 中国9省 | 猪、鸡 | mcr-1;mcr-2;mcr-3 | 79.2%、31.8%;56.3%、5.5%;0.5%~18.7%、5.2% | [ |
2016—2017 | 哈尔滨、长春、沈阳 | 猪 | mcr-1 | 59.66%(53.33%) | [ |
2017 | 四川 | 猪 | mcr-1.1 | 86.4%→5.6% | [ |
2016—2018 | 中国14省 | 猪 | mcr-1 | 45%→19% | [ |
2018 | 广西 | 猪 | mcr-1 | 23.24% | [ |
2019 | 河南 | 鸡 | mcr-1 | 2.62% | [ |
2019—2020 | 安徽、河南、辽宁等7省 | 猪、鸡 | mcr-1 | 0.93% | [ |
2020 | 浙江 | 猪、鸡 | mcr-1 | 1.36%(61.11%) | [ |
2015 | 北京 | 犬、猫 | mcr-1 | 7.4% | [ |
2016 | 广州 | 犬、猫 | mcr-1 | 6.25% | [ |
2013—2017 | 安徽 | 鸡 | blaNDM-7、blaNDM-5 | 0.25%、1.25% | [ |
2018 | 安徽 | 鸭 | blaNDM | 57.8% | [ |
2015 | 四川 | 猪 | blaNDM-5和mcr-1 | 15.2% | [ |
2015 | 哈尔滨、扬州、重庆、武汉、成都、广州 | 犬、猫 | blaNDM-5 | 4.7% | [ |
表 3
中药有效成分对动物源细菌耐药性的消减作用"
消减机制 Elimination mechanism | 中药成分 Herbal constituent | 抗菌谱 Antimicrobial spectrum | 作用方式 Mechanism of action | 参考文献 References |
抑制细菌耐药酶 Inhibit bacterial drug-resistant enzymes | 丁香油和罗勒叶 | 禽源ESBL大肠杆菌 | 抑制β-内酰胺酶活性 | [ |
芦荟大黄素、苦参碱、香紫苏醇、木犀草素、槲皮素、五味子甲素、大蒜素 | 猪源ESBL大肠杆菌 | 抑制β-内酰胺酶活性 | [ | |
异甘草素 | 多黏菌素耐药和碳青霉烯类耐药大肠杆菌 | 抑制NDM-1的水解活性,并显著增加美罗培南 对NDM-1阳性菌的抗菌活性 | [ | |
改变细胞膜通透性Alter cell membrane permeability | 肉桂醛 | 产ESBL、耐喹诺酮类大肠杆菌 | 提高孔蛋白基因转录水平,从而提高细菌 细胞膜渗透性,促进抗生素流入细胞内 | [ |
槲皮素 | 耐碳青霉烯类大肠杆菌和肺炎克雷伯菌 | 与美罗培南协同作用破坏细胞壁/膜完整性和改变 细胞形态 | [ | |
抑制生物被膜形成 Inhibit biofilm formation | 小檗碱和苦参碱 | 多重耐药大肠杆菌 | 降低细菌群体感应系统(quorum sensing,QS)相关 基因: luxS、pfS、sdiA、hflX、motA和fliA的表达 | [ |
黄芩苷 | 碳青霉烯抗性铜绿假单胞菌 | 与妥布霉素协同作用使生物膜相关基因 algD、pslA和lasR显著下调 | [ | |
禽源多重耐药大肠杆菌 | 减少主要细菌黏附因子AI-2的分泌, 干扰QS系统和生物被膜形成 | [ | ||
茶多酚 | 多重耐药肺炎克雷伯菌 | 与亚胺培南、哌拉西林等抗生素协同杀菌, 影响细菌外膜形成和胞外黏液样物质产生 | [ | |
抑制主动外排泵 Inhibit active efflux pumps | 小檗碱 | 多重耐药金黄色葡萄球菌 | 结合NorA和RamR外排泵,抑制细菌 甚至Mtb的生长 | [ |
盐酸小檗碱 | 多重耐药鲍曼不动杆菌 | 占据外排蛋白的结合位点,减少抗生素从外排泵排出 | [ | |
槲皮素 | 多重耐药大肠杆菌 | 与大肠杆菌EmrE外排泵稳定结合 | [ | |
芍药苷 | 多重耐药大肠杆菌 | 作用外排泵转运子AcrB,抑制细菌外排泵活性, 阻滞尼罗红的外排 | [ | |
甘草酸 | 禽源多重耐药大肠杆菌 | 与细菌产生的多药外排泵蛋白AcrB相互作用,抑制 其多药外排泵的外排活性;也可促进细菌中AcrR、 MarR负调控因子的表达,进而减少AcrB产量, 影响菌体形成的多药外排泵数量 | [ | |
消除耐药质粒 Eliminate drug-resistant plasmids | 山楂水提物 | 耐β-内酰胺类大肠杆菌 | 使细菌的质粒条带减少1~3条 | [ |
大叶桉 | 耐甲氧西林金黄色葡萄球菌 | 明显抑制MRSA生长,24、48 h质粒 消除率分别为38.6%和62.0% | [ | |
小檗碱 | 多重耐药大肠杆菌 | 使细菌的质粒条带减少1~2条;ESBLs活性 降低,碱性磷酸酶活性升高;外排系统AcrA mRNA转录水平极显著降低 | [ | |
石榴叶提取物 | 耐青霉素大肠杆菌和耐青霉素 金黄色葡萄球菌 | 联合阿莫西林增加大肠杆菌细胞通透性、 抑制青霉素酶活性和葡萄球菌生物膜形成 | [ |
1 |
MULCHANDANI R , WANG Y , GILBERT M , et al. Global trends in antimicrobial use in food-producing animals: 2020 to 2030[J]. PLOS Glob Public Health, 2023, 3 (2): e0001305.
doi: 10.1371/journal.pgph.0001305 |
2 | 中华人民共和国农业农村部. 2020年中国兽用抗菌药使用情况报告[J]. 兽医公报, 2021, 23 (9): 33- 36. |
Ministry of Agriculture and Rural Affairs of People's Republic of China . 2020 Annual report on the use of veterinary antibiotics in China[J]. Official Veterinary Bulletin, 2021, 23 (9): 33- 36. | |
3 |
Antimicrobial Resistance Collaborators . Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399 (10325): 629- 655.
doi: 10.1016/S0140-6736(21)02724-0 |
4 | 农业农村部. 中华人民共和国农业农村部公告第194号[EB/OL]. (2020-02-17)[2024-08-18]. http://www.fgs.moa.gov.cn/flfg/202002/t20200217_6337167.htm. |
Ministry of Agriculture and Rural Affairs, PRC. Announcement of the Ministry of Agriculture and Rural Affairs of the People's Republic of China No. 194[EB/OL]. (2020-02-17)[2024-08-18]. http://www.fgs.moa.gov.cn/flfg/202002/t20200217_6337167.htm. (in Chinese) | |
5 | 农业农村部. 农业农村部关于印发《全国兽用抗菌药使用减量化行动方案(2021—2025年)》的通知: 农牧发〔2021〕31号. [EB/OL]. (2021-10-25)[2024-08-18]. http://www.moa.gov.cn/govpublic/xmsyj/202110/t20211025_6380448.htm. |
Ministry of Agriculture and Rural Affairs, PRC. Ministry of Agriculture and Rural Affairs Circular on Issuing the 《National Action Plan for Reducing the Use of Antimicrobial Agents in Animal Husbandry (2021-2025)》: Agricultural and Animal Husbandry Development [2021]No. 31. [EB/OL]. (2021-10-25)[2024-08-18]. http://www.moa.gov.cn/govpublic/xmsyj/202110/t20211025_6380448.htm. (in Chinese) | |
6 | 沈建忠. 动物源细菌耐药性与控制[M]. 北京: 科学出版社, 2024. |
SHEN J Z . Drug resistance and control of animal-derived bacteria[M]. Beijing: China Science Publishing & Media Ltd., 2024. | |
7 |
蒋月, 盛鹏飞, 张秀英. 辽宁锦州地区家禽大肠埃希菌耐药性研究[J]. 动物医学进展, 2013, 34 (11): 85- 88.
doi: 10.3969/j.issn.1007-5038.2013.11.020 |
JANG Y , SHENG P F , ZHANG X Y , et al. Study on antimicrobial resistance to Escherichia coli isolated from three different poultries[J]. Progress in Veterinary Medicine, 2013, 34 (11): 85- 88.
doi: 10.3969/j.issn.1007-5038.2013.11.020 |
|
8 |
贡嘎, 王刚, 拉珍, 等. 西藏牦牛大肠杆菌对常用抗菌药物的耐药性分析[J]. 中国兽医杂志, 2014, 50 (8): 80- 82.
doi: 10.3969/j.issn.0529-6005.2014.08.030 |
GONG G , WANG G , LA Z , et al. Study on antiblotic resistance of yak E. coli[J]. Chinese Journal of Veterinary Medicine, 2014, 50 (8): 80- 82.
doi: 10.3969/j.issn.0529-6005.2014.08.030 |
|
9 | 植婵萍, 郭小婷, 姚旭, 等. 有机农场鸡、猪源大肠杆菌耐药性研究[J]. 中国畜牧兽医, 2015, 42 (12): 3351- 3357. |
ZHL C P , GUO X T , YAO X , et al. Study on drug resistance of Escherichia coli lsolated from chicken and swine in organic farm[J]. China Animal Husbandry & Veterinary Medicine, 2015, 42 (12): 3351- 3357. | |
10 |
LU X Y , ZHANG P , DU P C , et al. Prevalence and genomic characteristics of mcr-positive Escherichia coli strains isolated from humans, pigs, and foods in China[J]. Microbiol Spectr, 2023, 11 (3): e0456922.
doi: 10.1128/spectrum.04569-22 |
11 | ZOU M , MA P P , LIU W S , et al. Prevalence and antibiotic resistance characteristics of extraintestinal pathogenic Escherichia coli among healthy chickens from farms and live poultry markets in China[J]. Animals (Basel), 2021, 11 (4): 1112. |
12 |
高海慧, 王建东, 高小斐, 等. 奶牛犊牛腹泻源大肠埃希氏菌耐药情况及LEE相关基因的检测[J]. 动物医学进展, 2021, 42 (6): 19- 23.
doi: 10.3969/j.issn.1007-5038.2021.06.004 |
GAO H H , WANG J D , GAO X F , et al. Drug resistance of Escherichia coli in calves with dairy cows and detection of LEE-related genes[J]. Progress in Veterinary Medicine, 2021, 42 (6): 19- 23.
doi: 10.3969/j.issn.1007-5038.2021.06.004 |
|
13 |
PENG Z , HU Z Z , LI Z G , et al. Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China[J]. Nat Commun, 2022, 13 (1): 1116.
doi: 10.1038/s41467-022-28750-6 |
14 |
ZHANG X P , LI X X , WANG W H , et al. Diverse gene cassette arrays prevail in commensal Escherichia coli from intensive farming swine in four provinces of China[J]. Front Microbiol, 2020, 11, 565349.
doi: 10.3389/fmicb.2020.565349 |
15 |
MA J G , ZHOU W , WU J , et al. Large-scale studies on antimicrobial resistance and molecular characterization of Escherichia coli from food animals in developed areas of Eastern China[J]. Microbiol Spectr, 2022, 10 (4): e0201522.
doi: 10.1128/spectrum.02015-22 |
16 |
ZHANG S Q , SHU Y X , WANG Y W , et al. High rate of multidrug resistance and integrons in Escherichia coli isolates from diseased ducks in select regions of China[J]. Poult Sci, 2023, 102 (10): 102956.
doi: 10.1016/j.psj.2023.102956 |
17 |
ZHANG P , SHEN Z Q , ZHANG C P , et al. Surveillance of antimicrobial resistance among Escherichia coli from chicken and swine, China, 2008-2015[J]. Vet Microbiol, 2017, 203, 49- 55.
doi: 10.1016/j.vetmic.2017.02.008 |
18 |
DU Z , WANG M Y , CUI G Y , et al. The prevalence of amphenicol resistance in Escherichia coli isolated from pigs in mainland China from 2000 to 2018: A systematic review and meta-analysis[J]. PLoS One, 2020, 15 (2): e0228388.
doi: 10.1371/journal.pone.0228388 |
19 |
秦春芝, 徐怀英, 黄迪海, 等. 山东省禽源致病性大肠杆菌流行病学监测及耐药模式分析[J]. 中国动物检疫, 2021, 38 (8): 16-21, 62.
doi: 10.3969/j.issn.1005-944X.2021.08.005 |
QIN C Z , XU H Y , HUANG D H , et al. Epidemiological surveillance of Avian pathogenic Escherichia coli in Shandong province and it's antimicrobial resistance analysis[J]. China Animal Health Inspection, 2021, 38 (8): 16-21, 62.
doi: 10.3969/j.issn.1005-944X.2021.08.005 |
|
20 |
HARADA K , ASAI T , KOJIMA A , et al. Role of coresistance in the development of resistance to chloramphenicol in Escherichia coli isolated from sick cattle and pigs[J]. Am J Vet Res, 2006, 67 (2): 230- 235.
doi: 10.2460/ajvr.67.2.230 |
21 |
SCHWARZ S , KEHRENBERG C , DOUBLET B , et al. Molecular basis of bacterial resistance to chloramphenicol and florfenicol[J]. FEMS Microbiol Rev, 2004, 28 (5): 519- 542.
doi: 10.1016/j.femsre.2004.04.001 |
22 |
LIU H , WANG Y , WU C , et al. A novel phenicol exporter gene, fexB, found in enterococci of animal origin[J]. J Antimicrob Chemother, 2012, 67 (2): 322- 325.
doi: 10.1093/jac/dkr481 |
23 |
LONG K S , POEHLSGAARD J , KEHRENBERG C , et al. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics[J]. Antimicrob Agents Chemother, 2006, 50 (7): 2500- 2505.
doi: 10.1128/AAC.00131-06 |
24 |
WANG Y , XU C Y , ZHANG R , et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study[J]. Lancet Infect Dis, 2020, 20 (10): 1161- 1171.
doi: 10.1016/S1473-3099(20)30149-3 |
25 | 杨润时. 动物源肠杆菌中碳青霉烯耐药基因blaNDM的流行分布及分子传播机制研究[D]. 广州: 华南农业大学, 2019. |
YANG R S. Dissemination and molecular transmission mechanism of carbapenem resistance gene blaNDM in Enterobacteriaceae from animal origin[D]. Guangzhou: South China Agricultural University, 2019. (in Chinese) | |
26 |
LIU H , PAN S L , CHENG Y H , et al. Distribution and associations for antimicrobial resistance and antibiotic resistance genes of Escherichia coli from musk deer (Moschus berezovskii) in Sichuan, China[J]. PLoS One, 2023, 18 (11): e0289028.
doi: 10.1371/journal.pone.0289028 |
27 |
YUAN Y , HU Y , ZHANG X L , et al. Characteristics of MDR E. coli strains isolated from Pet Dogs with clinic diarrhea: A pool of antibiotic resistance genes and virulence-associated genes[J]. PLoS One, 2024, 19 (2): e0298053.
doi: 10.1371/journal.pone.0298053 |
28 | 李孟. 河南省猪源大肠杆菌耐药性调查及部分耐药基因分布特征研究[D]. 郑州: 河南农业大学, 2019. |
LI M. Drug resistance and distribution characteristics of some drug-resistant genes in Escherichia coli isolated from pigs in Henan province[D]. Zhengzhou: Henan Agricultural University, 2019. (in Chinese) | |
29 |
PENG J J , BALASUBRAMANIAN B , MING Y Y , et al. Identification of antimicrobial resistance genes and drug resistance analysis of Escherichia coli in the animal farm environment[J]. J Infect Public Health, 2021, 14 (12): 1788- 1795.
doi: 10.1016/j.jiph.2021.10.025 |
30 |
LAI J , WU C M , WU C B , et al. Serotype distribution and antibiotic resistance of Salmonella in food-producing animals in Shandong province of China, 2009 and 2012[J]. Int J Food Microbiol, 2014, 180, 30- 38.
doi: 10.1016/j.ijfoodmicro.2014.03.030 |
31 |
CAO T T , DENG G H , FANG L X , et al. Characterization of quinolone resistance in Salmonella enterica from farm animals in China[J]. J Food Prot, 2017, 80 (10): 1742- 1748.
doi: 10.4315/0362-028X.JFP-17-068 |
32 |
ZHAO X N , HU M , ZHANG Q , et al. Characterization of integrons and antimicrobial resistance in Salmonella from broilers in Shandong, China[J]. Poult Sci, 2020, 99 (12): 7046- 7054.
doi: 10.1016/j.psj.2020.09.071 |
33 |
王喜, 李珂, 李廷翠, 等. 75株蛋鸡源沙门菌的MLST分型与耐药性分析[J]. 畜牧兽医学报, 2022, 53 (5): 1626- 1631.
doi: 10.11843/j.issn.0366-6964.2022.05.030 |
WANG X , LI K , LI T C , et al. MLST typing and antimicrobial resistance analysis of 75 Salmonella strains isolated from laying hens[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 53 (5): 1626- 1631.
doi: 10.11843/j.issn.0366-6964.2022.05.030 |
|
34 |
杨胜男, 王娟, 郑增忍, 等. 动物源空肠弯曲杆菌的分离及耐药性试验[J]. 动物医学进展, 2013, 34 (8): 116- 119.
doi: 10.3969/j.issn.1007-5038.2013.08.024 |
YANG S N , WANG J , ZHEN Z R , et al. Isolation and drug-resistence test of Campylobacter jejuni from anima source[J]. Progress in Veterinary Medicine, 2013, 34 (8): 116- 119.
doi: 10.3969/j.issn.1007-5038.2013.08.024 |
|
35 | 张小燕, 周倩, 唐梦君, 等. 江苏地区鸡源弯曲杆菌分离鉴定及耐药性研究[J]. 中国家禽, 2017, 39 (18): 23- 27. |
ZHANG X Y , ZHOU Q , TANG M J , et al. Isolation, identification and antimicrobial susceptibility profiles of Campylobacter isolates from chickens in Jiangsu Province[J]. China Poultry, 2017, 39 (18): 23- 27. | |
36 | 唐梦君, 周倩, 张小燕, 等. 江苏部分地区鸡源与猪源弯曲菌耐药性分析与毒力基因检测[J]. 畜牧兽医学报, 2020, 51 (9): 2284- 2292. |
TANG M J , ZHOU Q , ZHANG X Y , et al. Antimicrobial resistance and virulence gene detection of Campylobacter strains isolated from chickens and pigs in Jiangsu Province[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (09): 2284- 2292. | |
37 |
YANG H L , LI Y B , ZHANG Y , et al. Prevalence, drug resistance spectrum and virulence gene analysis of Campylobacter jejuni in broiler farms in central Shanxi, China[J]. Poult Sci, 2023, 102 (3): 102419.
doi: 10.1016/j.psj.2022.102419 |
38 |
YANG L , SHEN Y B , JIANG J Y , et al. Distinct increase in antimicrobial resistance genes among Escherichia coli during 50 years of antimicrobial use in livestock production in China[J]. Nat Food, 2022, 3 (3): 197- 205.
doi: 10.1038/s43016-022-00470-6 |
39 |
SHI X M , LI Y M , YANG Y Y , et al. High prevalence and persistence of carbapenem and colistin resistance in livestock farm environments in China[J]. J Hazard Mater, 2021, 406, 124298.
doi: 10.1016/j.jhazmat.2020.124298 |
40 | LIU Z H , WANG K , ZHANG Y R , et al. High prevalence and diversity characteristics of blaNDM, mcr, and blaESBLs harboring multidrug-resistant Escherichia coli from chicken, pig, and cattle in China[J]. Front Cell Infect Microbiol, 2021, 11, 755545. |
41 |
ZHANG H N , ZHAI Z Z , LI Q , et al. Characterization of extended-spectrum β-lactamase-producing Escherichia coli isolates from pigs and farm workers[J]. J Food Prot, 2016, 79 (9): 1630- 1634.
doi: 10.4315/0362-028X.JFP-16-093 |
42 | 杨守深, 曾雪花, 林敏, 等. 猪源大肠杆菌耐药性及超广谱β-内酰胺酶流行性分析[J]. 中国人兽共患病学报, 2019, 35 (1): 45- 50. |
YANG S S , ZENG X H , LIN M , et al. Antimicrobial resistance analysis and extended-spectrum-β-lactamaeses genes detection in Escherichia coli isolated from swine[J]. Chinese Journal of Zoonoses, 2019, 35 (1): 45- 50. | |
43 |
LIU X Q , LIU H X , WANG L , et al. Molecular characterization of extended-spectrum β-lactamase-producing multidrug resistant Escherichia coli from swine in Northwest China[J]. Front Microbiol, 2018, 9, 1756.
doi: 10.3389/fmicb.2018.01756 |
44 |
WANG Y N , ZHOU J H , LI X R , et al. Genetic diversity, antimicrobial resistance and extended-spectrum β-lactamase type of Escherichia coli isolates from chicken, dog, pig and yak in Gansu and Qinghai Provinces, China[J]. J Glob Antimicrob Resist, 2020, 22, 726- 732.
doi: 10.1016/j.jgar.2020.06.028 |
45 |
XIAO N , LI Y J , LIN H G , et al. Characterization of rxtended-dpectrum β-lactamase-producing Escherichia coli in animal farms in Hunan Province, China[J]. Microorganisms, 2024, 12 (4): 653.
doi: 10.3390/microorganisms12040653 |
46 | WU C M , WANG Y C , SHI X M , et al. Rapid rise of the ESBL and mcr-1 genes in Escherichia coli of chicken origin in China, 2008-2014[J]. Emerg Microbes Infect, 2018, 7 (1): 30. |
47 |
LI S , ZHAO M M , LIU J H , et al. Prevalence and antibiotic resistance profiles of extended-spectrum β-lactamase-producing Escherichia coli isolated from healthy broilers in Shandong Province, China[J]. J Food Prot, 2016, 79 (7): 1169- 1173.
doi: 10.4315/0362-028X.JFP-16-025 |
48 | 马馨, 刘一飞, 王志宇, 等. 鸡源大肠杆菌分离鉴定及ESBLs与AmpC酶基因型检测及耐药性分析[J]. 中国畜牧兽医, 2019, 46 (9): 2715- 2725. |
MA X , LIU Y F , WANG Z Y , et al. Isolation, identification, detection of ESBLs and AmpC enzyme genotypes and drug resistance analysis of Escherichia coli from chicken[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46 (9): 2715- 2725. | |
49 | 宋祥彬, 赵晓雨, 李传溥, 等. 山东省禽源产超广谱β-内酰胺酶大肠杆菌的分子流行病学分析[J]. 中国畜牧兽医, 2024, 51 (1): 407- 416. |
SONG X B , ZHAO X Y , LI C P , et al. Molecular epidemiological analysis of Avian extended spectrum β-lactamases producing Escherichia coli in Shandong Province[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (1): 407- 416. | |
50 |
LIU G , ALI T , GAO J , et al. Co-occurrence of plasmid-mediated colistin resistance (mcr-1) and extended-spectrum β-lactamase encoding genes in Escherichia coli from bovine mastitic milk in China[J]. Microb Drug Resist, 2020, 26 (6): 685- 696.
doi: 10.1089/mdr.2019.0333 |
51 |
ZHAO X L , ZHAO H Y , ZHOU Z L , et al. Characterization of extended-spectrum β-lactamase-producing Escherichia coli isolates that cause diarrhea in sheep in Northwest China[J]. Microbiol Spectr, 2022, 10 (4): e0159522.
doi: 10.1128/spectrum.01595-22 |
52 | LIU X Q , LIU H X , LI Y Q , et al. High Prevalence of β-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China[J]. Front Microbiol, 2016, 7, 1843. |
53 | 杨守深, 王佳慧, 林敏, 等. 宠物源大肠杆菌产ESBLs流行性调查与耐药机制研究[J]. 中国人兽共患病学报, 2019, 35 (12): 1110- 1116. |
YANG S S , WANG J H , LIN M , et al. Prevalence and drug-resistance mechanism of ESBLs in Escherichia coli isolates of pet origins[J]. .Chinese Journal of Zoonoses, 2019, 35 (12): 1110- 1116. | |
54 |
CHEN Y Y , LIU Z H , ZHANG Y R , et al. Increasing prevalence of ESBL-producing multidrug resistance Escherichia coli from diseased pets in Beijing, China from 2012 to 2017[J]. Front Microbiol, 2019, 10, 2852.
doi: 10.3389/fmicb.2019.02852 |
55 |
LIU Y Y , WANG Y , WALSH T R , et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study[J]. Lancet Infect Dis, 2016, 16 (2): 161- 168.
doi: 10.1016/S1473-3099(15)00424-7 |
56 |
SHEN Z Q , WANG Y , SHEN Y B , et al. Early emergence of mcr-1 in Escherichia coli from food-producing animals[J]. Lancet Infect Dis, 2016, 16 (3): 293.
doi: 10.1016/S1473-3099(16)00061-X |
57 | LIU B T , SONG F J , ZOU M , et al. High incidence of Escherichia coli strains coharboring mcr-1 and blaNDM from chickens[J]. Antimicrob Agents Chemother, 2017, 61 (3): e02347- 16. |
58 |
CHEN L , ZHANG J L , WANG J W , et al. Newly identified colistin resistance genes, mcr-4 and mcr-5, from upper and lower alimentary tract of pigs and poultry in China[J]. PLoS One, 2018, 13 (3): e0193957.
doi: 10.1371/journal.pone.0193957 |
59 |
ZHANG J L , CHEN L , WANG J J , et al. Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry[J]. Sci Rep, 2018, 8 (1): 3705.
doi: 10.1038/s41598-018-22084-4 |
60 |
YI L X , WANG J , GAO Y L , et al. mcr-1-Harboring Salmonella enterica serovar typhimurium sequence type 34 in pigs, China[J]. Emerg Infect Dis, 2017, 23 (2): 291- 295.
doi: 10.3201/eid2302.161543 |
61 |
CHENG P , YANG Y Q , CAO S , et al. Prevalence and characteristic of swine-origin mcr-1-positive Escherichia coli in Northeastern China[J]. Front Microbiol, 2021, 12, 712707.
doi: 10.3389/fmicb.2021.712707 |
62 |
TU Z F , GU J , ZHANG H Y , et al. Withdrawal of colistin reduces incidence of mcr-1-harboring IncX4-type plasmids but has limited effects on unrelated antibiotic resistance[J]. Pathogens, 2021, 10 (8): 1019.
doi: 10.3390/pathogens10081019 |
63 |
SHEN C , ZHONG L L , YANG Y , et al. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study[J]. Lancet Microbe, 2020, 1 (1): e34- e43.
doi: 10.1016/S2666-5247(20)30005-7 |
64 | YUAN J Z , WANG X Y , SHI D L , et al. Extensive antimicrobial resistance and plasmid-carrying resistance genes in mcr-1-positive E. coli sampled in swine, in Guangxi, South China[J]. BMC Vet Res, 2021, 17 (2): 86. |
65 |
LI Z G , JIA C Y , HU Z Z , et al. Antimicrobial resistance and genomic characteristics of Escherichia coli strains isolated from the poultry industry in Henan province, China[J]. Microorganisms, 2024, 12 (3): 575.
doi: 10.3390/microorganisms12030575 |
66 |
MEI C Y , JIANG Y , MA Q C , et al. Low prevalence of mcr-1 in Escherichia coli from food-producing animals and food products in China[J]. BMC Vet Res, 2024, 20 (1): 40.
doi: 10.1186/s12917-024-03891-6 |
67 |
CHEN X , ZHAO X F , CHE J , et al. Detection and dissemination of the colistin resistance gene, mcr-1, from isolates and faecal samples in China[J]. J Med Microbiol, 2017, 66 (2): 119- 125.
doi: 10.1099/jmm.0.000425 |
68 |
WANG J , HUANG X Y , XIA Y B , et al. Clonal spread of Escherichia coli ST93 carrying mcr-1-harboring IncN1-IncHI2/ST3 plasmid amongcompanion animals, China[J]. Front Microbiol, 2018, 9, 2989.
doi: 10.3389/fmicb.2018.02989 |
69 |
YIN Y , QIU L H , WANG G Z , et al. Emergence and transmission of plasmid-mediated mobile colistin resistance gene mcr-10 in humans and companion animals[J]. Microbiol Spectr, 2022, 10 (5): e0209722..
doi: 10.1128/spectrum.02097-22 |
70 |
LIU J H , LIU Y Y , SHEN Y B , et al. Plasmid-mediated colistin-resistance genes: mcr[J]. Trends Microbiol, 2024, 32 (4): 365- 378.
doi: 10.1016/j.tim.2023.10.006 |
71 |
PENG Z , LI X S , HU Z Z , et al. Characteristics of carbapenem-resistant and colistin-resistant Escherichia coli co-producing NDM-1 and MCR-1 from pig farms in China[J]. Microorganisms, 2019, 7 (11): 482.
doi: 10.3390/microorganisms7110482 |
72 | 宋倩华. 鸡源产NDM型碳青霉烯酶大肠杆菌的分子特征研究[D]. 广州: 华南农业大学, 2018. |
SONG Q H. Characterization of NDM-producing Escherichia coli in a chicken farm[D]. Guangzhou: South China Agricultural University, 2018. (in Chinese) | |
73 |
GUO C H , CHU M J , LIU T , et al. High prevalence and transmission of blaNDM-positive Escherichia coli between farmed ducks and slaughtered meats: An increasing threat to food safety[J]. Int J Food Microbiol, 2024, 424, 110850.
doi: 10.1016/j.ijfoodmicro.2024.110850 |
74 | KONG L H , LEI C W , MA S Z , et al. Various sequence types of Escherichia coli isolates coharboring blaNDM-5 and mcr-1 genes from a commercial swine farm in China[J]. Antimicrob Agents Chemother, 2017, 61 (3): e02167- 16. |
75 | 吕小月. 中国六市宠物源产碳青霉烯酶大肠杆菌的耐药性初步研究[D]. 广州: 华南农业大学, 2017. |
LV X Y. Emergence of carbapenemase-producing E. coli isolated from companion animals in China[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese) | |
76 |
MITTAL R P , RANA A , JAITAK V . Essential oils: An impending substitute of synthetic antimicrobial agents to overcome antimicrobial resistance[J]. Curr Drug Targets, 2019, 20 (6): 605- 624.
doi: 10.2174/1389450119666181031122917 |
77 |
牛艺儒, 刘雁军, 宋燕. 鱼腥草对仔猪副伤寒沙门氏菌耐药质粒消除作用的研究[J]. 饲料广角, 2010 (15): 37-38, 50.
doi: 10.3969/j.issn.1002-8358.2010.15.012 |
NIU Y R , LIU Y J , SONG Y . Effect of Houttuynia tuyniae on the elimination of drug-resistant plasmid of Salmonella paratyphi in piglets[J]. Feed China, 2010 (15): 37-38, 50.
doi: 10.3969/j.issn.1002-8358.2010.15.012 |
|
78 | 刘超怡, 徐海瑛, 李小妞, 等. 艾叶提取物对禽源大肠杆菌耐药性消除作用的研究[J]. 畜牧与兽医, 2020, 52 (6): 137- 141. |
LIU C Y , XU H Y , LI X N , et al. Elimination effect of Artemisia argyi extract on drug resistance of avian Escherichia coli[J]. Animal Husbandry & Veterinary Medicine, 2020, 52 (6): 137- 141. | |
79 |
王永芬, 席磊, 边传周, 等. 猪致病性大肠杆菌耐药质粒检测及其中药消除作用研究[J]. 中国预防兽医学报, 2011, 33 (12): 932- 935.
doi: 10.3969/j.issn.1008-0589.2011.12.05 |
WANG Y F , XI L , BIAN C Z , et al. Drug resistance plasmid detection in pathogenic swine Escherichia coli and elimination with traditional Chinese herbs[J]. Chinese Journal of Preventive Veterinary Medicine, 2011, 33 (12): 932- 935.
doi: 10.3969/j.issn.1008-0589.2011.12.05 |
|
80 | 李栋. 禽源大肠杆菌质粒介导氟喹诺酮类耐药基因的检测及中药消除耐药性研究[D]. 扬州: 扬州大学, 2015. |
LI D. Study on the detection of plasmid-mediated fluoroquinolone resistance genes in avian Escherichia coli isolates and the drug-resistance eliminating effect of traditional Chinese medicine[D]. Yangzhou: Yangzhou University, 2015. (in Chinese) | |
81 | 张石磊, 翟向和, 王春光, 等. 小檗碱对禽源大肠杆菌抑菌作用及耐药消除作用的转录组学分析[J]. 中国畜牧兽医, 2017, 44 (5): 1518- 1525. |
ZHANG S L , ZHAI X H , WANG C G , et al. Study on antimicrobial effect of berberine sulfate on Avian Escherichia coli and elimination of levofloxacin resistance based on transcriptome sequencing[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44 (5): 1518- 1525. | |
82 | 左丽, 旷年玲, 王芝超, 等. 小檗碱消除ESBLs大肠杆菌耐药性的研究[J]. 黑龙江畜牧兽医, 2024 (1): 54- 58. |
ZUO L , KUANG N L , WANG Z C , et al. A study on the elimination of drug resistance of ESBLs E.coli by berberine[J]. Heilongjiang Animal Science and Veterinary Medicine, 2024 (1): 54- 58. | |
83 | 姚姗姗, 张石磊, 梁存军, 等. 基于转录组学技术分析绿原酸对鸡源大肠杆菌抑菌及耐药消除的作用机制[J]. 中国畜牧兽医, 2020, 47 (12): 4156- 4165. |
YAO S S , ZHANG S L , LIANG C J , et al. Analysis of bacteriostatic and drug resistance elimination mechanisms of chicken-derived Escherichia coli by chlorogenic acid based on transcriptome technology[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47 (12): 4156- 4165. | |
84 | 宁官保, 牛艺儒, 张鼎, 等. 鸡源大肠杆菌耐药性分析及中药对大肠杆菌耐药性消除作用的研究[J]. 畜牧兽医学报, 2015, 46 (6): 1018- 1025. |
NING G B , NIU Y R , ZHANG D , et al. Drug resistance analysis of Escherichia coli isolated from chicken and study on elimination of drug resistance by traditional Chinese medicine[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46 (6): 1018- 1025. | |
85 |
李志君, 鲁孟佳, 张雯, 等. 中药复方对猪源多重耐药大肠埃希氏菌的耐药性消除研究[J]. 动物医学进展, 2022, 43 (2): 76- 80.
doi: 10.3969/j.issn.1007-5038.2022.02.014 |
LI Z J , LU M J , ZHANG W , et al. Drug resistance elimination effect of traditional Chinese medicine compounds on multi-drug resistant Escherichia coli derived from swine[J]. Progress in Veterinary Medicine, 2022, 43 (2): 76- 80.
doi: 10.3969/j.issn.1007-5038.2022.02.014 |
|
86 | 肖潇, 李英伦, 杨锐. 复方蒲公英对金黄色葡萄球菌耐药质粒的体外消除试验[J]. 中国兽医科学, 2010, 40 (3): 307- 311. |
XIAO X , LI Y L , YANG R . Elimination test in vitro of complex prescription dandelion's injection on antibiotic-resistant plasmid of Staphylococcus aureus[J]. Chinese Veterinary Science, 2010, 40 (3): 307- 311. | |
87 | 王婷婷, 邓旭明, 邱家章. MCR-1抑制剂与粘菌素联合治疗MCR-1阳性克雷伯菌肺炎的作用[C]//中国畜牧兽医学会兽医药理毒理学分会. 中国畜牧兽医学会兽医药理毒理学分会第十五次学术讨论会论文集. 吉林大学动物医学学院, 2019: 86. |
WANG T T, DENG J M, QIU J Z. Effect of MCR-1 inhibitor and colistin in the treatment of MCR-1 positive Klebsiella pneumonia [C]//Chinese Society of Animal Husbandry and Veterinary Medicine Veterinary Toxicology Branch. Proceedings of the 15th Symposium of Veterinary Pharmacology and Toxicology Branch of Chinese Society of Animal Husbandry and Veterinary Medicine. College of Veterinary Medicine, Jilin University, 2019: 86. (in Chinese) | |
88 | 贾泽, 王春光, 张石磊, 等. 赤芍水提物及芍药苷对大肠杆菌抗菌增敏活性的影响[J]. 中国兽医学报, 2019, 39 (10): 2026- 2032. |
JIA Z , WANG C G , ZHANG S L , et al. Antibacterial and sensitizing activity of Paeonia lactiflora aqueous extract and paeoniflorin to Escherichia coli[J]. Chinese Journal of Veterinary Science, 2019, 39 (10): 2026- 2032. | |
89 |
刘超怡, 王宇泊, 赵一霖, 等. 黄藤素与6种抗生素联用对禽源耐药金黄色葡萄球菌的体外抗菌作用[J]. 中国兽医杂志, 2021, 57 (10): 34- 37.
doi: 10.3969/j.issn.0529-6005.2021.10.zgsyzz202110008 |
LIU C Y , WANG Y B , ZHAO Y L , et al. In vitro antibacterial effect of Fibriuretinin combined with six antibiotics against multidrug resistant Staphylococcus aureus[J]. Chinese Journal of Veterinary Medicine, 2021, 57 (10): 34- 37.
doi: 10.3969/j.issn.0529-6005.2021.10.zgsyzz202110008 |
|
90 | 卢娜, 邓旭明, 邱家章. 丹皮酚恢复多粘菌素B对产MCR-1细菌的抗菌活性[C]//中国畜牧兽医学会兽医药理毒理学分会. 中国畜牧兽医学会兽医药理毒理学分会第十五次学术讨论会论文集. 吉林大学动物医学学院, 2019: 91-92. |
LU N, DENG X M, QIU J Z. Paeonol restores the antibacterial activity of polymyxin B against MCR-1 producing bacteria [C]//Chinese Society of Animal Husbandry and Veterinary Medicine Branch of Veterinary Pharmacology and Toxicology. Proceedings of the 15th Symposium of Veterinary Pharmacology and Toxicology Branch of Chinese Society of Animal Husbandry and Veterinary Medicine. College of Veterinary Medicine, Jilin University, 2019: 91-92. (in Chinese) | |
91 |
WANG M Z , MA B , NI Y F , et al. Restoration of the antibiotic susceptibility of methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamases Escherichia coli through combination with chelerythrine[J]. Microb Drug Resist, 2021, 27 (3): 337- 341.
doi: 10.1089/mdr.2020.0044 |
92 |
BUSH K , BRADFORD P A . Interplay between β-lactamases and new β-lactamase inhibitors[J]. Nat Rev Microbiol, 2019, 17 (5): 295- 306.
doi: 10.1038/s41579-019-0159-8 |
93 |
SHRIVASTAV A , SHARMA R K , SHRIVASTAVA N , et al. Study of inhibitory potential and percent inhibition of oil of Syzygium aromaticum and leaves of Ocimum sanctum on ESBL enzyme from Escherichia coli in broilers of Jabalpur[J]. Indian J Pharmacol, 2019, 51 (5): 337- 342.
doi: 10.4103/ijp.IJP_87_17 |
94 | 曹敏. 天然β-内酰胺酶抑制剂的筛选研究[D]. 贵阳: 贵州大学, 2016. |
CAO M. Screening study of natural β-lactamase inhibitors [D]. Guiyang: Guizhou University, 2016. (in Chinese) | |
95 |
WANG Y L , SUN X D , KONG F R , et al. Specific NDM-1 inhibitor of isoliquiritin enhances the activity of meropenem against NDM-1-positive Enterobacteriaceae in vitro[J]. Int J Environ Res Public Health, 2020, 17 (6): 2162.
doi: 10.3390/ijerph17062162 |
96 |
DHARA L , TRIPATHI A . Cinnamaldehyde: a compound with antimicrobial and synergistic activity against ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae[J]. Eur J Clin Microbiol Infect Dis, 2020, 39 (1): 65- 73.
doi: 10.1007/s10096-019-03692-y |
97 |
PAL A , TRIPATHI A . Demonstration of bactericidal and synergistic activity of quercetin with meropenem among pathogenic carbapenem resistant Escherichia coli and Klebsiella pneumoniae[J]. Microb Pathog, 2020, 143, 104120.
doi: 10.1016/j.micpath.2020.104120 |
98 |
SUN T , LI X D , HONG J , et al. Inhibitory effect of two traditional Chinese medicine monomers, berberine and matrine, on the quorum sensing system of antimicrobial-resistant Escherichia coli[J]. Front Microbiol, 2019, 10, 2584.
doi: 10.3389/fmicb.2019.02584 |
99 |
JIN L M , SHEN H , CHE X Y , et al. Anti-bacterial mechanism of baicalin-tobramycin combination on carbapenem-resistant Pseudomonas aeruginosa[J]. World J Clin Cases, 2023, 11 (17): 4026- 4034.
doi: 10.12998/wjcc.v11.i17.4026 |
100 |
PENG L Y , YUAN M , WU Z M , et al. Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses[J]. Sci Rep, 2019, 9 (1): 4063.
doi: 10.1038/s41598-019-40684-6 |
101 | ZHANG N , LIU W G , QIAN K J . In-vitro antibacterial effect of tea polyphenols combined with common antibiotics on multidrug-resistant Klebsiella pneumoniae[J]. Minerva Med, 2020, 111 (6): 536- 543. |
102 | 孙仲琳, 崔锦, 王锐, 等. 细菌耐药的外排机制及其抑制剂[J]. 复旦学报(自然科学版), 2019, 58 (2): 135- 143. |
SUN Z L , CUI J , WANG Y , et al. The efflux mechanism of bacterial drug resistance and inhibitors[J]. Journal of Fudan University (Natural Science), 2019, 58 (2): 135- 143. | |
103 |
YAMASAKI S , NIKAIDO E , NAKASHIMA R , et al. The crystal structure of multidrug-resistance regulator RamR with multiple drugs[J]. Nat Commun, 2013, 4, 2078.
doi: 10.1038/ncomms3078 |
104 |
LI X B , SONG Y Q , WANG L N , et al. A potential combination therapy of berberine hydrochloride with antibiotics against multidrug-resistant Acinetobacter baumannii[J]. Front Cell Infect Microbiol, 2021, 11, 660431.
doi: 10.3389/fcimb.2021.660431 |
105 |
SURIYANARAYANAN B , SAROJINI SANTHOSH R . Docking analysis insights quercetin can be a non-antibiotic adjuvant by inhibiting Mmr drug efflux pump in Mycobacterium sp. and its homologue EmrE in Escherichia coli[J]. J Biomol Struct Dyn, 2015, 33 (8): 1819- 1834.
doi: 10.1080/07391102.2014.974211 |
106 | 李悦怡, 李贤煜, 杨伟峰, 等. 痰热清注射液与抗生素对多重耐药铜绿假单胞菌外排泵的作用[J]. 中国实验方剂学杂志, 2020, 26 (14): 92- 98. |
LI Y Y , LI X Y , YANG W F , et al. Effect of tanreging injection and antibiotics on multi-drug resistant Pseudomonas aeruginosa efflux pump[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 26 (14): 92- 98. | |
107 | 张鹏, 王春光, 张子闯, 等. 甘草酸对多重耐药大肠杆菌的抗菌增敏作用[J]. 畜牧兽医学报, 2021, 52 (5): 1386- 1395. |
ZHANG P , WANG C G , ZHANG Z C , et al. Antibacterial and sensitizing effects of glycyrrhizic acid on multidrug resistant Escherichia coli[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (5): 1386- 1395. | |
108 | 朱利霞, 王洪彬, 史秋梅, 等. 中草药对细菌耐药质粒的消除作用研究[J]. 中国兽药杂志, 2018, 52 (11): 72- 79. |
ZHU L X , WANG H B , SHI Q M , et al. Study on elimination of bacterial drug resistant plasmids by Chinese herbs[J]. Chinese Journal of Veterinary Drug, 2018, 52 (11): 72- 79. | |
109 | 刘洋. 消除鸡源大肠杆菌β-内酰胺类药物耐药中药筛选[D]. 邯郸: 河北工程大学, 2020. |
LIU Y. Traditional Chinese herbs screening for eliminating drugs resistance of beta-lactam type of Escherichia coli from chickens[D]. Handan: Hebei University of Engineering, 2020. (in Chinese) | |
110 |
郑乐怡. 大叶桉挥发油对耐甲氧西林金黄色葡萄球菌体外抑制及质粒消除作用[J]. 广东医学院学报, 2016, 34 (2): 149- 151.
doi: 10.3969/j.issn.1005-4057.2016.02.011 |
ZHENG L Y . In vitro inhibition and plasmid elimination of Eucalyptus robusta-derived volatile oil in methicillin resistant Staphylococcus aureus[J]. Journal of Guangdong Medical University, 2016, 34 (2): 149- 151.
doi: 10.3969/j.issn.1005-4057.2016.02.011 |
|
111 | TRABELSI A , EL KAIBI M A , ABBASSI A , et al. Phytochemical study and antibacterial and antibiotic modulation activity of Punica granatum (Pomegranate) leaves[J]. Scientifica (Cairo), 2020, 2020, 8271203. |
[1] | 石金川, 孙淼, 孟令浩, 王永强, 耿超, 齐朝鲁蒙, 陈亨利, 王梓, 刘锴. 赛鸽源大肠杆菌耐药性检测及多重耐药菌株的全基因组测序分析[J]. 畜牧兽医学报, 2025, 56(5): 2372-2382. |
[2] | 吴俊杰, 吕世明, 龙小霞, 王忠, 王立琦. 中药及活性成分抗耐药菌作用及其机制研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1632-1647. |
[3] | 邱谦, 桑锐, 王巍, 刘馨蔓, 于明弘, 刘晓童, 于天, 张雪梅. 呼宁散对鸡肺源大肠杆菌抑菌活性及体外抗炎、抗氧化作用研究[J]. 畜牧兽医学报, 2025, 56(4): 1969-1980. |
[4] | 李案本, 符娜娜, 罗晓平, 李军燕, 刘阳. 捻转血矛线虫的耐药性及其干预途径研究进展[J]. 畜牧兽医学报, 2025, 56(2): 523-533. |
[5] | 李玮, 吴禧龙, 赵兴瑞, 许兰娇, 杨小斌, 宋小珍. 中药健脾四胃方剂对断奶湖羊生长性能、瘤胃发酵及菌群组成的影响[J]. 畜牧兽医学报, 2025, 56(1): 466-478. |
[6] | 王佳宁, 张自强, 王帅帅, 刘玉梅. 兔源大肠杆菌、奇异变形杆菌和球虫混合感染及药物敏感性分析[J]. 畜牧兽医学报, 2024, 55(9): 4204-4212. |
[7] | 田思瑾, 赵佳琪, 王晓明, 王丽平, 黄金虎. 我国猪链球菌对常用抗菌药物耐药性的Meta分析[J]. 畜牧兽医学报, 2024, 55(7): 3163-3176. |
[8] | 邹紫莹, 黄安雄, 阮紫涵, 郝海红. 鸡滑液囊支原体对常用抗菌药流行病学临界值的建立[J]. 畜牧兽医学报, 2024, 55(6): 2701-2715. |
[9] | 郑芮, 刘紫石, 张康友, 颜勇, 魏玲, 泽仁翁姆, 丁则德米, 黄建钧, 王利, 魏勇. 花生茎源茉莉炭疽菌的分离鉴定及生物学特性研究[J]. 畜牧兽医学报, 2024, 55(5): 2206-2213. |
[10] | 张艳敏, 赵东旭, 王文龙. 捻转血矛线虫对伊维菌素的耐药机制[J]. 畜牧兽医学报, 2024, 55(4): 1511-1520. |
[11] | 李芃绪, 李世景, 孙骏, 项维, 赵苗苗, 侯天牧, 李华明, 广敏, 陈瑞格, 徐梦然, 吴晓敏, 姜合祥, 雷连成, 张付贤. 致脑膜炎猪链球菌2型的分子分型鉴定及其生物学特性[J]. 畜牧兽医学报, 2024, 55(3): 1192-1207. |
[12] | 王贺, 郭志廷, 李建喜, 张景艳, 王磊, 张康, 孙继文, 尚小粉, 马永华. 常山散对雏鸡感染柔嫩艾美耳球虫不同发育阶段的防治效果[J]. 畜牧兽医学报, 2024, 55(3): 1278-1289. |
[13] | 魏苗伊, 吴世海, 杨富琳, 余宸昀, 孙志刚, 刘馨媛, 徐媛媛, 梁冰冰, 李复煌, 孙鸿, 刘晓晔, 董虹. 中药龙胆草抗鸽毛滴虫的临床药效分析[J]. 畜牧兽医学报, 2024, 55(2): 785-796. |
[14] | 杨荣荣, 张婷, 唐萍萍, 何爽方, 赵苗苗, 雷连成, 张付贤. 产金属β-内酰胺酶猪源ST201型多杀性巴氏杆菌的耐药性和致病性分析[J]. 畜牧兽医学报, 2024, 55(12): 5692-5705. |
[15] | 潘柄霖, 王思楠, 姚国忠, 翟瑞东, 宋厚辉, 程昌勇, 雷蕾. 猪源携带tet(X4)基因大肠杆菌的消毒剂抗性分析[J]. 畜牧兽医学报, 2024, 55(12): 5880-5885. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||