畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1712-1721.doi: 10.11843/j.issn.0366-6964.2025.04.020
收稿日期:
2024-10-08
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
李惠侠
E-mail:lixiaowei@stu.njau.edu.cn;lihuixia@njau.edu.cn
作者简介:
李笑微(2001-), 女, 河北保定人, 硕士, 主要从事反刍动物生殖生理机制及调控研究, E-mail: lixiaowei@stu.njau.edu.cn
基金资助:
LI Xiaowei(), TIAN Wei, LIU Yuan, LI Huixia*(
)
Received:
2024-10-08
Online:
2025-04-23
Published:
2025-04-28
Contact:
LI Huixia
E-mail:lixiaowei@stu.njau.edu.cn;lihuixia@njau.edu.cn
摘要:
旨在研究高温应激对湖羊卵巢颗粒细胞中m6A甲基化修饰的影响,为揭示高温应激下m6A甲基化修饰对湖羊卵巢颗粒细胞发育和功能的调控机制奠定基础。本研究采集2岁龄左右湖羊母羊新鲜卵巢,收集卵巢表面3~5 mm卵泡中的颗粒细胞,随机分为2组,对照组(37 ℃)和高温应激组(42 ℃,每天2 h,连续3 d)。通过甲基化RNA免疫共沉淀测序(MeRIP-seq)鉴定m6A峰,获得基因表达数据并进行分析。MeRIP-seq在对照组和高温应激组共有135个具有显著差异的m6A峰,映射到130个差异甲基化基因,主要富集到PI3K-Akt信号通路、谷胱甘肽代谢和Wnt信号通路等。RNA-seq鉴定出359个显著差异表达基因,主要富集在类固醇合成、胆固醇生物合成等信号通路。MeRIP-seq和RNA-seq数据联合分析结果显示,DTX3L、MAGEF1、MAN1C1、CCDC77、RAD51共计5个基因m6A修饰和基因表达水平同时存在显著差异,主要富集在Notch信号通路等。本研究结果表明,高温应激会改变湖羊卵巢颗粒细胞mRNA中m6A修饰水平,最终可能影响细胞增殖、凋亡、雌激素合成等相关通路,为进一步探究m6A修饰在高温应激下的具体作用机制提供了理论基础。
中图分类号:
李笑微, 田微, 刘媛, 李惠侠. 高温应激下湖羊卵巢颗粒细胞m6A甲基化修饰差异研究[J]. 畜牧兽医学报, 2025, 56(4): 1712-1721.
LI Xiaowei, TIAN Wei, LIU Yuan, LI Huixia. Study on the Difference of m6A Methylation Modification in Ovarian Granulosa Cells of Hu Sheep under Heat Stress[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1712-1721.
表 1
IP和input文库测序数据情况"
样品 Sample | 原始序列/条 Raw reads | 原始测序量/G Raw bases | 有效序列/条 Valid reads | 有效测序量/G Valid bases | 有效碱基比例/% Valid base proportion | Q20/% | Q30/% | GC% |
CON_IP | 47 365 524 | 7.10 | 41 455 642 | 6.21 | 87.52 | 98.29 | 94.97 | 52.09 |
CON_input | 54 530 712 | 8.18 | 49 710 036 | 7.46 | 91.16 | 98.54 | 95.56 | 53.01 |
HS_IP | 48 938 176 | 7.34 | 42 650 390 | 6.40 | 87.15 | 98.31 | 95.02 | 51.66 |
HS_input | 51 379 578 | 7.71 | 46 873 704 | 7.03 | 91.23 | 98.61 | 95.73 | 52.66 |
表 2
序列对比到湖羊参考基因组信息"
样品 Sample | 有效序列/条 Valid reads | 比对序列/条 Mapped reads | 唯一比对序列/条 Unique mapped reads | 多比对序列/条 Multi mapped reads | PE比对序列/条 PE mapped reads |
CON_IP | 41 455 642 | 37 148 104 (89.61%) | 34 601 443 (83.47%) | 2 546 661 (6.14%) | 35 690 352 (86.09%) |
CON_input | 49 710 036 | 44 628 418 (89.78%) | 41 778 005 (84.04%) | 2 850 413 (5.73%) | 43 358 814 (87.22%) |
HS_IP | 42 650 390 | 38 034 618 (89.18%) | 35 149 335 (82.41%) | 2 885 283 (6.76%) | 36 482 296 (85.54%) |
HS_input | 46 873 704 | 41 651 352 (88.86%) | 38 810 303 (82.80%) | 2 841 049 (6.06%) | 40 355 184 (86.09%) |
样品 Sample | 序列比对到正义链/条 Reads map to sense strand | 序列比对到负义链/条 Reads map to antisense strand | 非拼接序列/条 Non-splice reads | 拼接序列/条 Splice reads | |
CON_IP | 17 289 541 (41.71%) | 17 311 902 (41.76%) | 18 036 150 (43.51%) | 16 565 293 (39.96%) | |
CON_input | 20 876 469 (42.00%) | 20 901 536 (42.05%) | 20 787 178 (41.82%) | 20 990 827 (42.23%) | |
HS_IP | 17 561 443 (41.18%) | 17 587 892 (41.24%) | 18 303 008 (42.91%) | 16 846 327 (39.50%) | |
HS_input | 19 373 947 (41.33%) | 19 436 356 (41.47%) | 19 136 673 (40.83%) | 19 673 630 (41.97%) |
1 |
ZHOU R , LIU D . The function of exosomes in ovarian granulosa cells[J]. Cell Tissue Res, 2023, 394 (2): 257- 267.
doi: 10.1007/s00441-023-03820-3 |
2 |
RUSSELL D L , ROBKER R L . Molecular mechanisms of ovulation: co-ordination through the cumulus complex[J]. Hum Reprod Update, 2007, 13 (3): 289- 312.
doi: 10.1093/humupd/dml062 |
3 |
HSUEH A J , KAWAMURA K , CHENG Y , et al. Intraovarian control of early folliculogenesis[J]. Endocr Rev, 2015, 36 (1): 1- 24.
doi: 10.1210/er.2014-1020 |
4 |
ZHANG C H , LIU X Y , WANG J . Essential role of granulosa cell glucose and lipid metabolism on oocytes and the potential metabolic imbalance in polycystic ovary syndrome[J]. Int J Mol Sci, 2023, 24 (22): 16247.
doi: 10.3390/ijms242216247 |
5 |
WANG S J , LIU W J , WU C J , et al. Melatonin suppresses apoptosis and stimulates progesterone production by bovine granulosa cells via its receptors (MT1 and MT2)[J]. Theriogenology, 2012, 78 (7): 1517- 1526.
doi: 10.1016/j.theriogenology.2012.06.019 |
6 |
CARABATSOS M J , SELLITTO C , GOODENOUGH D A , et al. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence[J]. Dev Biol, 2000, 226 (2): 167- 179.
doi: 10.1006/dbio.2000.9863 |
7 |
VAN WETTERE W H E J , CULLEY S , SWINBOURNE A M F , et al. Heat stress from current and predicted increases in temperature impairs lambing rates and birth weights in the Australian sheep flock[J]. Nat Food, 2024, 5 (3): 206- 210.
doi: 10.1038/s43016-024-00935-w |
8 |
VAN WETTERE W H E J , KIND K L , GATFORD K L , et al. Review of the impact of heat stress on reproductive performance of sheep[J]. J Anim Sci Biotechnol, 2021, 12 (1): 26.
doi: 10.1186/s40104-020-00537-z |
9 |
MANABE N , GOTO Y , MATSUDA-MINEHATA F , et al. Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia[J]. J Reprod Dev, 2004, 50 (5): 493- 514.
doi: 10.1262/jrd.50.493 |
10 |
MU H , CAI S , WANG X , et al. RNA binding protein IGF2BP1 meditates oxidative stress-induced granulosa cell dysfunction by regulating MDM2 mRNA stability in an m6A-dependent manner[J]. Redox Biol, 2022, 57, 102492.
doi: 10.1016/j.redox.2022.102492 |
11 | ZHU L , ZHANG H , ZHANG X , et al. RNA m6A methylation regulators in sepsis[J]. Mol Cell Biochem, 2023, 479 (9): 2165- 2180. |
12 |
SAMMAD A , LUO H , HU L , et al. Transcriptome reveals granulosa cells coping through redox, inflammatory and metabolic mechanisms under acute heat stress[J]. Cells, 2022, 11 (9): 1443.
doi: 10.3390/cells11091443 |
13 | LU Z , LIU J , YUAN C , et al. m(6)A mRNA methylation analysis provides novel insights into heat stress responses in the liver tissue of sheep[J]. Genomics, 2021, 113 (1 Pt 2): 484- 492. |
14 |
LU Z , MA Y , LI Q , et al. The role of N(6)-methyladenosine RNA methylation in the heat stress response of sheep (Ovis aries)[J]. Cell Stress Chaperones, 2019, 24 (2): 333- 342.
doi: 10.1007/s12192-018-00965-x |
15 |
CHEN B , YUAN C , GUO T , et al. Molecular mechanism of m6A methylation modification genes METTL3 and FTO in regulating heat stress in sheep[J]. Int J Mol Sci, 2023, 24 (15): 11926.
doi: 10.3390/ijms241511926 |
16 |
ZHANG Y , YAN C , XIE Q , et al. Exposure to bisphenol A affects transcriptome-wide N6-methyladenine methylation in ovarian granulosa cells[J]. Ecotoxicol Environ Saf, 2024, 272, 116071.
doi: 10.1016/j.ecoenv.2024.116071 |
17 |
LIU K , ZHOU X , LI C , et al. YTHDF2 as a Mediator in BDNF-Induced Proliferation of Porcine Follicular Granulosa Cells[J]. Int J Mol Sci, 2024, 25 (4): 2343.
doi: 10.3390/ijms25042343 |
18 |
CAO M , CHEN X , WANG Y , et al. The reduction of the m(6)A methyltransferase METTL3 in granulosa cells is related to the follicular cysts in pigs[J]. J Cell Physiol, 2024, 239 (6): e31289.
doi: 10.1002/jcp.31289 |
19 |
CAO M , YUAN C , CHEN X , et al. METTL3 deficiency leads to ovarian insufficiency due to IL-1beta overexpression in theca cells[J]. Free Radic Biol Med, 2024, 222, 72- 84.
doi: 10.1016/j.freeradbiomed.2024.05.048 |
20 | LIU Z , ZHOU L , LI D , et al. N6-methyladenosine methyltransferase METTL3 modulates the cell cycle of granulosa cells via CCND1 and AURKB in Haimen goats[J]. FASEB J, 2023, 37 (11): e31289. |
21 |
DING H , LI Z , LI X , et al. FTO Alleviates CdCl(2)-induced apoptosis and oxidative stress via the AKT/Nrf2 pathway in bovine granulosa cells[J]. Int J Mol Sci, 2022, 23 (9): 4948.
doi: 10.3390/ijms23094948 |
22 |
LU J , ZHAO P , DING X , et al. N-acetylcysteine stimulates the proliferation and differentiation in heat-stressed skeletal muscle cells[J]. J Therm Biol, 2024, 124, 103958.
doi: 10.1016/j.jtherbio.2024.103958 |
23 |
GAO M , SHEN H , LI Q , et al. Perfluorooctane sulfonate (PFOS) induces apoptosis and autophagy by inhibition of PI3K/AKT/mTOR pathway in human granulosa cell line KGN[J]. Environ Pollut, 2024, 344, 123333.
doi: 10.1016/j.envpol.2024.123333 |
24 | DENG X , NING Z , LI L , et al. High expression of miR-22-3p in chicken hierarchical follicles promotes granulosa cell proliferation, steroidogenesis, and lipid metabolism via PTEN/PI3K/Akt/mTOR signaling pathway[J]. Int J Biol Macromol, 2023, 253 (Pt 7): 127415. |
25 |
ZHANG T Y , SUN X F , LI L , et al. Ochratoxin A Exposure Impairs Porcine Granulosa Cell Growth via the PI3K/AKT Signaling Pathway[J]. J Agric Food Chem, 2019, 67 (9): 2679- 2690.
doi: 10.1021/acs.jafc.8b06361 |
26 |
FRANCO R , CIDLOWSKI J A . Apoptosis and glutathione: beyond an antioxidant[J]. Cell Death Differ, 2009, 16 (10): 1303- 1314.
doi: 10.1038/cdd.2009.107 |
27 |
WANG H X , LI T Y , KIDDER G M . WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin[J]. Biol Reprod, 2010, 82 (5): 865- 875.
doi: 10.1095/biolreprod.109.080903 |
28 | HABARA O , LOGAN C Y , KANAI-AZUMA M , et al. Self-activation of Wnt signaling in pre-granulosa cells is required for ovarian folliculogenesis[J]. Development, 2020, 148 (9): dev198846. |
29 |
LI L , JI S Y , YANG J L , et al. Wnt/beta-catenin signaling regulates follicular development by modulating the expression of Foxo3a signaling components[J]. Mol Cell Endocrinol, 2014, 382 (2): 915- 925.
doi: 10.1016/j.mce.2013.11.007 |
30 |
WANG L J , XUE Y , HUO R , et al. N6-methyladenosine methyltransferase METTL3 affects the phenotype of cerebral arteriovenous malformation via modulating Notch signaling pathway[J]. J Biomed Sci, 2020, 27 (1): 62.
doi: 10.1186/s12929-020-00655-w |
31 |
JING J , JIANG X , CHEN J , et al. Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells[J]. Anim Reprod Sci, 2017, 181, 69- 78.
doi: 10.1016/j.anireprosci.2017.03.017 |
32 |
FLORKE GEE R R , CHEN H , LEE A K , et al. Emerging roles of the MAGE protein family in stress response pathways[J]. J Biol Chem, 2020, 295 (47): 16121- 16155.
doi: 10.1074/jbc.REV120.008029 |
33 |
LIU X L , WU R Y , SUN X F , et al. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro[J]. Int J Biol Sci, 2018, 14 (3): 294- 305.
doi: 10.7150/ijbs.23898 |
[1] | 王莹, 张姣姣, 王鲜忠, 权富生. 卵巢颗粒细胞自噬研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1508-1517. |
[2] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
[3] | 李玮, 吴禧龙, 赵兴瑞, 许兰娇, 杨小斌, 宋小珍. 中药健脾四胃方剂对断奶湖羊生长性能、瘤胃发酵及菌群组成的影响[J]. 畜牧兽医学报, 2025, 56(1): 466-478. |
[4] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[5] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[6] | 张丽娃, 岳耀敬, 安雪姣, 李建烨, 杨博辉, 徐振飞, 张金霞, 耿智广, 郭艳丽, 张瑞. 湖羊及其不同杂交组合肌肉氨基酸、脂肪酸和挥发性风味物质比较分析[J]. 畜牧兽医学报, 2024, 55(10): 4428-4442. |
[7] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[8] | 刘林丽, 彭雪兰, 李博, 程乐凡, 次仁拉姆, 张恩平. 过表达UCP3基因对萨湖羊前体脂肪细胞分化的影响[J]. 畜牧兽医学报, 2023, 54(8): 3275-3285. |
[9] | 熊程坤, 张道亮, 杨悦, 丁红研, 赵杰, 李玉, 王希春, 冯士彬, 赵畅, 汤继顺, 吴金节. 芦丁对围产期湖羊瘤胃发酵、瘤胃菌群结构及抗氧化性能的影响[J]. 畜牧兽医学报, 2023, 54(7): 2898-2909. |
[10] | 胡亚美, 宋湘容, 黄亮, 张璐通, 高磊, 庞卫军, 杨公社, 褚瑰燕. FGF21增强线粒体功能抑制猪卵巢颗粒细胞凋亡[J]. 畜牧兽医学报, 2023, 54(3): 1034-1045. |
[11] | 叶倩文, 陈卓, 李鑫, 孙亚伟, 金肖叶, 李紫仟, 吾买尔江·牙合甫, 钟旗, 马雪连, 姚刚. 一月龄吮乳羔羊肠道菌群组成及其预测物质代谢功能的动态变化研究[J]. 畜牧兽医学报, 2023, 54(3): 1095-1108. |
[12] | 孙美杰, 曹力文, 郑文金, 申军士, 朱伟云. 基于转录组学研究日粮添加尿素对育肥湖羊肝组织氨代谢的影响[J]. 畜牧兽医学报, 2023, 54(3): 1148-1159. |
[13] | 王雅涵, 郑宇婧, 钟沛, 李晓丹, 王锋. YAP1在发情期不同繁殖力湖羊子宫内膜中的表达模式及功能分析[J]. 畜牧兽医学报, 2023, 54(1): 189-200. |
[14] | 韦肖, 张建童, 龙唐晖, 李开嵘, 李艳娇, 欧阳克蕙, 邱清华. 日粮能量水平对湖羊瘤胃发酵特性和微生物组成的影响[J]. 畜牧兽医学报, 2022, 53(9): 3042-3051. |
[15] | 李宇, 段春辉, 宋志攀, 岳思聪, 王媛, 张英杰, 刘月琴. 黄体期注射PGF2α对母羊血清生殖激素及相关细胞因子的影响[J]. 畜牧兽医学报, 2022, 53(6): 1807-1818. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||