畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1722-1730.doi: 10.11843/j.issn.0366-6964.2025.04.021
叶润根(), 刘渊博, 路丽丽, Collins Amponsah Asiamah, 苏瑛*(
)
收稿日期:
2024-06-28
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
苏瑛
E-mail:yerungen@163.com;dwkxsy@163.com
作者简介:
叶润根(1996-), 男, 广东河源人, 硕士生, 主要从事动物遗传育种与繁殖研究, E-mail: yerungen@163.com
基金资助:
YE Rungen(), LIU Yuanbo, LU Lili, Collins Amponsah Asiamah, SU Ying**(
)
Received:
2024-06-28
Online:
2025-04-23
Published:
2025-04-28
Contact:
SU Ying*
E-mail:yerungen@163.com;dwkxsy@163.com
摘要:
为探究miR-215-5p在雷州黑鸭组织中的表达规律,验证miR-215-5p对卵泡颗粒细胞增殖凋亡的调控,本研究分别选取体重与健康情况相似的43周龄产蛋期与51周龄休产期雷州黑鸭各3只,利用RT-qPCR检测了其不同组织中miR-215-5p的表达水平。通过构建模拟物和干扰片段载体转染卵泡颗粒细胞,结合CCK-8和流式细胞术等技术检测细胞增殖和凋亡,每组均包含了3个重复。结果显示,miR-215-5p在产蛋期雷州黑鸭的表达普遍高于休产期,其在卵巢、膨大部和胸腿肌肉中相对高表达,在漏斗部、子宫和心脏中相对低表达;CCK-8和EdU试验结果显示,miR-215-5p抑制卵泡颗粒细胞增殖;流式细胞术检测发现,miR-215-5p促进卵泡颗粒细胞凋亡;RT-qPCR检测增殖凋亡标志基因表达结果显示,转染miR-215-5p模拟物后,CCND1和CDK2表达量均极显著降低(P < 0.01),Caspase-3极显著上升(P<0.01);而转染miR-215-5p干扰片段后,CCND1显著上升(P < 0.05),CDK2极显著上升(P < 0.01),Caspase-3极显著降低(P < 0.01),TP63显著降低(P < 0.05)。雷州黑鸭miR-215-5p可以抑制卵泡颗粒细胞增殖,促进其凋亡。
中图分类号:
叶润根, 刘渊博, 路丽丽, Collins Amponsah Asiamah, 苏瑛. miR-215-5p在雷州黑鸭组织中的表达及其对卵泡颗粒细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2025, 56(4): 1722-1730.
YE Rungen, LIU Yuanbo, LU Lili, Collins Amponsah Asiamah, SU Ying*. Expression of miR-215-5p in Leizhou Black Duck Tissues and Its Effect on Follicular Granulosa Cells Proliferation and Apoptosis[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1722-1730.
表 1
雷州黑鸭miRNA与其载体序列"
引物名称 Primer name | 引物序列(5′→3′) Primer sequence |
miR-215-5p | RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGTCTG F: GCGCGATGACCTATGAATTGA R: AGTGCAGGGTCCGAGGTATT |
U6 | RT: AACGCTTCACGAATTTGCGT F: CTCGCTTCGGCAGCACA R: AACGCTTCACGAATTTGCGT |
miR-215-5p mimics | F: AUGACCUAUGAAUUGACAGCC R: CUGUCAAUUCAUAGGUCAUUU |
mimics NC | F: UUCUCCGAACGUGUCACGUTT R: ACGUGACACGUUCGGAGAATT |
miR-215-5p inhibitor | GGCUGUCAAUUCAUAGGUCAU |
inhibitor NC | CAGUACUUUUGUGUAGUACAA |
表 2
细胞增殖凋亡相关基因RT-qPCR引物"
引物名称 Primer name | 引物序列(5′→3′) Primer sequence | 片段长度/bp Fragment length | Tm /℃ | NCBI ID |
TP63-F | GCCCAACCTCGCTAAGAA | 197 | 55.1 | 101794454 |
TP63-R | CAACCACCATCCCTGACG | |||
Caspase3-F | CTGGTATTGAGGCAGACAGTGG | 158 | 58.8 | 101805296 |
Caspase3-R | CAGCACCCTACACAGAGACTGAA | |||
CCND1-F | AACCCACCTTCCATGATCGC | 159 | 57.5 | 101800639 |
CCND1-R | CTGTTCTTGGCAGGCTCGTA | |||
CDK2-F | GTACAAGGCCCGGAACAAGG | 168 | 55.3 | 101789539 |
CDK2-R | TTCTCCGTGTGGATCACGTC | |||
β-actin-F | CGCAAATGCTTCTAAACC | 167 | 48.8 | 101800437 |
β-actin-R | AGACTGCTGCTGATACCTT |
1 |
ISAAC R , REIS F C G , YING W , et al. Exosomes as mediators of intercellular crosstalk in metabolism[J]. Cell Metab, 2021, 33 (9): 1744- 1762.
doi: 10.1016/j.cmet.2021.08.006 |
2 |
FALANGA V , ISSEROFF R R , SOULIKA A M , et al. Chronic wounds[J]. Nat Rev Dis Pri, 2022, 8 (1): 50.
doi: 10.1038/s41572-022-00377-3 |
3 |
CUMMINS J , VELCULESCU V . Implications of micro-RNA profiling for cancer diagnosis[J]. Oncogene, 2006, 25 (46): 6220- 6227.
doi: 10.1038/sj.onc.1209914 |
4 |
O'BRIEN J , HAYDER H , ZAYED Y , et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation[J]. Front Endocrinol, 2018, 9, 402.
doi: 10.3389/fendo.2018.00402 |
5 |
MIRETTI S , LECCHI C , CECILIANI F , et al. MicroRNAs as biomarkers for animal health and welfare in livestock[J]. Front Vet Sci, 2020, 7, 578193.
doi: 10.3389/fvets.2020.578193 |
6 |
LI Y , XIANG Y , SONG Y , et al. Dysregulated miR-142, -33b and-423 in granulosa cells target TGFBR1 and SMAD7: a possible role in polycystic ovary syndrome[J]. Mol Hum Reprod, 2019, 25 (10): 638- 646.
doi: 10.1093/molehr/gaz014 |
7 |
REN F J , YAO Y , CAI X Y , et al. Emerging role of MiR-192-5p in human diseases[J]. Front Pharmacol, 2021, 12, 614068.
doi: 10.3389/fphar.2021.614068 |
8 |
MISHAN M A , TABARI M A K , PARNIAN J , et al. Functional mechanisms of miR-192 family in cancer[J]. Genes Chrom Cancer, 2020, 59 (12): 722- 735.
doi: 10.1002/gcc.22889 |
9 |
CAI J , YANG J , LIU Q , et al. Selenium deficiency inhibits myocardial development and differentiation by targeting the mir-215-5p/CTCF axis in chicken[J]. Metallomics, 2019, 11 (2): 415- 428.
doi: 10.1039/C8MT00319J |
10 |
WU Y , LAN H , ZHANG D , et al. Research progress on ncRNAs regulation of mitochondrial dynamics in diabetes[J]. J Cell Physiol, 2022, 237 (11): 4112- 4131.
doi: 10.1002/jcp.30878 |
11 | 靳文姣, 翟彬, 苑鹏涛, 等. miR-215-5p通过靶向NCOA3基因抑制固始鸡腹部前脂肪细胞的增殖和分化[J]. 畜牧与兽医, 2021, 53 (7): 69- 77. |
JIN W J , ZHAI B , YUAN P T , et al. miR-215-5p inhibits proliferation and differentiation of abdominal preadipocytes in Gushi chickens by targeting the NCOA3 gene[J]. Animal Husbandry & Veterinary Medicine, 2021, 53 (7): 69- 77. | |
12 |
QIU M , ZHANG Z , XIONG X , et al. High-throughput sequencing analysis identified microRNAs associated with egg production in ducks ovaries[J]. Peer J, 2020, 8, e8440.
doi: 10.7717/peerj.8440 |
13 | 邹坤. 高低产雷州黑鸭卵巢发育及转录组测序研究[D]. 湛江: 广东海洋大学, 2020. |
ZOU K. Ovarian development and transcriptome sequencing of high-yield and low yield Leizhou black ducks[D]. Zhanjiang: Guangdong Ocean University, 2020. (in Chinese) | |
14 | 路丽丽. 雷州黑鸭卵巢组织产蛋性状相关miRNA筛选及miR-34-x功能验证[D]. 湛江: 广东海洋大学, 2021. |
LU L L. Screening of miRNAs related to egg production traits in Leizhou black duck ovary tissue and verification of miR-34-x function[D]. Zhanjiang: Guangdong Ocean University, 2021. (in Chinese) | |
15 |
ZOU K , ASIAMAH C A , LU L L , et al. Ovarian transcriptomic analysis and follicular development of Leizhou black duck[J]. Poult Sci, 2020, 99 (11): 6173- 6187.
doi: 10.1016/j.psj.2020.08.008 |
16 |
LIU Z , YANG N , YAN Y , et al. Genome-wide association analysis of egg production performance in chickens across the whole laying period[J]. BMC Genet, 2019, 20 (1): 67.
doi: 10.1186/s12863-019-0771-7 |
17 |
LEI Z , ALI I , YANG M , et al. Non-esterified fatty acid-induced apoptosis in bovine granulosa cells via ROS-activated PI3K/AKT/FoxO1 pathway[J]. Antioxidants, 2023, 12 (2): 434.
doi: 10.3390/antiox12020434 |
18 |
ZANG Y , WANG T , PAN J , et al. miR-215 promotes cell migration and invasion of gastric cancer cell lines by targeting FOXO1[J]. Neoplasma, 2017, 64 (4): 579- 587.
doi: 10.4149/neo_2017_412 |
19 |
GEBREMEDHN S , ALI A , HOSSAIN M , et al. MicroRNA-mediated gene regulatory mechanisms in mammalian female reproductive health[J]. Int J Mole Sci, 2021, 22 (2): 938.
doi: 10.3390/ijms22020938 |
20 |
JIA X , LIN H , NIE Q , et al. A short insertion mutation disrupts genesis of miR-16 and causes increased body weight in domesticated chicken[J]. Sci Rep, 2016, 6 (1): 36433.
doi: 10.1038/srep36433 |
21 |
HUAN T , RONG J , LIU C , et al. Genome-wide identification of microRNA expression quantitative trait loci[J]. Nat Commun, 2015, 6 (1): 6601.
doi: 10.1038/ncomms7601 |
22 |
DAZA K R , VELEZ-IRIZARRY D , CASIRÓ S , et al. Integrated genome-wide analysis of microRNA expression quantitative trait loci in pig longissimus dorsi muscle[J]. Front Genet, 2021, 12, 644091.
doi: 10.3389/fgene.2021.644091 |
23 |
GE G , ZHANG W , NIU L , et al. miR-215 functions as a tumor suppressor in epithelial ovarian cancer through regulation of the X-chromosome-linked inhibitor of apoptosis[J]. Oncol Rep, 2016, 35 (3): 1816- 1822.
doi: 10.3892/or.2015.4482 |
24 |
YOUSUF S , MALIK W A , FENG H , et al. Genome wide identification and characterization of fertility associated novel CircRNAs as ceRNA reveal their regulatory roles in sheep fecundity[J]. J Ovarian Res, 2023, 16 (1): 115.
doi: 10.1186/s13048-023-01178-2 |
25 | 丁强. 陕北白绒山羊卵泡发育关键基因筛选及miR-202-5p在卵巢颗粒细胞中的功能验证[D]. 杨凌: 西北农林科技大学, 2020. |
DING Q. Identification of critical genes in ovarian follicular development and functional analysis of miR-202-5p in granulosa cells of Shanbei cashmere goat[D]. Yangling: Northwest A&F University, 2020. (in Chinese) | |
26 | 郭天亚, 黄龙, 马梦楠, 等. miR-18a通过靶向结合CTGF调控猪颗粒细胞凋亡[J]. 畜牧与兽医, 2019, 51 (7): 13- 8. |
GUO T Y , HUANG L , MA M N , et al. miR-18a regulates porcine granulosa cell apoptosis by targeting CTGF[J]. Animal Husbandry & Veterinary Medicine, 2019, 51 (7): 13- 18. | |
27 | 郭天亚. 在猪卵泡闭锁过程中circINHA通过CTGF调控颗粒细胞凋亡的机制研究[D]. 南京: 南京农业大学, 2019. |
GUO T Y. Study on the mechanism of circINHA regulating granulosa cell apoptosis through CTGF in the process of porcine follicle atresia[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese) | |
28 | 郭亚军, 柳苗苗, 付德海, 等. 藏绵羊卵巢组织学及卵泡超微形态的观察[J]. 畜牧兽医学报, 2021, 52 (2): 389- 398. |
GUO Y J , LIU M M , FU D H , et al. Observation of ovary histology and ultrastructure of follicles in Tibetan sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (2): 389- 398. | |
29 |
CAI Y , SONG W , LI J , et al. The landscape of aging[J]. Sci Chi Life Sci, 2022, 65 (12): 2354- 2454.
doi: 10.1007/s11427-022-2161-3 |
30 |
HAN S , WANG J , CUI C , et al. Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken[J]. Poult Sci, 2022, 101 (1): 101524.
doi: 10.1016/j.psj.2021.101524 |
31 |
ZHAO F , ZHAO W , REN S , et al. Roles of SIRT1 in granulosa cell apoptosis during the process of follicular atresia in porcine ovary[J]. Anim Reprod Sci, 2014, 151 (1-2): 34- 41.
doi: 10.1016/j.anireprosci.2014.10.002 |
32 |
XU Z , LIU Q , NING C , et al. miRNA profiling of chicken follicles during follicular development[J]. Sci Rep, 2024, 14 (1): 2212.
doi: 10.1038/s41598-024-52716-x |
33 | 梁学超, 蒋明, 罗玉茹, 等. 猪卵巢发育的组织学变化及卵泡闭锁规律研究[J]. 畜牧兽医学报, 2017, 48 (10): 1863- 1870. |
LIANG X C , JIANG M , LUO Y R , et al. Study on histology and patterns of follicular atresia during ovarian development in pig[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (10): 1863- 1870. | |
34 |
HE H , LI D , TIAN Y , et al. miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1[J]. J Anim Sci Biotechnol, 2022, 13 (1): 55.
doi: 10.1186/s40104-022-00697-0 |
[1] | 郭妍岩, 张羽欣, 陆瑞, 李玉鹏, 陈龙宾, 张金龙, 姚大为, 阮维斌, 张效生, 郭晓飞. 哺乳动物卵泡发育阶段颗粒细胞增殖与分化的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1484-1493. |
[2] | 王莹, 张姣姣, 王鲜忠, 权富生. 卵巢颗粒细胞自噬研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1508-1517. |
[3] | 李笑微, 田微, 刘媛, 李惠侠. 高温应激下湖羊卵巢颗粒细胞m6A甲基化修饰差异研究[J]. 畜牧兽医学报, 2025, 56(4): 1712-1721. |
[4] | 刘晨龙, 季华员, 卢丹, 万明春, 胡耀, 周泉勇. FST对猪卵巢颗粒细胞增殖凋亡及激素分泌的影响[J]. 畜牧兽医学报, 2025, 56(3): 1242-1251. |
[5] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
[6] | 王磊, 白少成, 王森, 鲍志远, 蔡佳炜, 刘燕, 赵博昊, 吴信生, 陈阳. SRD5A2对兔颗粒细胞增殖、凋亡和类固醇激素合成相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 259-268. |
[7] | 高语馨, 刘青, 陈继兰, 麻慧. miRNAs介导寄生虫和宿主互作机制的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3812-3823. |
[8] | 古丽米热·阿布都热依木, 张欣如, 吴阳升, 陈莹, 汪立芹, 徐新明, 黄俊成, 林嘉鹏. FKBP5基因对绵羊卵泡颗粒细胞功能的影响[J]. 畜牧兽医学报, 2024, 55(9): 3947-3956. |
[9] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
[10] | 李京宇, 陈金铭, 张明一, 赵姗姗, 陶德良, 宋军科, 杨新, 樊莹莹, 赵光辉. 犬新孢子虫miRNAs的鉴定与分析[J]. 畜牧兽医学报, 2024, 55(7): 3085-3093. |
[11] | 宋浩然, 冯肖艺, 张培培, 张航, 牛一凡, 余洲, 万鹏程, 崔凯, 赵学明. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制[J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
[12] | 吕世琪, 周荣艳, 田树军, 陈晓勇. 线粒体tRNA-Lys(T7719G)基因变异影响绵羊颗粒细胞凋亡生理机制研究[J]. 畜牧兽医学报, 2024, 55(5): 2011-2021. |
[13] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
[14] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[15] | 片慧芳, 杜旭彬, 李妍, 张雨辰, 何惠, 虞德兵. 甜菜碱对产蛋后期蛋鸡生产性能、蛋品质和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(3): 1085-1094. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||