

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1494-1507.doi: 10.11843/j.issn.0366-6964.2025.04.003
        
               		闫瑞2(
), 贾朝阳2, 马静2, 杨娟2, 刘新峰1,2,*(
), 陈强1,2,*(
)
                  
        
        
        
        
    
收稿日期:2024-08-26
									
				
									
				
									
				
											出版日期:2025-04-23
									
				
											发布日期:2025-04-28
									
			通讯作者:
					刘新峰,陈强
											E-mail:17795404746@163.com;liu2019074@nxu.edu.cn;chenqiang@nxu.edu.cn
												作者简介:闫瑞(2004-), 女, 宁夏固原人, 本科生, 主要从事动物胚胎工程研究, E-mail: 17795404746@163.com
				
							基金资助:
        
               		YAN Rui2(
), JIA Chaoyang2, MA Jing2, YANG Juan2, LIU Xinfeng1,2,*(
), CHEN Qiang1,2,*(
)
			  
			
			
			
                
        
    
Received:2024-08-26
									
				
									
				
									
				
											Online:2025-04-23
									
				
											Published:2025-04-28
									
			Contact:
					LIU Xinfeng, CHEN Qiang   
											E-mail:17795404746@163.com;liu2019074@nxu.edu.cn;chenqiang@nxu.edu.cn
												摘要:
三维(3D)细胞培养技术能够准确地模拟细胞的实际微环境,并再现细胞间的相互作用,使细胞行为特性更接近于生物体内的生存状态。因此,3D细胞培养技术广泛应用于家畜卵母细胞和胚胎发育等方面的研究,在很大程度上提高了体外卵母细胞和胚胎发育的质量,促进了研究结果的一致性和可靠性。本文通过材料、基质和方法3个方面论述了3D体外培养的发展,并基于细胞的生物学特性、培养条件、所使用的支架材料,细胞间的相互作用以及培养系统的设计总结了新的分类方法,即:细胞聚集系统、构建结构支架、构建仿生支架、与多学科交叉法(延伸)。在未来,通过对3D模型细胞培养技术的改进及优化,将为不同家畜卵母细胞体外培养和胚胎发育等方面的提供重要技术支持和新的可能性。
中图分类号:
闫瑞, 贾朝阳, 马静, 杨娟, 刘新峰, 陈强. 3D培养在家畜卵母细胞及胚胎培养的研究现状与应用前景[J]. 畜牧兽医学报, 2025, 56(4): 1494-1507.
YAN Rui, JIA Chaoyang, MA Jing, YANG Juan, LIU Xinfeng, CHEN Qiang. The Research Status and Application Prospect of 3D Culture in Livestock Oocytes and Embryos Culture[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1494-1507.
表 1
3D培养方法分类表"
| 方法Method | 代表Represention | 介绍Introduction | 特点Characteristic | 适用细胞Applicable cell | 
| 细胞聚集系统Cell aggregation system | 悬滴培养板 | 将细胞包裹在悬滴中,在无接触的环境下细胞自聚集形成球状体。这种方法通常使用特殊设计的悬滴板架来创建包含单细胞悬液的小液滴,从而促进细胞的自组装和球形化 | 可以模拟细胞在体内的生长环境,增加细胞外基质的分泌,增强细胞之间的接触,更有利于激发细胞的生物活性 可以实现多种细胞的共混培养,这对于研究细胞间的相互作用和信号传递具有重要意义  |  肿瘤细胞,干细胞,成纤维细胞等 | 
| 构建结构支架Construct support structure | 微载体 | 这种支架通常由生物兼容性良好的材料制成,如胶原蛋白、纤维素、黏多糖等天然聚合物,或者聚苯乙烯、二乙基氨基乙基葡聚糖等合成材料 | 能够提供一个更为接近细胞在体内生长状态的环境,有助于细胞之间的相互作用和信号传递 这种支架的孔隙度、纤维性、渗透性和力学稳定性都可以被调节,以适应不同类型细胞的生长需求。可以促进细胞的生长和分化,提高细胞的活性和增殖能力  |  肿瘤细胞,干细胞,成纤维细胞,上皮细胞等 | 
| 构建仿生支架Construction of biomimetic scaffolds | matrigel | 使用matrigel这一基底膜基质材料。matrigel是从富含胞外基质蛋白的恩格尔布雷特-霍尔姆-斯沃肉瘤(Engelbreth-Holm-Swarm, EHS)小鼠肿瘤中提取的基底膜基质,其主要成分包括层黏连蛋白、Ⅳ型胶原、硫酸肝素糖蛋白、巢蛋白,还包含多种生长因子和基质金属蛋白酶等 | 能够较好地模拟体内细胞外基质的环境,有助于维持细胞的三维立体结构和自然的增殖分化活性。由于matrigel是动物来源的产品,可能存在批间差异和潜在的免疫反应问题 | 上皮细胞,内皮细胞,神经细胞,肌肉细胞,肿瘤细胞,干细胞等 | 
| VitroGel | VitroGel是一种即用型、无外源性(Xeno-Free)的多糖水凝胶体系,它可以模拟自然的细胞外基质环境;VitroGel的使用非常方便,只需与细胞培养基混合即可转变为可调的水凝胶基质 | 即用型:单瓶体系,只需与细胞混匀即可; 无异源蛋白成分:为无动物源性多糖水凝胶体系; 室温稳定:该水凝胶体系室温稳定,pH中性; 透明:该水凝胶体系颜色透明,兼容不同的成像系统,便于细胞观察; 细胞容易收获:3D细胞培养后,可通过离心水凝胶中轻松收获细胞; 可注射:使用恰当的混合比例,该水凝胶可用于注射,适合体内研究  |  诱导性多能干细胞或原代细胞,悬浮细胞,贴壁细胞,癌细胞,干细胞等 | |
| 与多学科交叉法Disciplinary crossing and integration | 微流控 | 利用微流控芯片来控制细胞培养基的流动,形成适合的剪切力、压力以及张力等,从而构建适合细胞生长的三维环境 | 可以模拟细胞在体内的微环境,包括气体、营养物质等物质的梯度浓度变化,以及细胞间的相互作用和细胞的生化和生理反应。微流控芯片的设计和制造需要精密的技术,成本相对较高。此外,微流控法的操作复杂,需要专业的设备和技术人员,这也限制其在一些研究领域中的应用 | 肿瘤细胞,干细胞,肝细胞,肾细胞等 | 
| 1 |  
											   FERRONATO G A ,  VIT F F ,  DA SILVEIRA J C .  3D culture applied to reproduction in females: possibilities and perspectives[J]. Anim Reprod, 2024, 21 (1): e20230039. 
											 												 doi: 10.1590/1984-3143-ar2023-0039  | 
										
| 2 | KAPAŁCZYŃSKA M , KOLENDA T , PRZYBYŁA W , et al. 2D and 3D cell cultures-a comparison of different types of cancer cell cultures[J]. Arch Med Sci, 2018, 14 (4): 910- 919. | 
| 3 | DUVAL K , GROVER H , HAN L H , et al. Modeling physiological events in 2D vs. 3D cell culture[J]. Physiology (Bethesda), 2017, 32 (4): 266- 277. | 
| 4 |  
											   CHOI S W ,  YEH Y C ,  ZHANG Y , et al.  Uniform beads with controllable pore sizes for biomedical applications[J]. Small, 2010, 6 (14): 1492- 1498. 
											 												 doi: 10.1002/smll.201000544  | 
										
| 5 |  
											   RAVI M ,  PARAMESH V ,  KAVIYA S R , et al.  3D cell culture systems: advantages and applications[J]. J Cell Physiol, 2015, 230 (1): 16- 26. 
											 												 doi: 10.1002/jcp.24683  | 
										
| 6 | MÅRDH P A , BALDETORP B , HÅKANSSON C H , et al. Studies of ciliated epithelia of the human genital tract. 3: Mucociliary wave activity in organ cultures of human Fallopian tubes challenged with Neisseria gonorrhoeae and gonococcal endotoxin[J]. Br J Vener Dis, 1979, 55 (4): 256- 264. | 
| 7 |  
											   ZHANG J ,  ZHANG Z ,  HOU L , et al.  A novel optical instrument for measuring mass concentration and particle size in real time[J]. Sensors (Basel), 2023, 23 (7): 3616. 
											 												 doi: 10.3390/s23073616  | 
										
| 8 | SMITH G D , TAKAYAMA S , SWAIN J E . Rethinking in vitro embryo culture: new developments in culture platforms and potential to improve assisted reproductive technologies[J]. Biol Reprod, 2012, 86 (3): 62. | 
| 9 |  
											   DI BERARDINO C ,  PESERICO A ,  CAMERANO SPELTA RAPINI C , et al.  Bioengineered 3D ovarian model for long-term multiple development of preantral follicle: bridging the gap for poly(ε-caprolactone) (PCL)-based scaffold reproductive applications[J]. Reprod Biol Endocrinol, 2024, 22 (1): 95. 
											 												 doi: 10.1186/s12958-024-01266-y  | 
										
| 10 |  
											   LE B A M ,  NGUYEN L B L ,  LAM D T P , et al.  Agarose-based 3D culture improved the developmental competence of oocyte-granulosa complex isolated from porcine preantral follicle[J]. Theriogenology, 2024, 223, 11- 21. 
											 												 doi: 10.1016/j.theriogenology.2024.04.010  | 
										
| 11 |  
											   FERRONATO G A ,  DOS SANTOS C M ,  ROSA P , et al.  Bovine in vitro oocyte maturation and embryo culture in liquid marbles 3D culture system[J]. PLoS One, 2023, 18 (4): e0284809. 
											 												 doi: 10.1371/journal.pone.0284809  | 
										
| 12 |  
											   MILES J R ,  LAUGHLIN T D ,  SARGUS-PATINO C N , et al.  In vitro porcine blastocyst development in three-dimensional alginate hydrogels[J]. Mol Reprod Dev, 2017, 84 (9): 775- 787. 
											 												 doi: 10.1002/mrd.22814  | 
										
| 13 | 何世贤, 崔宇新, 金庆国, 等. 卵泡直径对牛卵母细胞早期胚胎发育和氧化应激的影响[J]. 黑龙江畜牧兽医, 2023, 66 (11): 1- 7. | 
| HE S X , CUI Y X , JIN Q G , et al. Effects of follicle diameter on early embryonic development and oxidative stress in bovine oocytes[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023, 66 (11): 1- 7. | |
| 14 | MURPHY A R , LASLETT A , O'BRIEN C M , et al. Scaffolds for 3D in vitro culture of neural lineage cells[J]. Acta Biomater, 2017, 54 (2): 1- 20. | 
| 15 | DIEKJÜRGEN D , GRAINGER D W . Polysaccharide matrices used in 3D in vitro cell culture systems[J]. Biomaterials, 2017, 141 (6): 96- 115. | 
| 16 | 叶蓉蓉. 纳米二氧化硅对体外小鼠腔前卵泡发育的影响[D]. 扬州: 扬州大学, 2024. | 
| YE R R. Effects of silica nanoparticles on the development of mouse preantral follicles[D]. Yangzhou: Yangzhou University, 2024. (in Chinese) | |
| 17 | MATSUSHIGE C , XU X , MIYAGI M , et al. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice[J]. Theriogenology, 2022, 183 (2): 120- 131. | 
| 18 | CHAUDHURI O . Viscoelastic hydrogels for 3D cell culture[J]. Biomater Sci, 2017, 5 (8): 1480- 1490. | 
| 19 | 邱鹏. 应用海藻酸钠建立猪卵母细胞体外成熟的三维培养方法[D]. 南宁: 广西大学, 2023. | 
| QIU P. A three-dimensional culture method for porcine oocyle maturation in vitro was established by alginate[D]. Nanning: Guangxi University, 2023. (in Chinese) | |
| 20 | 刘娇. 用于细胞三维培养的明胶/海藻酸钠水凝胶研究[D]. 沈阳: 中国医科大学, 2021. | 
| LIU J. Studies on gelatin/Sodium alginate hdrogels for cell three-dimensional cultures[D]. Shenyang: China Medical University, 2021. (in Chinese) | |
| 21 | VAN PEL D M , HARADA K , SONG D , et al. Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture[J]. J Cell Commun Signal, 2018, 12 (4): 723- 730. | 
| 22 | LEITE S B , TEIXEIRA A P , MIRANDA J P , et al. Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: Improved in vitro models for toxicological applications[J]. Toxicol in vitro, 2011, 25 (4): 825- 832. | 
| 23 | HAUSER H . 3D cultures conquer in vitro testing[J]. J Biotechnol, 2015, 205 (4): 1- 2. | 
| 24 | MARINO S , BISHOP R T , DE RIDDER D , et al. 2D and 3D in vitro co-culture for cancer and bone cell interaction studies[J]. Methods Mol Biol, 2019, 1914, 71- 98. | 
| 25 | SOUZA G R , MOLINA J R , RAPHAEL R M , et al. Three-dimensional tissue culture based on magnetic cell levitation[J]. Nat Nanotechnol, 2010, 5 (4): 291- 296. | 
| 26 | KOLEDOVA Z . 3D cell culture: An introduction[J]. Methods Mol Biol, 2017, 1612, 1- 11. | 
| 27 | BEBBERE D , NIEDDU S M , ARIU F , et al. 3D liquid marble microbioreactors support in vitro maturation of prepubertal ovine oocytes and affect expression of oocyte-specific factors[J]. Biology (Basel), 2021, 10 (11): 1- 2. | 
| 28 | QIU P , ZHANG Y , LV M , et al. Establishing a 3D-cultured system based on alginate-hydrogel embedding benefits the in vitro maturation of porcine Oocytes[J]. Theriogenology, 2024, 225 (5): 33- 42. | 
| 29 | 许庆龙, 姚顺发, 张君正, 等. 哺乳动物卵母细胞老化的相关机制研究进展[J]. 中国畜牧杂志, 2024, 60 (06): 60- 66. | 
| XU Q L , YAO S F , ZHANG J Z , et al. Research progress on the mechanisms of mammalian oocyte aging[J]. Chinese Journal of Animal Science, 2024, 60 (06): 60- 66. | |
| 30 | ANTONI D , BURCKEL H , JOSSET E , et al. Three-dimensional cell culture: a breakthrough in vivo[J]. Int J Mol Sci, 2015, 16 (3): 5517- 5527. | 
| 31 | GILCHRIST R B , THOMPSON J G . Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro[J]. Theriogenology, 2007, 67 (1): 6- 15. | 
| 32 | MORTON K M . Developmental capabilities of embryos produced in vitro from prepubertal lamb oocytes[J]. Reprod Domest Anim, 2008, 43 (s2): 137- 143. | 
| 33 | GORCZYCA G, WARTALSKI K, TABAROWSKI Z, et al. Proteolytically degraded alginate hydrogels and hydrophobic microbioreactors for porcine oocyte encapsulation[Z/OL]. J Vis Exp, 2020, 30: (161). doi: 10.3791/61325. | 
| 34 | 杨文琳, 许斌, 李冉, 等. 滩羊卵母细胞体外成熟和孤雌激活试验[J]. 畜牧兽医杂志, 2024, 43 (06): 29- 33. | 
| YANG W L , XU B , LI R , et al. In vitro maturation and parthenogenetic activation test of Tan sheep oocytes[J]. Journal of Animal Science and Veterinary Medicine, 2024, 43 (06): 29- 33. | |
| 35 | VANACKER J , AMORIM C A . Alginate: A versatile biomaterial to encapsulate isolated ovarian follicles[J]. Ann Biomed Eng, 2017, 45 (7): 1633- 1649. | 
| 36 | CORREIA H H V , LIMA L F , SOUSA F G C , et al. Activation of goat primordial follicles in vitro: Influence of alginate and ovarian tissue[J]. Reprod Domest Anim, 2020, 55 (1): 105- 109. | 
| 37 | 李延, 胡方方, 陈欢欢, 等. 窦前卵泡体外三维培养系统研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42 (03): 221-225+230. | 
| LI Y , HU F F , CHEN H H , et al. Research Progress of In Vitro Three-Dimensional Culture System of Preantral Follicles[J]. International Journal of Reproductive Health and Family Planning, 2023, 42 (03): 221-225+230. | |
| 38 | ARAÚJO V R , GASTAL M O , WISCHRAL A , et al. In vitro development of bovine secondary follicles in two-and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone[J]. Theriogenology, 2014, 82 (9): 1246- 1253. | 
| 39 | DI BERARDINO C , LIVERANI L , PESERICO A , et al. When electrospun fiber support matters: in vitro ovine long-term folliculogenesis on poly (Epsilon Caprolactone) (PCL)-patterned fibers[J]. Cells, 2022, 11 (12): 1968. | 
| 40 | WYCHERLEY G , DOWNEY D , KANE M T , et al. A novel follicle culture system markedly increases follicle volume, cell number and oestradiol secretion[J]. Reproduction, 2004, 127 (6): 669- 677. | 
| 41 | FERRAZ M , FERRONATO G A . Opportunities involving microfluidics and 3D culture systems to the in vitro embryo production[J]. Anim Reprod, 2023, 20 (2): e20230058. | 
| 42 | LAUGHLIN T D , MILES J R , WRIGHT-JOHNSON E C , et al. Development of pre-implantation porcine blastocysts cultured within alginate hydrogel systems either supplemented with secreted phosphoprotein 1 or conjugated with Arg-Gly-Asp Peptide[J]. Reprod Fertil Dev, 2017, 29 (12): 2345- 2356. | 
| 43 | YÁNIZ J L , SANTOLARIA P , LÓPEZ-GATIUS F . In vitro development of bovine embryos encapsulated in sodium alginate[J]. J Vet Med A Physiol Pathol Clin Med, 2002, 49 (8): 393- 395. | 
| 44 | WHITESIDES G M . The origins and the future of microfluidics[J]. Nature, 2006, 442 (7101): 368- 373. | 
| 45 | NGE P N , ROGERS C I , WOOLLEY A T . Advances in microfluidic materials, functions, integration, and applications[J]. Chem Rev, 2013, 113 (4): 2550- 2583. | 
| 46 | IWASAKI W , YAMANAKA K , SUGIYAMA D , et al. Simple separation of good quality bovine oocytes using a microfluidic device[J]. Sci Rep, 2018, 8 (1): 14273. | 
| 47 | LAI D , DING J , SMITH G W , et al. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification[J]. Hum Reprod, 2015, 30 (1): 37- 45. | 
| 48 | ALKAN H , SATILMIS F , DEMIREL M A , et al. Does using microfluidic sperm sorting chips in bovine IVEP affect blastocyst development?[J]. Reprod Domest Anim, 2023, 58 (7): 1012- 1020. | 
| 49 | KARCZ A , VAN SOOM A , SMITS K , et al. Electrically-driven handling of gametes and embryos: taking a step towards the future of ARTs[J]. Lab Chip, 2022, 22 (10): 1852- 1875. | 
| 50 | MASTROROCCO A , CACOPARDO L , LAMANNA D , et al. Bioengineering approaches to improve in vitro performance of prepubertal lamb oocytes[J]. Cells, 2021, 10 (6): 1458. | 
| 51 | MASTROROCCO A , CACOPARDO L , TEMERARIO L , et al. Investigating and modelling an engineered millifluidic in vitro oocyte maturation system reproducing the physiological ovary environment in the sheep model[J]. Cell, 2022, 11 (22): 3611. | 
| 52 | 陈思颍, 孙雅雯, 李伉, 等. 微流体技术在家畜体外胚胎生产中的应用进展[J]. 畜牧兽医学报, 2023, 54 (12): 4889- 4897. | 
| CHEN S Y , SUN Y W , LI K , et al. Application of microfluidic technologies in livestock in vitro embryo production[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (12): 4889- 4897. | |
| 53 | BLAKEWOOD E G , JAYNES J M , JOHNSON W A , et al. Using the amniotic cavity of the developing chick embryo for the in vivo culture of early-stage mammalian embryos[J]. Poult Sci, 1989, 68 (12): 1695- 1702. | 
| 54 | GUO J , LI Y , GAO Z , et al. 3D printed controllable microporous scaffolds support embryonic development in vitro[J]. J Cell Physiol, 2022, 237 (8): 3408- 3420. | 
| 55 | PINZÓN-ARTEAGA C A , WANG Y , WEI Y , et al. Bovine blastocyst-like structures derived from stem cell cultures[J]. Cell Stem Cell, 2023, 30 (5): 611- 616.e7. | 
| 56 | 戴舒颖, 刘青, 李爱国, 等. 牛体外胚胎生产过程中培养液添加物研究进展[J]. 畜牧兽医学报, 2024, 55 (8): 3309- 3320. | 
| DAI S Y , LIU Q , LI A G , et al. Research progress on culture medium additives in bovine in vitro embryo production[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (8): 3309- 3320. | |
| 57 | KOLAHI K S , DONJACOUR A , LIU X , et al. Effect of substrate stiffness on early mouse embryo development[J]. PLoS One, 2012, 7 (7): e41717. | 
| 58 | YANEZ L Z , CAMARILLO D B . Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies[J]. Mol Hum Reprod, 2017, 23 (4): 235- 247. | 
| 59 | WENG L . IVF-on-a-Chip: Recent advances in microfluidics technology for in vitro fertilization[J]. SLAS Technol, 2019, 24 (4): 373- 385. | 
| 60 | 袁一田. 依托微流控芯片的猪体外受精体系优化[D]. 咸阳: 西北农林科技大学, 2021. | 
| YUAN Y T. Optimization of porcine in vitro fertilization system based on microfluidic chip[D]. Xianyang: Northwest A&F University, 2021. (in Chinese) | |
| 61 | HAN C , ZHANG Q , MA R , et al. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device[J]. Lab Chip, 2010, 10 (21): 2848- 2854. | 
| [1] | 郭妍岩, 张羽欣, 陆瑞, 李玉鹏, 陈龙宾, 张金龙, 姚大为, 阮维斌, 张效生, 郭晓飞. 哺乳动物卵泡发育阶段颗粒细胞增殖与分化的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1484-1493. | 
| [2] | 孙雅雯, 陈思颍, 李伉, 冷璇, 王栋, 庞云渭. 猪卵母细胞玻璃化冷冻损伤的缓解策略[J]. 畜牧兽医学报, 2025, 56(1): 36-44. | 
| [3] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. | 
| [4] | 陈莹, 陈大勇, 乌日嘎, 仇春娟, 范利宏, 包梅荣, 岳媛, 梁红艳, 张家新, 田见晖, 安磊, 汪立芹. 肉羊体外胚胎生产技术规模化应用中品种的影响[J]. 畜牧兽医学报, 2024, 55(6): 2451-2459. | 
| [5] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. | 
| [6] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. | 
| [7] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. | 
| [8] | 李河林, 蒋玉芬, 程娜, 韩宇辰, 霍晓颖, 苏宏鼎, 常悦, 方玉珠, 王配, 贾宝瑜, 魏红江, 成文敏. 筛选的差异表达microRNAs对猪卵母细胞Npm2基因的表达调控及作用研究[J]. 畜牧兽医学报, 2024, 55(11): 5035-5049. | 
| [9] | 神英超, 陶力, 任宏, 王希生, 田书岳, 杜明, 芒来, 格日乐其木格. 卵母细胞成熟相关激素和生长因子受体在马扩展型和紧凑型卵丘-卵母细胞复合体表达的研究[J]. 畜牧兽医学报, 2023, 54(9): 3735-3744. | 
| [10] | 徐茜, 杨柏高, 张航, 冯肖艺, 郝海生, 杜卫华, 朱化彬, 张培培, 赵学明. β-烟酰胺单核苷酸对牛卵母细胞脂滴含量及冷冻效果的影响[J]. 畜牧兽医学报, 2023, 54(8): 3348-3357. | 
| [11] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. | 
| [12] | 朱家桥, 程来洋, 曹江琴, 朱闽, 李军伟, 鞠辉明, 刘宗平. XRCC1在卵子和早期胚胎中的定位与功能的初步分析[J]. 畜牧兽医学报, 2023, 54(5): 2126-2133. | 
| [13] | 张培培, 郝海生, 杜卫华, 朱化彬, 李树静, 余文莉, 赵学明. OPU卵母细胞体外成熟体系的优化研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1359-1369. | 
| [14] | 肖十雨, 卢畅, 马娟, 王闯, 亓美玉, 姚玉昌. N-乙酰半胱氨酸对不同直径卵泡来源猪卵母细胞体外成熟效果的影响[J]. 畜牧兽医学报, 2023, 54(3): 1046-1057. | 
| [15] | 杨小耿, 张慧珠, 李键, 向华, 何翃闳. DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 443-450. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||