畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1508-1517.doi: 10.11843/j.issn.0366-6964.2025.04.004
王莹1(), 张姣姣1, 王鲜忠1,*(
), 权富生2,*(
)
收稿日期:
2024-10-09
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
王鲜忠,权富生
E-mail:yingzaizai_wang@163.com;wang1973@swu.edu.cn;quanfusheng@nwsuaf.edu.cn
作者简介:
王莹(1995-), 女, 四川成都人, 讲师, 博士, 主要从事家畜生殖内分泌、家畜生殖生理调控和动物胚胎工程研究, E-mail: yingzaizai_wang@163.com
基金资助:
WANG Ying1(), ZHANG Jiaojiao1, WANG Xianzhong1,*(
), QUAN Fusheng2,*(
)
Received:
2024-10-09
Online:
2025-04-23
Published:
2025-04-28
Contact:
WANG Xianzhong, QUAN Fusheng
E-mail:yingzaizai_wang@163.com;wang1973@swu.edu.cn;quanfusheng@nwsuaf.edu.cn
摘要:
卵巢颗粒细胞(granulosa cells, GCs)是雌性动物卵泡发育的基础保障。过去人们普遍认为GCs凋亡能调控卵泡发育。然而,近年来研究发现GCs自噬也能调控卵泡发育。在畜牧养殖行业中,卵泡发育的优劣与雌性动物繁殖率的高低息息相关,直接影响养殖场经济效益。目前,越来越多研究表明miRNAs是调控GCs自噬的因素之一。因此,本文将从GCs的来源、结构和功能、GCs自噬对卵巢的重要性、卵巢GCs自噬相关的miRNAs及其对卵泡发育的调控作用等方面的研究进展进行综述,以期为今后相关研究提供参考。
中图分类号:
王莹, 张姣姣, 王鲜忠, 权富生. 卵巢颗粒细胞自噬研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1508-1517.
WANG Ying, ZHANG Jiaojiao, WANG Xianzhong, QUAN Fusheng. Advances in Autophagy of Ovarian Granulosa Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1508-1517.
表 1
雌性动物卵巢GCs自噬相关的miRNAs"
miRNAs | 物种Species | 靶基因Target gene | 功能Function | 作用通路Pathway | 参考文献Reference |
miR-23a | yak | ASK1 | promote GCs autophagy and inhibit GCs apoptosis, increase the abundance of estradiol receptor α (ER-α) and β (ER-β) and the concentrations of estradiol (E2), progesterone (P4) in yak GCs. | lncRNA MEG3/miR-23a /ASK1/JNK pathway | [ |
miR-30a-5p | rat | SOCS3 | inhibit autophagy and NLRP3-mediated pyroptosis in GCs. | SOCS3/mTOR/P70S6K pathway | [ |
miR-128-3p, miR-21-5p | chicken | / | regulate GCs autophagy. | / | [ |
miRNA-29-3p | chicken | PTEN | inhibit GCs autophagy and apoptosis. | PTEN/AKT/mTOR pathway | [ |
miR-129-1-3p | laying hens | MCU | promote autophagic death of GCs. | miR-129-1-3p/MCU calcium pathway | [ |
miR-486 | guanz--hong dairy goat | SRSF3 | promote GCs apoptosis and inhibit GCs proliferation and autophagy. | / | [ |
miR-128-3p | bovine | FOXO4/TFEB | promote GCs autophagy and inhibit GCs apoptosis. | / | [ |
miR-29b-3p | mouse | H19 | inhibit GCs autophagy. | H19/miR-29b-3p pathway | [ |
miR-1298-5p | human/rat | GSR | promote GCs autophagy. | / | [ |
miR-654 | mouse | STC2 | promote apoptosis and autophagy. | lncRNA NEAT1/miR-654/STC2/MAPK pathway | [ |
miR-34a-5p | chicken | LEF1 | promote GCs autophagy and apoptosis. | Hippo-YAP signaling pathway | [ |
miR-26b | yak | SMAD1 | inhibit GCs proliferation and autophagy and promote apoptosis. | H19/miR-26b/SMAD1 Axis | [ |
miR-146b-3p | chicken | AKT1 | promote GCs apoptosis and attenuate autophagy. | PI3K/AKT signaling pathway | [ |
miR-30a-5p | chicken | Beclin1 | inhibit GCs autophagy and apoptosis, and promote the synthesis of steroid hormones and increase the level of oxidative stress. | / | [ |
let-7e | human | / | inhibited GCs autophagy and promoted GCs proliferation. | p21signaling pathway | [ |
miR-378d | human | / | regulate GCs autophagy and apoptosis. | / | [ |
miR-21-3p | bovine | FGF2 | inhibit GCs autophagy. | AKT/mTOR pathway | [ |
miR-21-3p | bovine | VEGFA | inhibit GCs autophagy. | PI3K/AKT signaling | [ |
let-7g | mouse | IGF-1R | promote GCs autophagy. | IGF1R/AKT/mTOR signaling | [ |
1 |
HUANG Z , WELLS D . The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome[J]. Mol Hum Reprod, 2010, 16 (10): 715- 725.
doi: 10.1093/molehr/gaq031 |
2 |
NIU W , SPRADLING AC . Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary[J]. Proc Natl Acad Sci U S A, 2020, 117 (33): 20015- 20026.
doi: 10.1073/pnas.2005570117 |
3 |
TURATHUM B , GAO E M , CHIAN R C . The Function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization[J]. Cells, 2021, 10 (9): 2292.
doi: 10.3390/cells10092292 |
4 |
DIAZ F J , WIGGLESWORTH K , EPPIG J J . Oocytes are required for the preantral granulosa cell to cumulus cell transition in mice[J]. Dev Biol, 2007, 305 (1): 300- 311.
doi: 10.1016/j.ydbio.2007.02.019 |
5 |
EPPIG J J . Oocyte control of ovarian follicular development and function in mammals[J]. Reproduction, 2001, 122 (6): 829- 838.
doi: 10.1530/rep.0.1220829 |
6 |
ZHANG L , JIANG S , WOZNIAK P J , et al. Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro[J]. Mol Reprod Dev, 1995, 40 (3): 338- 344.
doi: 10.1002/mrd.1080400310 |
7 |
OKUDAIRA Y , WAKAI T , FUNAHASHI H . Levels of cyclic-AMP and cyclic-GMP in porcine oocyte-cumulus complexes and cumulus-free oocytes derived from small and middle follicles during the first 24-hour period of in vitro maturation[J]. J Reprod Dev, 2017, 63 (2): 191- 197.
doi: 10.1262/jrd.2016-156 |
8 |
TANGHE S , VAN SOOM A , NAUWYNCK H , et al. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization[J]. Mol Reprod Dev, 2002, 61 (3): 414- 424.
doi: 10.1002/mrd.10102 |
9 |
KIDDER G M , MHAWI A A . Gap junctions and ovarian folliculogenesis[J]. Reproduction, 2002, 123 (5): 613- 620.
doi: 10.1530/rep.0.1230613 |
10 |
KONG P , YIN M , TANG C , et al. Effects of early cumulus cell removal on treatment outcomes in patients undergoing in vitro fertilization: A retrospective cohort study[J]. Front Endocrinol (Lausanne), 2021, 12, 669507.
doi: 10.3389/fendo.2021.669507 |
11 |
NICHOLS J A , PEREGO M C , SCHUTZ L F , et al. Hormonal regulation of vascular endothelial growth factor A (VEGFA) gene expression in granulosa and theca cells of cattle1[J]. J Anim Sci, 2019, 97 (7): 3034- 3045.
doi: 10.1093/jas/skz164 |
12 |
HOBEIKA E , ARMOUTI M , FIERRO M A , et al. Regulation of insulin-like growth factor 2 by oocyte-secreted factors in primary human granulosa cells[J]. J Clin Endocrinol Metab, 2020, 105 (1): 327- 335.
doi: 10.1210/clinem/dgz057 |
13 | DIAZ F J , WIGGLESWORTH K , EPPIG J J . Oocytes determine cumulus cell lineage in mouse ovarian follicles[J]. J Cell Sci, 2007, 120 (Pt 8): 1330- 1340. |
14 |
STRINGER J M , ALESI L R , WINSHIP A L , et al. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life[J]. Hum Reprod Update, 2023, 29 (4): 434- 456.
doi: 10.1093/humupd/dmad005 |
15 |
ADASHI E Y , RESNICK C E , HURWITZ A , et al. Insulin-like growth factors: the ovarian connection[J]. Hum Reprod, 1991, 6 (9): 1213- 1219.
doi: 10.1093/oxfordjournals.humrep.a137514 |
16 |
ZHANG M , SU Y Q , SUGIURA K , et al. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes[J]. Science, 2010, 330 (6002): 366- 369.
doi: 10.1126/science.1193573 |
17 |
RICHANI D , DUNNING K R , THOMPSON J G , et al. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27 (1): 27- 47.
doi: 10.1093/humupd/dmaa043 |
18 |
GALLUZZI L , BAEHRECKE E H , BALLABIO A , et al. Molecular definitions of autophagy and related processes[J]. EMBO J, 2017, 36 (13): 1811- 1836.
doi: 10.15252/embj.201796697 |
19 |
ZHOU J , PENG X , MEI S . Autophagy in ovarian follicular development and atresia[J]. Int J Biol Sci, 2019, 15 (4): 726- 737.
doi: 10.7150/ijbs.30369 |
20 |
LEVINE B , KROEMER G . Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132 (1): 27- 42.
doi: 10.1016/j.cell.2007.12.018 |
21 |
DOHERTY J , BAEHRECKE E H . Life, death and autophagy[J]. Nat Cell Biol, 2018, 20 (10): 1110- 1117.
doi: 10.1038/s41556-018-0201-5 |
22 | KIM J , LIM Y M , LEE M S . The role of autophagy in systemic metabolism and human-type diabetes[J]. Mol Cells, 2018, 41 (1): 11- 17. |
23 |
D'ARCY M S . Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43 (6): 582- 592.
doi: 10.1002/cbin.11137 |
24 |
TONG C , WU Y , ZHANG L , et al. Insulin resistance, autophagy and apoptosis in patients with polycystic ovary syndrome: Association with PI3K signaling pathway[J]. Front Endocrinol (Lausanne), 2022, 13, 1091147.
doi: 10.3389/fendo.2022.1091147 |
25 |
TAKEMURA G , KANAMORI H , OKADA H , et al. Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration[J]. Heart Fail Rev, 2018, 23 (5): 759- 772.
doi: 10.1007/s10741-018-9708-x |
26 |
LI D , YOU Y , BI F F , et al. Autophagy is activated in the ovarian tissue of polycystic ovary syndrome[J]. Reproduction, 2018, 155 (1): 85- 92.
doi: 10.1530/REP-17-0499 |
27 |
LIU M , ZHU H , ZHU Y , et al. Guizhi Fuling Wan reduces autophagy of granulosa cell in rats with polycystic ovary syndrome via restoring the PI3K/AKT/mTOR signaling pathway[J]. J Ethnopharmacol, 2021, 270, 113821.
doi: 10.1016/j.jep.2021.113821 |
28 |
LU G , WU Z , SHANG J , et al. The effects of metformin on autophagy[J]. Biomed Pharmacother, 2021, 137, 111286.
doi: 10.1016/j.biopha.2021.111286 |
29 |
CHEN X , TANG H , LIANG Y , et al. Acupuncture regulates the autophagy of ovarian granulosa cells in polycystic ovarian syndrome ovulation disorder by inhibiting the PI3K/AKT/mTOR pathway through LncMEG3[J]. Biomed Pharmacother, 2021, 144, 112288.
doi: 10.1016/j.biopha.2021.112288 |
30 |
GAWRILUK T R , HALE A N , FLAWS J A , et al. Autophagy is a cell survival program for female germ cells in the murine ovary[J]. Reproduction, 2011, 141 (6): 759- 765.
doi: 10.1530/REP-10-0489 |
31 |
SONG Z H , YU H Y , WANG P , et al. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice[J]. Cell Death Dis, 2015, 6 (1): e1589.
doi: 10.1038/cddis.2014.559 |
32 |
BHARDWAJ J K , PALIWAL A , SARAF P , et al. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary[J]. J Cell Physiol, 2022, 237 (2): 1157- 1170.
doi: 10.1002/jcp.30613 |
33 |
LI L , FU Y C , XU J J , et al. Caloric restriction promotes the reserve of follicle pool in adult female rats by inhibiting the activation of mammalian target of rapamycin signaling[J]. Reprod Sci, 2015, 22 (1): 60- 67.
doi: 10.1177/1933719114542016 |
34 |
KUMARIYA S , UBBA V , JHA R K , et al. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective[J]. Autophagy, 2021, 17 (10): 2706- 2733.
doi: 10.1080/15548627.2021.1938914 |
35 |
CHOI J , JO M , LEE E , et al. Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells[J]. Fertil Steril, 2011, 95 (4): 1482- 1486.
doi: 10.1016/j.fertnstert.2010.06.006 |
36 |
KANG J W , CHO H I , LEE S M . Melatonin inhibits mTOR-dependent autophagy during liver ischemia/reperfusion[J]. Cell Physiol Biochem, 2014, 33 (1): 23- 36.
doi: 10.1159/000356647 |
37 | LIM H J , SONG H . Evolving tales of autophagy in early reproductive events[J]. Int J Dev Biol, 2014, 58 (2-4): 183- 187. |
38 |
CHOI J Y , JO M W , LEE E Y , et al. The role of autophagy in follicular development and atresia in rat granulosa cells[J]. Fertil Steril, 2010, 93 (8): 2532- 2537.
doi: 10.1016/j.fertnstert.2009.11.021 |
39 |
SHEN M , JIANG Y , GUAN Z , et al. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy[J]. Autophagy, 2017, 13 (8): 1364- 1385.
doi: 10.1080/15548627.2017.1327941 |
40 |
SHEN M , CAO Y , JIANG Y , et al. Melatonin protects mouse granulosa cells against oxidative damage by inhibiting FOXO1-mediated autophagy: Implication of an antioxidation-independent mechanism[J]. Redox Biol, 2018, 18, 138- 157.
doi: 10.1016/j.redox.2018.07.004 |
41 |
CHOI J Y , JO M W , LEE E Y , et al. AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat follicular development and atresia[J]. Reproduction, 2014, 147 (1): 73- 80.
doi: 10.1530/REP-13-0386 |
42 |
SONG X , SHEN Q , FAN L , et al. Dehydroepiandrosterone-induced activation of mTORC1 and inhibition of autophagy contribute to skeletal muscle insulin resistance in a mouse model of polycystic ovary syndrome[J]. Oncotarget, 2018, 9 (15): 11905- 11921.
doi: 10.18632/oncotarget.24190 |
43 |
ZHANG C , HU J , WANG W , et al. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS[J]. FASEB J, 2020, 34 (7): 9563- 9574.
doi: 10.1096/fj.202000605RR |
44 |
QUAN H , GUO Y , LI S , et al. Phospholipid phosphatase 3 (PLPP3) induces oxidative stress to accelerate ovarian aging in pigs[J]. Cells, 2024, 13 (17): 1421.
doi: 10.3390/cells13171421 |
45 |
DUAN H , WANG F , WANG K , et al. Quercetin ameliorates oxidative stress-induced apoptosis of granulosa cells in dairy cow follicular cysts by activating autophagy via the SIRT1/ROS/AMPK signaling pathway[J]. J Anim Sci Biotechnol, 2024, 15 (1): 119.
doi: 10.1186/s40104-024-01078-5 |
46 |
SCUDIERI A , VALBONETTI L , PERIC T , et al. Autophagy is involved in granulosa cell death and follicular atresia in ewe ovaries[J]. Theriogenology, 2024, 226, 236- 242.
doi: 10.1016/j.theriogenology.2024.06.024 |
47 |
WANG Y , ZHAO Y , LING Z , et al. HD-sEVs in bovine follicular fluid regulate granulosa cell apoptosis and estradiol secretion through the autophagy pathway[J]. Theriogenology, 2023, 212, 91- 103.
doi: 10.1016/j.theriogenology.2023.09.005 |
48 |
HE H , LI D , TIAN Y , et al. miRNA sequencing analysis of healthy and atretic follicles of chickens revealed that miR-30a-5p inhibits granulosa cell death via targeting Beclin1[J]. J Anim Sci Biotechnol, 2022, 13 (1): 55.
doi: 10.1186/s40104-022-00697-0 |
49 |
HUANG Q , LI Y , CHEN Z , et al. Bushenhuoluo Decoction improves polycystic ovary syndrome by regulating exosomal miR-30a-5p/ SOCS3/mTOR/NLRP3 signaling-mediated autophagy and pyroptosis[J]. J Ovarian Res, 2024, 17 (1): 29.
doi: 10.1186/s13048-024-01355-x |
50 |
HU C , ZHAO X , CUI C , et al. miRNA-29-3p targets PTEN to regulate follicular development through the PI3K/Akt/mTOR signaling pathway[J]. Theriogenology, 2024, 214, 173- 181.
doi: 10.1016/j.theriogenology.2023.10.024 |
51 | MA L Z , TANG X R , GUO S , et al. miRNA-21-3p targeting of FGF2 suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway[J]. Heriogenology, 2020, 157 (1): 226- 237. |
52 |
HAN X , PAN Y , FAN J , et al. LncRNA MEG3 regulates ASK1/JNK axis-mediated apoptosis and autophagy via sponging miR-23a in granulosa cells of yak tertiary follicles[J]. Cell Signal, 2023, 107, 110680.
doi: 10.1016/j.cellsig.2023.110680 |
53 |
HAN X H , WANG M , PAN Y Y , et al. Effect of follicle-stimulating hormone and luteinizing hormone on apoptosis, autophagy, and the release and reception of some steroid hormones in yak granulosa cells through miR-23a/ASK1 axis[J]. Cell Signal, 2024, 115, 111010.
doi: 10.1016/j.cellsig.2023.111010 |
54 |
XU Z , LIU Q , NING C , et al. miRNA profiling of chicken follicles during follicular development[J]. Sci Rep, 2024, 14 (1): 2212.
doi: 10.1038/s41598-024-52716-x |
55 |
ZHU M , YAN M , CHEN J , et al. MicroRNA-129-1-3p attenuates autophagy-dependent cell death by targeting MCU in granulosa cells of laying hens under H(2)O(2)-induced oxidative stress[J]. Poult Sci, 2023, 102 (10): 103006.
doi: 10.1016/j.psj.2023.103006 |
56 |
LIU S , BU Q , TONG J , et al. miR-486 responds to apoptosis and autophagy by repressing SRSF3 expression in ovarian granulosa cells of dairy goats[J]. Int J Mol Sci, 2023, 24 (10): 8751.
doi: 10.3390/ijms24108751 |
57 |
YING W , YUNQI Z , DEJI L , et al. Follicular fluid HD-sevs-mir-128-3p is a key molecule in regulating bovine granulosa cells autophagy[J]. Theriogenology, 2024, 226, 263- 276.
doi: 10.1016/j.theriogenology.2024.06.022 |
58 |
WU P , ZHU Y , LI J , et al. Guizhi Fuling Wan inhibits autophagy of granulosa cells in polycystic ovary syndrome mice via H19/miR-29b-3p[J]. Gynecol Endocrinol, 2023, 39 (1): 2210232.
doi: 10.1080/09513590.2023.2210232 |
59 |
XU C , LUO M , LIU X , et al. MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase[J]. Cell Tissue Res, 2023, 392 (3): 763- 778.
doi: 10.1007/s00441-023-03747-9 |
60 |
LIU YX , KE Y , QIU P , et al. LncRNA NEAT1 inhibits apoptosis and autophagy of ovarian granulosa cells through miR-654/STC2-mediated MAPK signaling pathway[J]. Exp Cell Res, 2023, 424 (1): 113473.
doi: 10.1016/j.yexcr.2023.113473 |
61 |
HAN S , ZHAO X , ZHANG Y , et al. MiR-34a-5p promotes autophagy and apoptosis of ovarian granulosa cells via the Hippo-YAP signaling pathway by targeting LEF1 in chicken[J]. Poult Sci, 2023, 102 (2): 102374.
doi: 10.1016/j.psj.2022.102374 |
62 |
YAO Y , WANG Y , WANG F , et al. BMP15 modulates the H19/miR-26b/SMAD1 axis influences yak granulosa cell proliferation, autophagy, and apoptosis[J]. Reprod Sci, 2023, 30 (4): 1266- 1280.
doi: 10.1007/s43032-022-01051-5 |
63 |
WEI Q , XUE H , SUN C , et al. Gga-miR-146b-3p promotes apoptosis and attenuate autophagy by targeting AKT1 in chicken granulosa cells[J]. Theriogenology, 2022, 190, 52- 64.
doi: 10.1016/j.theriogenology.2022.07.019 |
64 |
LI Y , LIU Y D , ZHOU X Y , et al. Let-7e modulates the proliferation and the autophagy of human granulosa cells by suppressing p21 signaling pathway in polycystic ovary syndrome without hyperandrogenism[J]. Mol Cell Endocrinol, 2021, 535, 111392.
doi: 10.1016/j.mce.2021.111392 |
65 |
CHEN Q , LI Z , XU Z , et al. miR-378d is involved in the regulation of apoptosis and autophagy of and E2 secretion from cultured ovarian granular cells treated by sodium fluoride[J]. Biol Trace Elem Res, 2021, 199 (11): 4119- 4128.
doi: 10.1007/s12011-020-02524-x |
66 |
MA L , ZHENG Y , TANG X , et al. miR-21-3p inhibits autophagy of bovine granulosa cells by targeting VEGFA via PI3K/AKT signaling[J]. Reproduction, 2019, 158 (5): 441- 452.
doi: 10.1530/REP-19-0285 |
67 |
ZHOU J , YAO W , LIU K , et al. MicroRNA let-7g regulates mouse granulosa cell autophagy by targeting insulin-like growth factor 1 receptor[J]. Int J Biochem Cell Biol, 2016, 78, 130- 140.
doi: 10.1016/j.biocel.2016.07.008 |
[1] | 李笑微, 田微, 刘媛, 李惠侠. 高温应激下湖羊卵巢颗粒细胞m6A甲基化修饰差异研究[J]. 畜牧兽医学报, 2025, 56(4): 1712-1721. |
[2] | 侯宛辰, 徐童. 大麻二酚通过BRD4/AMPK/mTOR信号通路拮抗双酚A诱导的猪肠上皮细胞凋亡和自噬[J]. 畜牧兽医学报, 2025, 56(4): 1919-1933. |
[3] | 解雅茹, 金昊延, 孔辰, 蔡蓓, 张令锴. CRISPR/Cas9系统在家畜生殖细胞中的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 479-491. |
[4] | 何雨, 王翔宇, 狄冉, 储明星, 梁琛. BMP4/SMAD4通过下调GJA1基因表达影响绵羊卵巢颗粒间隙连接活性[J]. 畜牧兽医学报, 2025, 56(2): 679-688. |
[5] | 王艺, 侯露露, 方菲, 高林英, 谢淑敏, 王雨. 氟通过自噬和铁死亡途径诱发肉鸡小肠氧化损伤[J]. 畜牧兽医学报, 2025, 56(1): 442-454. |
[6] | 高语馨, 刘青, 陈继兰, 麻慧. miRNAs介导寄生虫和宿主互作机制的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3812-3823. |
[7] | 李京宇, 陈金铭, 张明一, 赵姗姗, 陶德良, 宋军科, 杨新, 樊莹莹, 赵光辉. 犬新孢子虫miRNAs的鉴定与分析[J]. 畜牧兽医学报, 2024, 55(7): 3085-3093. |
[8] | 常馨丹, 胡帆, 伍志武, 叶炳森, 刘铁海, 林杰, 贺志雄, 谭支良. 日粮添加高比例过瘤胃脂肪对生长肉用绵羊采食行为的影响[J]. 畜牧兽医学报, 2024, 55(3): 1077-1084. |
[9] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[10] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[11] | 刘悦阳, 李梦媛, 聂雪伊, 马亚博, 侯雨欣, 马伯利, 杨易, 徐金瑞. 钙结合蛋白S100A4对BCG感染THP-1细胞自噬的调控作用[J]. 畜牧兽医学报, 2024, 55(1): 311-322. |
[12] | 王崇年, 于嘉霖, 宫照乾, 吴晓玲, 邓光存. 脂肪分化相关蛋白2对BCG诱导小鼠传代巨噬细胞自噬的调控作用[J]. 畜牧兽医学报, 2023, 54(5): 2134-2146. |
[13] | 胡亚美, 宋湘容, 黄亮, 张璐通, 高磊, 庞卫军, 杨公社, 褚瑰燕. FGF21增强线粒体功能抑制猪卵巢颗粒细胞凋亡[J]. 畜牧兽医学报, 2023, 54(3): 1034-1045. |
[14] | 罗睿杰, 曹素英. 大家畜多能干细胞的研究进展与应用前景[J]. 畜牧兽医学报, 2023, 54(10): 4003-4015. |
[15] | 迟长安, 彭思祺, 申长庆, 王世成, 涂静怡, 肖雄, 邱小燕. 家畜认知功能及其调控机制[J]. 畜牧兽医学报, 2022, 53(8): 2403-2416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||