畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2082-2092.doi: 10.11843/j.issn.0366-6964.2025.05.009
收稿日期:
2024-05-06
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
张养东
E-mail:songlinneau@163.com;zhangyangdong@caas.cn
作者简介:
宋琳(2001-),女,河南三门峡人,硕士生,主要从事奶牛营养与牛奶质量安全研究,E-mail: songlinneau@163.com
基金资助:
SONG Lin(), ZHAO Xiaowei, QI Yingjie, ZHANG Yangdong*(
)
Received:
2024-05-06
Online:
2025-05-23
Published:
2025-05-27
Contact:
ZHANG Yangdong
E-mail:songlinneau@163.com;zhangyangdong@caas.cn
摘要:
奶牛瘤胃内栖息着数量庞大、种类繁多的微生物,其与身体形成了一种“互惠互利”的共生关系。其中短链脂肪酸(SCFAs)作为微生物的代谢产物,与微生物相互作用为机体提供营养,维持内环境稳定。本文阐述了SCFAs与奶牛瘤胃微生物的互作关系,重点关注其对奶牛瘤胃健康及稳态的影响,综述了奶牛瘤胃内SCFA调控内环境的作用机制,为SCFAs营养调控奶牛机体健康提供理论依据。
中图分类号:
宋琳, 赵小伟, 齐英杰, 张养东. 短链脂肪酸对奶牛瘤胃微生物菌群的影响研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2082-2092.
SONG Lin, ZHAO Xiaowei, QI Yingjie, ZHANG Yangdong. Research Progress on the Effect of Short-chain Fatty Acids on Gastrointestinal Microbiota in Dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2082-2092.
表 1
瘤胃内主要SCFAs的产生菌类及作用"
SCFA种类 Type of SCFA | 产生菌类 Acid-producing fungi | 作用 Function | 参考文献 References |
甲酸 Formic acid | 具核梭杆菌(F. nucleatum)、Fibrobacter succinogenes、Streptococcus bovis | 提高瘤胃有效降解率 Improve the effective degradation rate of the rumen | [ |
乙酸 Acetic acid | 双歧杆菌科(Bifidobacteriaceae)、毛螺菌科(Lachnospiraceae)、链球菌科(Streptococcaceae)、普雷沃氏菌科(Prevotellaceae)、乳酸杆菌(Lactobacillus)、产琥珀酸丝状杆菌(Fibrobacter succinogenes)、鲁米诺球菌(Ruminococci)等 | 调节消化道pH,维持环境稳定;控制食欲;调节脂肪储存;滋养产丁酸盐菌;抑制病原体生成 Regulate the pH of the digestive tract, maintain a stable environment; control appetite; regulate fat storage; nourish butyrate-producing bacteria; inhibit the growth of pathogens | [ |
丙酸 Propionic acid | 肠杆菌科(Enterobacteriaceae)、氨基酸球菌科(Acidaminococcaceae)、韦荣球菌科(Veillonellaceae)、嗜黏蛋白阿克曼菌(Akkermansia muciniphila)等 | 降低胆固醇,减少脂肪储存;调节食欲;抑制炎症;抗癌 Lower cholesterol; reduce fat storage; regulate appetite; inhibit inflammation; fight cancer | [ |
丁酸 Butyric acid | 梭状芽孢杆菌科(Clostridiaceae)、双歧杆菌科(Bifidobacteriaceae)、毛螺菌科(Lachnospiraceae)、梭菌属(Clostridium)、真杆菌属(Eubacterium)、罗氏菌属(Roseburia)等 | 为瘤胃上皮细胞供能;维护肠黏膜屏障功能;抗氧化;调节宿主免疫功能;抗癌;保护大脑 Provide energy to intestinal epithelial cells; maintain intestinal mucosal barrier function; antioxidant; regulate host immune function; inhibit cancer activity; protect the brain | [ |
异丁酸 Isobutyric acid | 厚壁梭菌(Clostrida Firmicutes)、Phocaeiocla、Clostridium luticellarii | 促进瘤胃纤维降解菌,提高饲料纤维的降解消化率;抑制脲酶,增加瘤胃内非蛋白氮的利用;促进瘤胃内乙酸的生成 Promote rumen fiber degrading bacteria; improve the degradation and digestibility of feed fiber; inhibit urease; increase the utilization of non-protein nitrogen in the rumen; promote the production of acetic acid in the rumen | [ |
戊酸 Valeric acid | 韦荣球菌科(Veillonellaceae)、普雷沃氏菌科(Prevotellaceae)等 | 增加蛋白质组外膜蛋白丰度;调节炎性细胞因子白细胞介素-6的产生 Increase the abundance of proteome outer membrane proteins; regulate the production of the inflammatory cytokine interleukin-6 | [ |
异戊酸 Isovaleric acid | 拟杆菌属(Bacteroides)、卵形拟杆菌(Bacteroides ovatus)、Prevotella bryantii B14 | 增强支链氨基酸合成,提高微生物蛋白的合成;提高反刍动物的产奶量及乳脂率 Enhance the synthesis of branched-chain amino acids; improve the synthesis of microbial proteins; improve the milk yield and milk fat rate of ruminants | [ |
己酸 Caproic acid | 韦荣球菌科(Veillonellaceae)、瘤胃菌科(Ruminococcaceae bacterium) | 瘤胃内生酮作用;合成己酸乙酯的前体物质 Rumen ketogenic; a precursor to the synthesis of ethyl caproate | [ |
1 |
ZHAO Y , ZHANG Y M , KHAS E , et al. Effects of Allium mongolicum Regel ethanol extract on three flavor-related rumen branched-chain fatty acids, rumen fermentation and rumen bacteria in lambs[J]. Front Microbiol, 2022, 13, 978057.
doi: 10.3389/fmicb.2022.978057 |
2 |
YAN J L , PAN Y B , SHAO W M , et al. Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling[J]. Microbiome, 2022, 10 (1): 195.
doi: 10.1186/s40168-022-01390-0 |
3 |
XIAO W P , SU J B , GAO X J , et al. The microbiota-gut-brain axis participates in chronic cerebral hypoperfusion by disrupting the metabolism of short-chain fatty acids[J]. Microbiome, 2022, 10 (1): 62.
doi: 10.1186/s40168-022-01255-6 |
4 |
MORAÏS S , MIZRAHI I . The road not taken: The rumen microbiome, functional groups, and community states[J]. Trends Microbiol, 2019, 27 (6): 538- 549.
doi: 10.1016/j.tim.2018.12.011 |
5 |
ZHAN K , GONG X X , CHEN Y Y , et al. Short-chain fatty acids regulate the immune responses via G protein-coupled receptor 41 in bovine rumen epithelial cells[J]. Front Immunol, 2019, 10, 2042.
doi: 10.3389/fimmu.2019.02042 |
6 | 张剑霞, 胡红莲, 宋利文, 等. 短链脂肪酸对亚急性瘤胃酸中毒的影响和钠离子耦合单羧酸转运蛋白1和氢离子耦合单羧酸转运蛋白1对短链脂肪酸的转运机制[J]. 动物营养学报, 2022, 34 (12): 7574- 7584. |
ZHANG J X , HU H L , SONG L W , et al. Effects of short chain fatty acids on subacute ruminal acidosis and transport mechanism of sodium-coupled monocarboxylate transporter 1 and hydrogen-coupled monocarboxylate transporter 1 on short chain fatty acids[J]. Chinese Journal of Animal Nutrition, 2022, 34 (12): 7574- 7584. | |
7 | 高景, 齐智利. 瘤胃上皮短链脂肪酸的吸收和代谢[J]. 动物营养学报, 2018, 30 (4): 1271- 1278. |
GAO J , QI Z L . Absorption and metabolism of short chain fatty acids in ruminal epithelium[J]. Chinese Journal of Animal Nutrition, 2018, 30 (4): 1271- 1278. | |
8 |
LIU J J , CHEN Q , SU R J . Interplay of human gastrointestinal microbiota metabolites: Short-chain fatty acids and their correlation with Parkinson's disease[J]. Medicine (Baltimore), 2024, 103 (17): e37960.
doi: 10.1097/MD.0000000000037960 |
9 |
SILVA T H , AMÂNCIO B R , MAGNANI E , et al. Evaluation of direct-fed microbials on in vitro ruminal fermentation, gas production kinetic, and greenhouse gas emissions in different ruminants' diet[J]. Front Anim Sci, 2024, 5, 1320075.
doi: 10.3389/fanim.2024.1320075 |
10 |
LEBLANC J G , CHAIN F , MARTÍN R , et al. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria[J]. Microb Cell Fact, 2017, 16 (1): 79.
doi: 10.1186/s12934-017-0691-z |
11 |
DONG Y , CUI C . The role of short-chain fatty acids in central nervous system diseases[J]. Mol Cell Biochem, 2022, 477 (11): 2595- 2607.
doi: 10.1007/s11010-022-04471-8 |
12 |
TERNES D , TSENKOVA M , POZDEEV V I , et al. The gut microbial metabolite formate exacerbates colorectal cancer progression[J]. Nat Metab, 2022, 4 (4): 458- 475.
doi: 10.1038/s42255-022-00558-0 |
13 | 冯启贤, 张磊, 李妍, 等. 甲酸处理对苜蓿青贮品质及瘤胃降解率的影响[J]. 草地学报, 2023, 31 (4): 1264- 1272. |
FENG Q X , ZHANG L , LI Y , et al. Effect of formic acid treatment on the quality and rumen degradation rate of alfalfa silage[J]. Acta Agrestia Sinica, 2023, 31 (4): 1264- 1272. | |
14 |
TSUKUDA N , YAHAGI K , HARA T , et al. Key bacterial taxa and metabolic pathways affecting gut short-chain fatty acid profiles in early life[J]. ISME J, 2021, 15 (9): 2574- 2590.
doi: 10.1038/s41396-021-00937-7 |
15 |
LA REAU A J , SUEN G . The Ruminococci: key symbionts of the gut ecosystem[J]. J Microbiol, 2018, 56 (3): 199- 208.
doi: 10.1007/s12275-018-8024-4 |
16 | 毛慧芳, 梁永林. 黏质阿克曼菌及其代谢物短链脂肪酸与溃疡性结肠炎肠黏膜屏障的相关性研究[J]. 微生物学报, 2023, 63 (4): 1411- 1431. |
MAO H F , LIANG Y L . Relationship of Akkermansia muciniphila and the metabolites short chain fatty acids with intestinal mucosal barrier in ulcerative colitis[J]. Acta Microbiologica Sinica, 2023, 63 (4): 1411- 1431. | |
17 | TAETHAISONG N , PAENGKOUM S , KAEWWONGSA W , et al. The effect of neem leaf supplementation on growth performance, rumen fermentation, and ruminal microbial population in goats[J]. Animals (Basel), 2023, 13 (5): 890. |
18 |
LUO J , RANADHEERA C S , KING S , et al. Potential influence of dairy propionibacteria on the growth and acid metabolism of Streptococcus bovis and Megasphaera elsdenii[J]. Benef Microbes, 2017, 8 (1): 111- 119.
doi: 10.3920/BM2016.0044 |
19 |
付域泽, 焦帅, 张乃锋. 产丁酸菌的产酸机制及其在调控肠道健康中的作用研究进展[J]. 畜牧兽医学报, 2022, 53 (12): 4148- 4158.
doi: 10.11843/j.issn.0366-6964.2022.12.003 |
FU Z Y , JIAO S , ZHANG N F . Research progress on the acid-producing mechanism of butyric acid-producing bacteria and their role in regulating intestinal health[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (12): 4148- 4158.
doi: 10.11843/j.issn.0366-6964.2022.12.003 |
|
20 |
MA L , YANG Y , LIU W H , et al. Sodium butyrate supplementation impacts the gastrointestinal bacteria of dairy calves before weaning[J]. Appl Microbiol Biotechnol, 2023, 107 (10): 3291- 3304.
doi: 10.1007/s00253-023-12485-5 |
21 |
DO H E , HA Y B , KIM J S , et al. Phocaeicola acetigenes sp. nov., producing acetic acid and iso-butyric acid, isolated faeces from a healthy human[J]. Antonie Van Leeuwenhoek, 2024, 117 (1): 30.
doi: 10.1007/s10482-024-01930-8 |
22 |
WANG X M , WANG Q , CAI D , et al. In vitro gastrointestinal digestion and microbial hydrolysis of hydroxytyrosol-SCFA and tyrosol-SCFA acyl esters: Controlled-release of SCFAs and polyphenols[J]. J Agric Food Chem, 2023, 71 (24): 9361- 9369.
doi: 10.1021/acs.jafc.3c00747 |
23 |
MARIËN Q , REGUEIRA A , GANIGUÉ R . Steerable isobutyric and butyric acid production from CO2 and H2 by Clostridium luticellarii[J]. Microb Biotechnol, 2024, 17 (1): e14321.
doi: 10.1111/1751-7915.14321 |
24 |
SHI H D , YANG J Q , LI J K . Pomegranate peel polyphenols interaction with intestinal flora and its metabolic transformation[J]. Xenobiotica, 2022, 52 (5): 442- 452.
doi: 10.1080/00498254.2022.2073291 |
25 |
LIU M T , ZHANG Y , LIU J , et al. Revisiting the role of valeric acid in manipulating ulcerative colitis[J]. Inflamm Bowel Dis, 2024, 30 (4): 617- 628.
doi: 10.1093/ibd/izad187 |
26 | 张振威, 朱明霞, 王长法. 异位酸影响反刍动物瘤胃代谢和生产性能的研究进展[J]. 动物营养学报, 2022, 34 (3): 1408- 1415. |
ZHANG Z W , ZHU M X , WANG C F . Research progress on the effects of ectopic acids on rumen metabolism and production performance of ruminants[J]. Chinese Journal of Animal Nutrition, 2022, 34 (3): 1408- 1415. | |
27 |
WANG X K , HU Y F , ZHU X Y , et al. Bacteroides-derived isovaleric acid enhances mucosal immunity by facilitating intestinal IgA response in broilers[J]. J Anim Sci Biotechnol, 2023, 14 (1): 4.
doi: 10.1186/s40104-022-00807-y |
28 |
韦肖, 张建童, 龙唐晖, 等. 日粮能量水平对湖羊瘤胃发酵特性和微生物组成的影响[J]. 畜牧兽医学报, 2022, 53 (9): 3042- 3051.
doi: 10.11843/j.issn.0366-6964.2022.09.020 |
WEI X , ZHANG J T , LONG T H , et al. Effects of dietary energy level on rumen fermentation characteristics and microbial composition of Hu sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 3042- 3051.
doi: 10.11843/j.issn.0366-6964.2022.09.020 |
|
29 | 魏翠翠, 央青卓玛, 陶勇, 等. 瘤胃菌与乳酸菌共培养利用葡萄糖合成己酸[J]. 应用与环境生物学报, 2021, 27 (6): 1456- 1463. |
WEI C C , YANGQING Z M , TAO Y , et al. Caproic acid production from glucose via the co-culture of Ruminococcaceae bacterium CPB6 and Lactobacillus plantarum RJ25[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27 (6): 1456- 1463. | |
30 | GUO Y S , WANG F F , MAO Y X , et al. Influence of parturition on rumen bacteria and SCFAs in Holstein cows based on 16S rRNA sequencing and targeted metabolomics[J]. Animals (Basel), 2023, 13 (5): 782. |
31 | 徐蓉, 邓王姝颖, 姜卫红, 等. 甲酸生物利用的研究进展[J]. 生物工程学报, 2020, 36 (6): 1031- 1040. |
XU R , DENG W S Y , JIANG W H , et al. Progress in biological utilization of formic acid[J]. Chinese Journal of Biotechnology, 2020, 36 (6): 10. | |
32 |
SCHROEDER B O , BÄCKHED F . Signals from the gut microbiota to distant organs in physiology and disease[J]. Nat Med, 2016, 22 (10): 1079- 1089.
doi: 10.1038/nm.4185 |
33 |
CHEN Q , ZHOU K . Acetic acid use in chronic wound gealing: A multiple case series[J]. J Wound Ostomy Continence Nurs, 2022, 49 (3): 286- 289.
doi: 10.1097/WON.0000000000000863 |
34 |
MEI X R , LI Y , ZHANG X Y , et al. Maternal phlorizin intake protects offspring from maternal obesity-induced metabolic disorders in mice via targeting gut microbiota to activate the SCFA-GPR43 pathway[J]. J Agric Food Chem, 2024, 72 (9): 4703- 4725.
doi: 10.1021/acs.jafc.3c06370 |
35 |
FROST G , SLEETH M L , SAHURI-ARISOYLU M , et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism[J]. Nat Commun, 2014, 5, 3611.
doi: 10.1038/ncomms4611 |
36 |
GREENING C , GEIER R , WANG C , et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants[J]. ISME J, 2019, 13 (10): 2617- 2632.
doi: 10.1038/s41396-019-0464-2 |
37 |
ZHANG C , LIU H , JIANG X , et al. An integrated microbiome- and metabolome-genome-wide association study reveals the role of heritable ruminal microbial carbohydrate metabolism in lactation performance in Holstein dairy cows[J]. Microbiome, 2024, 12, 232.
doi: 10.1186/s40168-024-01937-3 |
38 |
BYRNE C S , CHAMBERS E S , MORRISON D J , et al. The role of short chain fatty acids in appetite regulation and energy homeostasis[J]. Int J Obes (Lond), 2015, 39 (9): 1331- 1338.
doi: 10.1038/ijo.2015.84 |
39 | UNGERFELD E M . Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation[J]. Front Microbiol, 2015, 6, 1272. |
40 |
SHABAT S K B , SASSON G , DORON-FAIGENBOIM A , et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants[J]. ISME J, 2016, 10 (12): 2958- 2972.
doi: 10.1038/ismej.2016.62 |
41 |
LI Q S , WANG R , MA Z Y , et al. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants[J]. ISME J, 2022, 16 (11): 2535- 2546.
doi: 10.1038/s41396-022-01294-9 |
42 |
MORRISON D J , PRESTON T . Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7 (3): 189- 200.
doi: 10.1080/19490976.2015.1134082 |
43 |
YU X , OU J Z , WANG L Z , et al. Gut microbiota modulate CD8+ T cell immunity in gastric cancer through Butyrate/GPR109A/HOPX[J]. Gut Microbes, 2024, 16 (1): 2307542.
doi: 10.1080/19490976.2024.2307542 |
44 |
ZHANG M B , WANG Y Y , ZHAO X Q , et al. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review[J]. Nutr Res, 2021, 95, 1- 18.
doi: 10.1016/j.nutres.2021.08.007 |
45 |
HE B , MOREAU R . Lipid-regulating properties of butyric acid and 4-phenylbutyric acid: Molecular mechanisms and therapeutic applications[J]. Pharmacol Res, 2019, 144, 116- 131.
doi: 10.1016/j.phrs.2019.04.002 |
46 |
LEE C , MORRIS D L , COPELIN J E , et al. Effects of lysophospholipids on short-term production, nitrogen utilization, and rumen fermentation and bacterial population in lactating dairy cows[J]. J Dairy Sci, 2019, 102 (4): 3110- 3120.
doi: 10.3168/jds.2018-15777 |
47 |
ONRUST L , VAN DRIESSCHE K , DUCATELLE R , et al. Valeric acid glyceride esters in feed promote broiler performance and reduce the incidence of necrotic enteritis[J]. Poult Sci, 2018, 97 (7): 2303- 2311.
doi: 10.3382/ps/pey085 |
48 |
ZHU P P , LU T K , CHEN Z Z , et al. 5-hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis[J]. Neuron, 2022, 110 (14): 2268- 2282. e4.
doi: 10.1016/j.neuron.2022.04.024 |
49 |
ZEINELDIN M , ALDRIDGE B , LOWE J . Dysbiosis of the fecal microbiota in feedlot cattle with hemorrhagic diarrhea[J]. Microb Pathog, 2018, 115, 123- 130.
doi: 10.1016/j.micpath.2017.12.059 |
50 |
BICKHART D M , WEIMER P J . Host-rumen microbe interactions may be leveraged to improve the productivity of dairy cows[J]. J Dairy Sci, 2018, 101 (8): 7680- 7689.
doi: 10.3168/jds.2017-13328 |
51 | 杨雪, 高亚男, 王加启, 等. 短链脂肪酸的功能研究进展[J]. 食品科学, 2023, 44 (13): 408- 417. |
YANG X , GAO Y N , WANG J Q , et al. Research progress on the functions of short chain fatty acid[J]. Food Science, 2023, 44 (13): 408- 417. | |
52 | 程冠文. 日粮碳水化合物类型调控瘤胃发酵乙/丙比的机制研究[D]. 泰安: 山东农业大学, 2019. |
CHENG G W. Mechanism of dietary carbohydrate type regulating rumen fermentation B/C ratio[D]. Tai'an: Shandong Agricultural University, 2019. (in Chinese) | |
53 | 吴泳江. 丁酸钠和β-羟丁酸钠缓解瘤胃细菌细胞壁成分对奶牛炎症和泌乳影响的研究[D]. 重庆: 西南大学, 2021. |
WU Y J. A study on the roles of sodium butyrate and sodium β-hydroxybutyrate in mitigating the effects of rumen bacterial cell-wall components on inflammation and lactation in dairy cows[D]. Chongqing: Southwest University, 2021. (in Chinese) | |
54 |
MCCURDY D E , WILKINS K R , HILTZ R L , et al. Effects of supplemental butyrate and weaning on rumen fermentation in Holstein calves[J]. J Dairy Sci, 2019, 102 (10): 8874- 8882.
doi: 10.3168/jds.2019-16652 |
55 |
GÓRKA P , KOWALSKI Z M , PIETRZAK P , et al. Effect of method of delivery of sodium butyrate on rumen development in newborn calves[J]. J Dairy Sci, 2011, 94 (11): 5578- 5588.
doi: 10.3168/jds.2011-4166 |
56 | MVLLER C M. Inter-individual variation in nitrogen and phosphorus metabolism and excretions in lactating Holstein dairy cows[D]. Berlin: Freie Universität Berlin, 2022. |
57 |
XIE Y Y , WU Z Z , WANG D M , et al. Nitrogen partitioning and microbial protein synthesis in lactating dairy cows with different phenotypic residual feed intake[J]. J Anim Sci Biotechnol, 2019, 10, 54.
doi: 10.1186/s40104-019-0356-3 |
58 |
HEERING R , BAUMONT R , SELJE-AßMANN N , et al. Effect of physically effective fibre on chewing behaviour, ruminal fermentation, digesta passage and protein metabolism of dairy cows[J]. J Agric Sci, 2023, 161 (5): 720- 733.
doi: 10.1017/S0021859623000539 |
59 | WU X , HUANG S , HUANG J F , et al. Identification of the potential role of the rumen microbiome in milk protein and fat synthesis in dairy cows using metagenomic sequencing[J]. Animals (Basel), 2021, 11 (5): 1247. |
60 | HE Y , NIU W J , QIU Q H , et al. Effect of calcium salt of long-chain fatty acids and alfalfa supplementation on performance of Holstein bulls[J]. Oncotarget, 2017, 9 (3): 3029- 3042. |
61 |
ZEIDALI-NEJAD A , GHORBANI G R , KARGAR S , et al. Nutrient intake, rumen fermentation and growth performance of dairy calves fed extruded full-fat soybean as a replacement for soybean meal[J]. Animal, 2018, 12 (4): 733- 740.
doi: 10.1017/S1751731117002154 |
62 |
ZANTON G I , HEINRICHS A J . Efficiency and rumen responses in younger and older Holstein heifers limit-fed diets of differing energy density[J]. J Dairy Sci, 2016, 99 (4): 2825- 2836.
doi: 10.3168/jds.2015-10316 |
63 |
WATABE Y , SUZUKI Y , KOIKE S , et al. Cellulose acetate, a new candidate feed supplement for ruminant animals: In vitro evaluations[J]. J Dairy Sci, 2018, 101 (12): 10929- 10938.
doi: 10.3168/jds.2018-14969 |
64 |
CHENG Z Q , MENG Z T , TAN D J , et al. Effects of supplementation of sodium acetate on rumen fermentation and microbiota in postpartum dairy cows[J]. Front Microbiol, 2022, 13, 1053503.
doi: 10.3389/fmicb.2022.1053503 |
65 |
SHEN H , XU Z , SHEN Z , et al. The regulation of ruminal short-chain fatty acids on the functions of rumen barriers[J]. Front Physiol, 2019, 10, 1305.
doi: 10.3389/fphys.2019.01305 |
66 | TRAUTMANN A, SCHLEICHER L, DEUSCH S, et al. Short-chain fatty acids modulate metabolic pathways and membrane lipids in Prevotella bryantii B14[J]. 2020, 8(4): 28. |
67 |
LIU L X , SUN D M , MAO S Y , et al. Infusion of sodium butyrate promotes rumen papillae growth and enhances expression of genes related to rumen epithelial VFA uptake and metabolism in neonatal twin lambs[J]. J Anim Sci, 2019, 97 (2): 909- 921.
doi: 10.1093/jas/sky459 |
68 |
CAO N , WU H , ZHANG X Z , et al. Calcium propionate supplementation alters the ruminal bacterial and archaeal communities in pre- and postweaning calves[J]. J Dairy Sci, 2020, 103 (4): 3204- 3218.
doi: 10.3168/jds.2019-16964 |
69 | ZHEN Y , XI Z , NASR S M , et al. Multi-omics reveals the impact of exogenous short-chain fatty acid infusion on rumen homeostasis: insights into crosstalk between the microbiome and the epithelium in a goat model[J]. Microbiology Spectrum, 2023, 11 (4): e05343- 05322. |
70 |
WOLTER M , GRANT E T , BOUDAUD M , et al. Leveraging diet to engineer the gut microbiome[J]. Nat Rev Gastroenterol Hepatol, 2021, 18 (12): 885- 902.
doi: 10.1038/s41575-021-00512-7 |
71 |
GUI H B , SHEN Z M . Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats[J]. J Dairy Sci, 2016, 99 (8): 6627- 6638.
doi: 10.3168/jds.2015-10446 |
72 |
LIU Y L , MA L L , RIQING D , et al. Microbial metagenomes and host transcriptomes reveal the dynamic changes of rumen gene expression, microbial colonization and co-regulation of mineral element metabolism in yaks from birth to adulthood[J]. Animals, 2024, 14 (9): 1365.
doi: 10.3390/ani14091365 |
73 |
NAN S S , LI J C , KUANG Y , et al. Differential microbial composition and interkingdom interactions in the intestinal microbiota of Holstein and German Simmental×Holstein cross F1 calves: A comprehensive analysis of bacterial and fungal diversity[J]. Microorganisms, 2024, 12 (3): 486.
doi: 10.3390/microorganisms12030486 |
74 |
O'HARA E , KELLY A , MCCABE M S , et al. Effect of a butyrate-fortified milk replacer on gastrointestinal microbiota and products of fermentation in artificially reared dairy calves at weaning[J]. Sci Rep, 2018, 8 (1): 14901.
doi: 10.1038/s41598-018-33122-6 |
75 |
HENDERSON G , COX F , GANESH S , et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range[J]. Sci Rep, 2015, 5, 14567.
doi: 10.1038/srep14567 |
76 |
CAO N , WU H , ZHANG X Z , et al. Calcium propionate supplementation alters the ruminal bacterial and archaeal communities in pre- and postweaning calves[J]. J Dairy Sci, 2020, 103 (4): 3204- 3218.
doi: 10.3168/jds.2019-16964 |
77 | WILK M , KRÓL B , SŁUPCZYN'SKA M , et al. In vitro rumen methanogenesis and fermentation profile of sorghum whole crop cereal and bagasse ensilaged with inoculum Lactobacillus buchneri[J]. Pakistan Veterinary Journal, 2022, 42 (1): 41- 46. |
78 | BANDLA N , SVDEKUM K H , GERLACH K . Review: Role of silage volatile organic compounds in influencing forage choice behavior and intake in ruminants[J]. Anim Feed Sci Technol, 2024, 307, 11583. |
79 | SONG Y , MALMUTHUGE N , STEELE M A , et al. Shift of hindgut microbiota and microbial short chain fatty acids profiles in dairy calves from birth to pre-weaning[J]. FEMS Microbiol Ecol, 2018, 94 (3) |
80 | LI F , GUAN L L . Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle[J]. Appl Environ Microbiol, 2017, 83 (9): e00061- 17. |
81 |
LI K , WANG W H , WU J B , et al. β-hydroxybutyrate: A crucial therapeutic target for diverse liver diseases[J]. Biomed Pharmacother, 2023, 165, 115191.
doi: 10.1016/j.biopha.2023.115191 |
82 | TUFARELLI V , PUVA AČG A N , GLAMO AČG IC' D , et al. The most important metabolic diseases in dairy cattle during the transition period[J]. Animals (Basel), 2024, 14 (5): 816. |
83 |
PANG K , DAI D , YANG Y , et al. Effects of high concentrate rations on ruminal fermentation and microbiota of yaks[J]. Front Microbiol, 2022, 13, 957152.
doi: 10.3389/fmicb.2022.957152 |
84 |
ZHU Z G , KRISTENSEN L , DIFFORD G F , et al. Changes in rumen bacterial and archaeal communities over the transition period in primiparous Holstein dairy cows[J]. J Dairy Sci, 2018, 101 (11): 9847- 9862.
doi: 10.3168/jds.2017-14366 |
85 |
LIMA F S , OIKONOMOU G , LIMA S F , et al. Prepartum and postpartum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows[J]. Appl Environ Microbiol, 2015, 81 (4): 1327- 1337.
doi: 10.1128/AEM.03138-14 |
86 | ZHANG T , MU Y Y , ZHANG R Y , et al. Responsive changes of rumen microbiome and metabolome in dairy cows with different susceptibility to subacute ruminal acidosis[J]. Anim Nutr, 2022, 8 (1): 331- 340. |
87 | SHI N , LI N , DUAN X W , et al. Interaction between the gut microbiome and mucosal immune system[J]. Mil Med Res, 2017, 4, 14. |
88 |
TSUKIDATE T , HESPEN C W , HANG H C . Small molecule modulators of immune pattern recognition receptors[J]. RSC Chem Biol, 2023, 4 (12): 1014- 1036.
doi: 10.1039/D3CB00096F |
89 | RUDIN A D , KHAMZEH A , VENKATAKRISHNAN V , et al. Short chain fatty acids released by Fusobacterium nucleatum are neutrophil chemoattractants acting via free fatty acid receptor 2 (FFAR2)[J]. Cell Microbiol, 2021, 23 (8): e13348. |
90 |
MILLER A , FANTONE K M , TUCKER S L , et al. Short chain fatty acids reduce the respiratory burst of human neutrophils in response to cystic fibrosis isolates of Staphylococcus aureus[J]. J Cyst Fibros, 2023, 22 (4): 756- 762.
doi: 10.1016/j.jcf.2023.04.022 |
91 |
LYU M Z , SUZUKI H , KANG L , et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut[J]. Nature, 2022, 610 (7933): 744- 751.
doi: 10.1038/s41586-022-05141-x |
92 | CLEMENTE J C , MANASSON J , SCHER J U . The role of the gut microbiome in systemic inflammatory disease[J]. BMJ, 2018, 360, j5145. |
93 | NAGARAJA T G . 0186 Ruminal microbes, microbial products, and systemic inflammation[J]. J Anim Sci, 2016, 94 (suppl_5): 90. |
94 | MEISSNER S , HAGEN F , DEINER C , et al. Key role of short-chain fatty acids in epithelial barrier failure during ruminal acidosis[J]. J Dairy Sci, 2017, 100 (8): 6662- 6675. |
95 | WANG Y , NAN X M , ZHAO Y G , et al. Rumen microbiome structure and metabolites activity in dairy cows with clinical and subclinical mastitis[J]. J Anim Sci Biotechnol, 2021, 12 (1): 36. |
96 | MOUSA W K , CHEHADEH F , HUSBAND S . Microbial dysbiosis in the gut drives systemic autoimmune diseases[J]. Front Immunol, 2022, 13, 906258. |
97 | ZEINELDIN M , BARAKAT R , ELOLIMY A , et al. Synergetic action between the rumen microbiota and bovine health[J]. Microb Pathog, 2018, 124, 106- 115. |
98 | GONZALEZ-SANTANA A , DIAZ HEIJTZ R . Bacterial peptidoglycans from microbiota in neurodevelopment and behavior[J]. Trends Mol Med, 2020, 26 (8): 729- 743. |
99 | KOH A , DE VADDER F , KOVATCHEVA-DATCHARY P , et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165 (6): 1332- 1345. |
100 | NØHR M K , EGEROD K L , CHRISTIANSEN S H , et al. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia[J]. Neuroscience, 2015, 290, 126- 137. |
101 | GOODRICH J K , WATERS J L , POOLE A C , et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159 (4): 789- 799. |
102 | LI F Y , LI C X , CHEN Y H , et al. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle[J]. Microbiome, 2019, 7 (1): 92. |
103 | LI F Y , HITCH T C A , CHEN Y H , et al. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle[J]. Microbiome, 2019, 7 (1): 6. |
104 | PAZ H A , ANDERSON C L , MULLER M J , et al. Rumen bacterial community composition in Holstein and Jersey cows is different under same dietary condition and is not affected by sampling method[J]. Front Microbiol, 2016, 7, 1206. |
105 | LA REAU A J , MEIER-KOLTHOFF J P , SUEN G . Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association[J]. Microb Genom, 2016, 2 (12): e000099. |
[1] | 潘红, 周赛赛, 袁红根, 宋云峰. 口蹄疫病毒3'UTR负链互作的宿主蛋白筛选[J]. 畜牧兽医学报, 2025, 56(5): 2279-2291. |
[2] | 张仕琦, 郑楠, 王加启, 赵圣国. 饲粮NFC/NDF比例对奶牛瘤胃中微生物尿素氮代谢流的影响[J]. 畜牧兽医学报, 2025, 56(3): 1302-1312. |
[3] | 张素, 孙丽芳, 李兰兰, 吴琳娇, 陈磊清, 吴允昆. 非洲猪瘟病毒结构蛋白与宿主蛋白相互作用研究进展[J]. 畜牧兽医学报, 2025, 56(1): 95-106. |
[4] | 师睿, 李珊珊, 张海亮, 路海博, 闫青霞, 张毅, 陈绍祜, 王雅春. 中国荷斯坦牛繁殖性状的基因型与环境互作[J]. 畜牧兽医学报, 2024, 55(9): 3968-3977. |
[5] | 冯旭飞, 亓宇翔, 于瀚哲, 张正洲, 王如嘉, 孟闯, 董魁. Rab32对禽偏肺病毒C型复制的影响[J]. 畜牧兽医学报, 2024, 55(9): 4041-4050. |
[6] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[7] | 龙唐晖, 周江汇, 詹彦波, 张健, 赵向辉, 李艳娇, 欧阳克蕙, 邱清华. 反刍动物瘤胃微生物LuxS/AI-2群体感应研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1893-1903. |
[8] | 丁晓艳, 何久香, 周晓杨, 周伃欣, 李晋涛. 非洲猪瘟病毒感染相关调控基因以及毒力基因初步筛选[J]. 畜牧兽医学报, 2023, 54(7): 2964-2971. |
[9] | 刘航, 王欢欢, 葛莹, 张雷, 张伟武, 魏莹晖, 李庆海, 范京辉, 章学东. 基于转录组和蛋白组筛选乌骨鸡肤色性状候选基因[J]. 畜牧兽医学报, 2023, 54(6): 2320-2329. |
[10] | 赵威, Mahmoud M. Abdelsattar, 柴建民, 王昕, 刁其玉, 张乃锋. 瘤胃微生物移植及应用研究进展[J]. 畜牧兽医学报, 2023, 54(5): 1792-1803. |
[11] | 王琳, 马黎, 张博, 邓俊, 张浩, 欧阳晓芳, 严达伟, 董新星. 大型迪庆藏猪不同生长阶段背脂与腹脂脂质代谢差异基因及调控网络分析[J]. 畜牧兽医学报, 2023, 54(2): 520-533. |
[12] | 张成成, 孙嘉豪, 王秀玲, 张小荣, 吴艳涛. 猪瘟病毒非结构蛋白NS5A与Beclin1相互作用并促进病毒增殖[J]. 畜牧兽医学报, 2023, 54(2): 715-725. |
[13] | 武殿阁, 夏苗, 颜安, 江皓天, 樊佳奇, 周思源, 韦旭, 刘树栋, 陈宝江. 香芹酚对肉兔生长性能、养分表观消化率及肠道形态、短链脂肪酸含量和菌群相关指标的影响[J]. 畜牧兽医学报, 2023, 54(10): 4233-4246. |
[14] | 胡立萍, 沈子亮, 王全, 于紫桐, 张琦绮, 毛永江, 杨章平, 张慧敏. 泌乳早期奶牛瘤胃微生物与牛奶脂肪酸组成的变化[J]. 畜牧兽医学报, 2022, 53(9): 3018-3028. |
[15] | 韦肖, 张建童, 龙唐晖, 李开嵘, 李艳娇, 欧阳克蕙, 邱清华. 日粮能量水平对湖羊瘤胃发酵特性和微生物组成的影响[J]. 畜牧兽医学报, 2022, 53(9): 3042-3051. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||