

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1508-1517.doi: 10.11843/j.issn.0366-6964.2025.04.004
        
               		王莹1(
), 张姣姣1, 王鲜忠1,*(
), 权富生2,*(
)
                  
        
        
        
        
    
收稿日期:2024-10-09
									
				
									
				
									
				
											出版日期:2025-04-23
									
				
											发布日期:2025-04-28
									
			通讯作者:
					王鲜忠,权富生
											E-mail:yingzaizai_wang@163.com;wang1973@swu.edu.cn;quanfusheng@nwsuaf.edu.cn
												作者简介:王莹(1995-), 女, 四川成都人, 讲师, 博士, 主要从事家畜生殖内分泌、家畜生殖生理调控和动物胚胎工程研究, E-mail: yingzaizai_wang@163.com
				
							基金资助:
        
               		WANG Ying1(
), ZHANG Jiaojiao1, WANG Xianzhong1,*(
), QUAN Fusheng2,*(
)
			  
			
			
			
                
        
    
Received:2024-10-09
									
				
									
				
									
				
											Online:2025-04-23
									
				
											Published:2025-04-28
									
			Contact:
					WANG Xianzhong, QUAN Fusheng   
											E-mail:yingzaizai_wang@163.com;wang1973@swu.edu.cn;quanfusheng@nwsuaf.edu.cn
												摘要:
卵巢颗粒细胞(granulosa cells, GCs)是雌性动物卵泡发育的基础保障。过去人们普遍认为GCs凋亡能调控卵泡发育。然而,近年来研究发现GCs自噬也能调控卵泡发育。在畜牧养殖行业中,卵泡发育的优劣与雌性动物繁殖率的高低息息相关,直接影响养殖场经济效益。目前,越来越多研究表明miRNAs是调控GCs自噬的因素之一。因此,本文将从GCs的来源、结构和功能、GCs自噬对卵巢的重要性、卵巢GCs自噬相关的miRNAs及其对卵泡发育的调控作用等方面的研究进展进行综述,以期为今后相关研究提供参考。
中图分类号:
王莹, 张姣姣, 王鲜忠, 权富生. 卵巢颗粒细胞自噬研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1508-1517.
WANG Ying, ZHANG Jiaojiao, WANG Xianzhong, QUAN Fusheng. Advances in Autophagy of Ovarian Granulosa Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1508-1517.
表 1
雌性动物卵巢GCs自噬相关的miRNAs"
| miRNAs | 物种Species | 靶基因Target gene | 功能Function | 作用通路Pathway | 参考文献Reference | 
| miR-23a | yak | ASK1 | promote GCs autophagy and inhibit GCs apoptosis, increase the abundance of estradiol receptor α (ER-α) and β (ER-β) and the concentrations of estradiol (E2), progesterone (P4) in yak GCs. | lncRNA MEG3/miR-23a /ASK1/JNK pathway | [ |  
| miR-30a-5p | rat | SOCS3 | inhibit autophagy and NLRP3-mediated pyroptosis in GCs. | SOCS3/mTOR/P70S6K pathway | [ |  
| miR-128-3p, miR-21-5p | chicken | / | regulate GCs autophagy. | / | [ |  
| miRNA-29-3p | chicken | PTEN | inhibit GCs autophagy and apoptosis. | PTEN/AKT/mTOR pathway | [ |  
| miR-129-1-3p | laying hens | MCU | promote autophagic death of GCs. | miR-129-1-3p/MCU calcium pathway | [ |  
| miR-486 | guanz--hong dairy goat | SRSF3 | promote GCs apoptosis and inhibit GCs proliferation and autophagy. | / | [ |  
| miR-128-3p | bovine | FOXO4/TFEB | promote GCs autophagy and inhibit GCs apoptosis. | / | [ |  
| miR-29b-3p | mouse | H19 | inhibit GCs autophagy. | H19/miR-29b-3p pathway | [ |  
| miR-1298-5p | human/rat | GSR | promote GCs autophagy. | / | [ |  
| miR-654 | mouse | STC2 | promote apoptosis and autophagy. | lncRNA NEAT1/miR-654/STC2/MAPK pathway | [ |  
| miR-34a-5p | chicken | LEF1 | promote GCs autophagy and apoptosis. | Hippo-YAP signaling pathway | [ |  
| miR-26b | yak | SMAD1 | inhibit GCs proliferation and autophagy and promote apoptosis. | H19/miR-26b/SMAD1 Axis | [ |  
| miR-146b-3p | chicken | AKT1 | promote GCs apoptosis and attenuate autophagy. | PI3K/AKT signaling pathway | [ |  
| miR-30a-5p | chicken | Beclin1 | inhibit GCs autophagy and apoptosis, and promote the synthesis of steroid hormones and increase the level of oxidative stress. | / | [ |  
| let-7e | human | / | inhibited GCs autophagy and promoted GCs proliferation. | p21signaling pathway | [ |  
| miR-378d | human | / | regulate GCs autophagy and apoptosis. | / | [ |  
| miR-21-3p | bovine | FGF2 | inhibit GCs autophagy. | AKT/mTOR pathway | [ |  
| miR-21-3p | bovine | VEGFA | inhibit GCs autophagy. | PI3K/AKT signaling | [ |  
| let-7g | mouse | IGF-1R | promote GCs autophagy. | IGF1R/AKT/mTOR signaling | [ |  
| 1 |  
											   HUANG Z ,  WELLS D .  The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome[J]. Mol Hum Reprod, 2010, 16 (10): 715- 725. 
											 												 doi: 10.1093/molehr/gaq031  | 
										
| 2 |  
											   NIU W ,  SPRADLING AC .  Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary[J]. Proc Natl Acad Sci U S A, 2020, 117 (33): 20015- 20026. 
											 												 doi: 10.1073/pnas.2005570117  | 
										
| 3 |  
											   TURATHUM B ,  GAO E M ,  CHIAN R C .  The Function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization[J]. Cells, 2021, 10 (9): 2292. 
											 												 doi: 10.3390/cells10092292  | 
										
| 4 |  
											   DIAZ F J ,  WIGGLESWORTH K ,  EPPIG J J .  Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice[J]. Dev Biol, 2007, 305 (1): 300- 311. 
											 												 doi: 10.1016/j.ydbio.2007.02.019  | 
										
| 5 |  
											   EPPIG J J .  Oocyte control of ovarian follicular development and function in mammals[J]. Reproduction, 2001, 122 (6): 829- 838. 
											 												 doi: 10.1530/rep.0.1220829  | 
										
| 6 |  
											   ZHANG L ,  JIANG S ,  WOZNIAK P J , et al.  Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro[J]. Mol Reprod Dev, 1995, 40 (3): 338- 344. 
											 												 doi: 10.1002/mrd.1080400310  | 
										
| 7 |  
											   OKUDAIRA Y ,  WAKAI T ,  FUNAHASHI H .  Levels of cyclic-AMP and cyclic-GMP in porcine oocyte-cumulus complexes and cumulus-free oocytes derived from small and middle follicles during the first 24-hour period of in vitro maturation[J]. J Reprod Dev, 2017, 63 (2): 191- 197. 
											 												 doi: 10.1262/jrd.2016-156  | 
										
| 8 |  
											   TANGHE S ,  VAN SOOM A ,  NAUWYNCK H , et al.  Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization[J]. Mol Reprod Dev, 2002, 61 (3): 414- 424. 
											 												 doi: 10.1002/mrd.10102  | 
										
| 9 |  
											   KIDDER G M ,  MHAWI A A .  Gap junctions and ovarian folliculogenesis[J]. Reproduction, 2002, 123 (5): 613- 620. 
											 												 doi: 10.1530/rep.0.1230613  | 
										
| 10 |  
											   KONG P ,  YIN M ,  TANG C , et al.  Effects of early cumulus cell removal on treatment outcomes in patients undergoing in vitro fertilization: A retrospective cohort study[J]. Front Endocrinol (Lausanne), 2021, 12, 669507. 
											 												 doi: 10.3389/fendo.2021.669507  | 
										
| 11 |  
											   NICHOLS J A ,  PEREGO M C ,  SCHUTZ L F , et al.  Hormonal regulation of vascular endothelial growth factor A (VEGFA) gene expression in granulosa and theca cells of cattle1[J]. J Anim Sci, 2019, 97 (7): 3034- 3045. 
											 												 doi: 10.1093/jas/skz164  | 
										
| 12 |  
											   HOBEIKA E ,  ARMOUTI M ,  FIERRO M A , et al.  Regulation of insulin-like growth factor 2 by oocyte-secreted factors in primary human granulosa cells[J]. J Clin Endocrinol Metab, 2020, 105 (1): 327- 335. 
											 												 doi: 10.1210/clinem/dgz057  | 
										
| 13 | DIAZ F J , WIGGLESWORTH K , EPPIG J J . Oocytes determine cumulus cell lineage in mouse ovarian follicles[J]. J Cell Sci, 2007, 120 (Pt 8): 1330- 1340. | 
| 14 |  
											   STRINGER J M ,  ALESI L R ,  WINSHIP A L , et al.  Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life[J]. Hum Reprod Update, 2023, 29 (4): 434- 456. 
											 												 doi: 10.1093/humupd/dmad005  | 
										
| 15 |  
											   ADASHI E Y ,  RESNICK C E ,  HURWITZ A , et al.  Insulin-like growth factors: the ovarian connection[J]. Hum Reprod, 1991, 6 (9): 1213- 1219. 
											 												 doi: 10.1093/oxfordjournals.humrep.a137514  | 
										
| 16 |  
											   ZHANG M ,  SU Y Q ,  SUGIURA K , et al.  Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes[J]. Science, 2010, 330 (6002): 366- 369. 
											 												 doi: 10.1126/science.1193573  | 
										
| 17 |  
											   RICHANI D ,  DUNNING K R ,  THOMPSON J G , et al.  Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27 (1): 27- 47. 
											 												 doi: 10.1093/humupd/dmaa043  | 
										
| 18 |  
											   GALLUZZI L ,  BAEHRECKE E H ,  BALLABIO A , et al.  Molecular definitions of autophagy and related processes[J]. EMBO J, 2017, 36 (13): 1811- 1836. 
											 												 doi: 10.15252/embj.201796697  | 
										
| 19 |  
											   ZHOU J ,  PENG X ,  MEI S .  Autophagy in ovarian follicular development and atresia[J]. Int J Biol Sci, 2019, 15 (4): 726- 737. 
											 												 doi: 10.7150/ijbs.30369  | 
										
| 20 |  
											   LEVINE B ,  KROEMER G .  Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132 (1): 27- 42. 
											 												 doi: 10.1016/j.cell.2007.12.018  | 
										
| 21 |  
											   DOHERTY J ,  BAEHRECKE E H .  Life, death and autophagy[J]. Nat Cell Biol, 2018, 20 (10): 1110- 1117. 
											 												 doi: 10.1038/s41556-018-0201-5  | 
										
| 22 | KIM J , LIM Y M , LEE M S . The role of autophagy in systemic metabolism and human-type diabetes[J]. Mol Cells, 2018, 41 (1): 11- 17. | 
| 23 |  
											   D'ARCY M S .  Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43 (6): 582- 592. 
											 												 doi: 10.1002/cbin.11137  | 
										
| 24 |  
											   TONG C ,  WU Y ,  ZHANG L , et al.  Insulin resistance, autophagy and apoptosis in patients with polycystic ovary syndrome: Association with PI3K signaling pathway[J]. Front Endocrinol (Lausanne), 2022, 13, 1091147. 
											 												 doi: 10.3389/fendo.2022.1091147  | 
										
| 25 |  
											   TAKEMURA G ,  KANAMORI H ,  OKADA H , et al.  Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration[J]. Heart Fail Rev, 2018, 23 (5): 759- 772. 
											 												 doi: 10.1007/s10741-018-9708-x  | 
										
| 26 |  
											   LI D ,  YOU Y ,  BI F F , et al.  Autophagy is activated in the ovarian tissue of polycystic ovary syndrome[J]. Reproduction, 2018, 155 (1): 85- 92. 
											 												 doi: 10.1530/REP-17-0499  | 
										
| 27 |  
											   LIU M ,  ZHU H ,  ZHU Y , et al.  Guizhi Fuling Wan reduces autophagy of granulosa cell in rats with polycystic ovary syndrome via restoring the PI3K/AKT/mTOR signaling pathway[J]. J Ethnopharmacol, 2021, 270, 113821. 
											 												 doi: 10.1016/j.jep.2021.113821  | 
										
| 28 |  
											   LU G ,  WU Z ,  SHANG J , et al.  The effects of metformin on autophagy[J]. Biomed Pharmacother, 2021, 137, 111286. 
											 												 doi: 10.1016/j.biopha.2021.111286  | 
										
| 29 |  
											   CHEN X ,  TANG H ,  LIANG Y , et al.  Acupuncture regulates the autophagy of ovarian granulosa cells in polycystic ovarian syndrome ovulation disorder by inhibiting the PI3K/AKT/mTOR pathway through LncMEG3[J]. Biomed Pharmacother, 2021, 144, 112288. 
											 												 doi: 10.1016/j.biopha.2021.112288  | 
										
| 30 |  
											   GAWRILUK T R ,  HALE A N ,  FLAWS J A , et al.  Autophagy is a cell survival program for female germ cells in the murine ovary[J]. Reproduction, 2011, 141 (6): 759- 765. 
											 												 doi: 10.1530/REP-10-0489  | 
										
| 31 |  
											   SONG Z H ,  YU H Y ,  WANG P , et al.  Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice[J]. Cell Death Dis, 2015, 6 (1): e1589. 
											 												 doi: 10.1038/cddis.2014.559  | 
										
| 32 |  
											   BHARDWAJ J K ,  PALIWAL A ,  SARAF P , et al.  Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary[J]. J Cell Physiol, 2022, 237 (2): 1157- 1170. 
											 												 doi: 10.1002/jcp.30613  | 
										
| 33 |  
											   LI L ,  FU Y C ,  XU J J , et al.  Caloric restriction promotes the reserve of follicle pool in adult female rats by inhibiting the activation of mammalian target of rapamycin signaling[J]. Reprod Sci, 2015, 22 (1): 60- 67. 
											 												 doi: 10.1177/1933719114542016  | 
										
| 34 |  
											   KUMARIYA S ,  UBBA V ,  JHA R K , et al.  Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective[J]. Autophagy, 2021, 17 (10): 2706- 2733. 
											 												 doi: 10.1080/15548627.2021.1938914  | 
										
| 35 |  
											   CHOI J ,  JO M ,  LEE E , et al.  Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells[J]. Fertil Steril, 2011, 95 (4): 1482- 1486. 
											 												 doi: 10.1016/j.fertnstert.2010.06.006  | 
										
| 36 |  
											   KANG J W ,  CHO H I ,  LEE S M .  Melatonin inhibits mTOR-dependent autophagy during liver ischemia/reperfusion[J]. Cell Physiol Biochem, 2014, 33 (1): 23- 36. 
											 												 doi: 10.1159/000356647  | 
										
| 37 | LIM H J , SONG H . Evolving tales of autophagy in early reproductive events[J]. Int J Dev Biol, 2014, 58 (2-4): 183- 187. | 
| 38 |  
											   CHOI J Y ,  JO M W ,  LEE E Y , et al.  The role of autophagy in follicular development and atresia in rat granulosa cells[J]. Fertil Steril, 2010, 93 (8): 2532- 2537. 
											 												 doi: 10.1016/j.fertnstert.2009.11.021  | 
										
| 39 |  
											   SHEN M ,  JIANG Y ,  GUAN Z , et al.  Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy[J]. Autophagy, 2017, 13 (8): 1364- 1385. 
											 												 doi: 10.1080/15548627.2017.1327941  | 
										
| 40 |  
											   SHEN M ,  CAO Y ,  JIANG Y , et al.  Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism[J]. Redox Biol, 2018, 18, 138- 157. 
											 												 doi: 10.1016/j.redox.2018.07.004  | 
										
| 41 |  
											   CHOI J Y ,  JO M W ,  LEE E Y , et al.  AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia[J]. Reproduction, 2014, 147 (1): 73- 80. 
											 												 doi: 10.1530/REP-13-0386  | 
										
| 42 |  
											   SONG X ,  SHEN Q ,  FAN L , et al.  Dehydroepiandrosterone-induced activation of mTORC1 and inhibition of autophagy contribute to skeletal muscle insulin resistance in a mouse model of polycystic ovary syndrome[J]. Oncotarget, 2018, 9 (15): 11905- 11921. 
											 												 doi: 10.18632/oncotarget.24190  | 
										
| 43 |  
											   ZHANG C ,  HU J ,  WANG W , et al.  HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS[J]. FASEB J, 2020, 34 (7): 9563- 9574. 
											 												 doi: 10.1096/fj.202000605RR  | 
										
| 44 |  
											   QUAN H ,  GUO Y ,  LI S , et al.  Phospholipid phosphatase 3 (PLPP3) induces oxidative stress to accelerate ovarian aging in pigs[J]. Cells, 2024, 13 (17): 1421. 
											 												 doi: 10.3390/cells13171421  | 
										
| 45 |  
											   DUAN H ,  WANG F ,  WANG K , et al.  Quercetin ameliorates oxidative stress-induced apoptosis of granulosa cells in dairy cow follicular cysts by activating autophagy via the SIRT1/ROS/AMPK signaling pathway[J]. J Anim Sci Biotechnol, 2024, 15 (1): 119. 
											 												 doi: 10.1186/s40104-024-01078-5  | 
										
| 46 |  
											   SCUDIERI A ,  VALBONETTI L ,  PERIC T , et al.  Autophagy is involved in granulosa cell death and follicular atresia in ewe ovaries[J]. Theriogenology, 2024, 226, 236- 242. 
											 												 doi: 10.1016/j.theriogenology.2024.06.024  | 
										
| 47 |  
											   WANG Y ,  ZHAO Y ,  LING Z , et al.  HD-sEVs in bovine follicular fluid regulate granulosa cell apoptosis and estradiol secretion through the autophagy pathway[J]. Theriogenology, 2023, 212, 91- 103. 
											 												 doi: 10.1016/j.theriogenology.2023.09.005  | 
										
| 48 |  
											   HE H ,  LI D ,  TIAN Y , et al.  miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1[J]. J Anim Sci Biotechnol, 2022, 13 (1): 55. 
											 												 doi: 10.1186/s40104-022-00697-0  | 
										
| 49 |  
											   HUANG Q ,  LI Y ,  CHEN Z , et al.  Bushenhuoluo Decoction improves polycystic ovary syndrome by regulating exosomal miR-30a-5p/ SOCS3/mTOR/NLRP3 signaling-mediated autophagy and pyroptosis[J]. J Ovarian Res, 2024, 17 (1): 29. 
											 												 doi: 10.1186/s13048-024-01355-x  | 
										
| 50 |  
											   HU C ,  ZHAO X ,  CUI C , et al.  miRNA-29-3p targets PTEN to regulate follicular development through the PI3K/Akt/mTOR signaling pathway[J]. Theriogenology, 2024, 214, 173- 181. 
											 												 doi: 10.1016/j.theriogenology.2023.10.024  | 
										
| 51 | MA L Z , TANG X R , GUO S , et al. miRNA-21-3p targeting of FGF2 suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway[J]. Heriogenology, 2020, 157 (1): 226- 237. | 
| 52 |  
											   HAN X ,  PAN Y ,  FAN J , et al.  LncRNA MEG3 regulates ASK1/JNK axis-mediated apoptosis and autophagy via sponging miR-23a in granulosa cells of yak tertiary follicles[J]. Cell Signal, 2023, 107, 110680. 
											 												 doi: 10.1016/j.cellsig.2023.110680  | 
										
| 53 |  
											   HAN X H ,  WANG M ,  PAN Y Y , et al.  Effect of follicle-stimulating hormone and luteinizing hormone on apoptosis, autophagy, and the release and reception of some steroid hormones in yak granulosa cells through miR-23a/ASK1 axis[J]. Cell Signal, 2024, 115, 111010. 
											 												 doi: 10.1016/j.cellsig.2023.111010  | 
										
| 54 |  
											   XU Z ,  LIU Q ,  NING C , et al.  miRNA profiling of chicken follicles during follicular development[J]. Sci Rep, 2024, 14 (1): 2212. 
											 												 doi: 10.1038/s41598-024-52716-x  | 
										
| 55 |  
											   ZHU M ,  YAN M ,  CHEN J , et al.  MicroRNA-129-1-3p attenuates autophagy-dependent cell death by targeting MCU in granulosa cells of laying hens under H(2)O(2)-induced oxidative stress[J]. Poult Sci, 2023, 102 (10): 103006. 
											 												 doi: 10.1016/j.psj.2023.103006  | 
										
| 56 |  
											   LIU S ,  BU Q ,  TONG J , et al.  miR-486 responds to apoptosis and autophagy by repressing SRSF3 expression in ovarian granulosa cells of dairy goats[J]. Int J Mol Sci, 2023, 24 (10): 8751. 
											 												 doi: 10.3390/ijms24108751  | 
										
| 57 |  
											   YING W ,  YUNQI Z ,  DEJI L , et al.  Follicular fluid HD-sevs-mir-128-3p is a key molecule in regulating bovine granulosa cells autophagy[J]. Theriogenology, 2024, 226, 263- 276. 
											 												 doi: 10.1016/j.theriogenology.2024.06.022  | 
										
| 58 |  
											   WU P ,  ZHU Y ,  LI J , et al.  Guizhi Fuling Wan inhibits autophagy of granulosa cells in polycystic ovary syndrome mice via H19/miR-29b-3p[J]. Gynecol Endocrinol, 2023, 39 (1): 2210232. 
											 												 doi: 10.1080/09513590.2023.2210232  | 
										
| 59 |  
											   XU C ,  LUO M ,  LIU X , et al.  MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase[J]. Cell Tissue Res, 2023, 392 (3): 763- 778. 
											 												 doi: 10.1007/s00441-023-03747-9  | 
										
| 60 |  
											   LIU YX ,  KE Y ,  QIU P , et al.  LncRNA NEAT1 inhibits apoptosis and autophagy of ovarian granulosa cells through miR-654/STC2-mediated MAPK signaling pathway[J]. Exp Cell Res, 2023, 424 (1): 113473. 
											 												 doi: 10.1016/j.yexcr.2023.113473  | 
										
| 61 |  
											   HAN S ,  ZHAO X ,  ZHANG Y , et al.  MiR-34a-5p promotes autophagy and apoptosis of ovarian granulosa cells via the Hippo-YAP signaling pathway by targeting LEF1 in chicken[J]. Poult Sci, 2023, 102 (2): 102374. 
											 												 doi: 10.1016/j.psj.2022.102374  | 
										
| 62 |  
											   YAO Y ,  WANG Y ,  WANG F , et al.  BMP15 modulates the H19/miR-26b/SMAD1 axis influences yak granulosa cell proliferation, autophagy, and apoptosis[J]. Reprod Sci, 2023, 30 (4): 1266- 1280. 
											 												 doi: 10.1007/s43032-022-01051-5  | 
										
| 63 |  
											   WEI Q ,  XUE H ,  SUN C , et al.  Gga-miR-146b-3p promotes apoptosis and attenuate autophagy by targeting AKT1 in chicken granulosa cells[J]. Theriogenology, 2022, 190, 52- 64. 
											 												 doi: 10.1016/j.theriogenology.2022.07.019  | 
										
| 64 |  
											   LI Y ,  LIU Y D ,  ZHOU X Y , et al.  Let-7e modulates the proliferation and the autophagy of human granulosa cells by suppressing p21 signaling pathway in polycystic ovary syndrome without hyperandrogenism[J]. Mol Cell Endocrinol, 2021, 535, 111392. 
											 												 doi: 10.1016/j.mce.2021.111392  | 
										
| 65 |  
											   CHEN Q ,  LI Z ,  XU Z , et al.  miR-378d is involved in the regulation of apoptosis and autophagy of and E2 secretion from cultured ovarian granular cells treated by sodium fluoride[J]. Biol Trace Elem Res, 2021, 199 (11): 4119- 4128. 
											 												 doi: 10.1007/s12011-020-02524-x  | 
										
| 66 |  
											   MA L ,  ZHENG Y ,  TANG X , et al.  miR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling[J]. Reproduction, 2019, 158 (5): 441- 452. 
											 												 doi: 10.1530/REP-19-0285  | 
										
| 67 |  
											   ZHOU J ,  YAO W ,  LIU K , et al.  MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor[J]. Int J Biochem Cell Biol, 2016, 78, 130- 140. 
											 												 doi: 10.1016/j.biocel.2016.07.008  | 
										
| [1] | 李笑微, 田微, 刘媛, 李惠侠. 高温应激下湖羊卵巢颗粒细胞m6A甲基化修饰差异研究[J]. 畜牧兽医学报, 2025, 56(4): 1712-1721. | 
| [2] | 侯宛辰, 徐童. 大麻二酚通过BRD4/AMPK/mTOR信号通路拮抗双酚A诱导的猪肠上皮细胞凋亡和自噬[J]. 畜牧兽医学报, 2025, 56(4): 1919-1933. | 
| [3] | 解雅茹, 金昊延, 孔辰, 蔡蓓, 张令锴. CRISPR/Cas9系统在家畜生殖细胞中的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 479-491. | 
| [4] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. | 
| [5] | 王艺, 侯露露, 方菲, 高林英, 谢淑敏, 王雨. 氟通过自噬和铁死亡途径诱发肉鸡小肠氧化损伤[J]. 畜牧兽医学报, 2025, 56(1): 442-454. | 
| [6] | 高语馨, 刘青, 陈继兰, 麻慧. miRNAs介导寄生虫和宿主互作机制的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3812-3823. | 
| [7] | 李京宇, 陈金铭, 张明一, 赵姗姗, 陶德良, 宋军科, 杨新, 樊莹莹, 赵光辉. 犬新孢子虫miRNAs的鉴定与分析[J]. 畜牧兽医学报, 2024, 55(7): 3085-3093. | 
| [8] | 常馨丹, 胡帆, 伍志武, 叶炳森, 刘铁海, 林杰, 贺志雄, 谭支良. 日粮添加高比例过瘤胃脂肪对生长肉用绵羊采食行为的影响[J]. 畜牧兽医学报, 2024, 55(3): 1077-1084. | 
| [9] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. | 
| [10] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. | 
| [11] | 刘悦阳, 李梦媛, 聂雪伊, 马亚博, 侯雨欣, 马伯利, 杨易, 徐金瑞. 钙结合蛋白S100A4对BCG感染THP-1细胞自噬的调控作用[J]. 畜牧兽医学报, 2024, 55(1): 311-322. | 
| [12] | 王崇年, 于嘉霖, 宫照乾, 吴晓玲, 邓光存. 脂肪分化相关蛋白2对BCG诱导小鼠传代巨噬细胞自噬的调控作用[J]. 畜牧兽医学报, 2023, 54(5): 2134-2146. | 
| [13] | 胡亚美, 宋湘容, 黄亮, 张璐通, 高磊, 庞卫军, 杨公社, 褚瑰燕. FGF21增强线粒体功能抑制猪卵巢颗粒细胞凋亡[J]. 畜牧兽医学报, 2023, 54(3): 1034-1045. | 
| [14] | 罗睿杰, 曹素英. 大家畜多能干细胞的研究进展与应用前景[J]. 畜牧兽医学报, 2023, 54(10): 4003-4015. | 
| [15] | 迟长安, 彭思祺, 申长庆, 王世成, 涂静怡, 肖雄, 邱小燕. 家畜认知功能及其调控机制[J]. 畜牧兽医学报, 2022, 53(8): 2403-2416. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||