畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (4): 1359-1369.doi: 10.11843/j.issn.0366-6964.2023.04.002
张培培1, 郝海生1, 杜卫华1, 朱化彬1, 李树静2, 余文莉2, 赵学明1*
收稿日期:
2022-09-01
出版日期:
2023-04-23
发布日期:
2023-04-27
通讯作者:
赵学明,主要从事家畜胚胎生物技术研究,E-mail:zhaoxueming@caas.cn
作者简介:
张培培(1993-),女,河北邢台人,博士生,主要从事动物繁殖研究,E-mail:1047536029@qq.com
基金资助:
ZHANG Peipei1, HAO Haisheng1, DU Weihua1, ZHU Huabin1, LI Shujing2, YU Wenli2, ZHAO Xueming1*
Received:
2022-09-01
Online:
2023-04-23
Published:
2023-04-27
摘要: 近年来,体外胚胎生产(in vitro embryo production,IVP)技术取得了很大进步,尤其是卵母细胞活体采卵(ovum pick-up,OPU)技术得到广泛应用。OPU是20世纪90年代发展起来的一项新型的能获得优秀种母牛卵母细胞的技术,该技术在动物胚胎生产和发育机理研究及人类辅助生育技术临床实践中有着广阔的应用前景。可以提高种母畜和珍贵野生动物的资源保护效率,提高优良母畜的遗传潜力,为奶牛生物技术发展提供必要的支撑技术。卵母细胞的质量是IVP系统取得成功的关键,卵母细胞的体外成熟(in vitro maturation,IVM)是成功受精和胚胎发育必不可少的步骤。卵母细胞IVM完成了卵母细胞的细胞质和核成熟,准备了发育至胚胎基因组激活所必需的所有必要成分。但体外成熟的卵母细胞发育能力低于体内成熟卵母细胞,卵母细胞减数分裂和细胞核质成熟不同步,氧化应激损伤等对卵母细胞成功受精和胚胎发育非常重要,因此,需要进一步提高卵母细胞体外成熟能力,以改善牛体外胚胎生产系统。本文从卵母细胞体外成熟面临的核质成熟不同步,氧化应激等问题进行概述,同时,叙述C型钠肽、褪黑素、FLI等物质对卵母细胞IVM的改善作用,以期为OPU卵母细胞体外成熟体系的优化提供一定的参考。
中图分类号:
张培培, 郝海生, 杜卫华, 朱化彬, 李树静, 余文莉, 赵学明. OPU卵母细胞体外成熟体系的优化研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1359-1369.
ZHANG Peipei, HAO Haisheng, DU Weihua, ZHU Huabin, LI Shujing, YU Wenli, ZHAO Xueming. A Review of Optimization of in vitro Maturation System of OPU Oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1359-1369.
[1] | BALBOULA A Z, ABOELENAIN M, SAKATANI M, et al.Effect of E-64 supplementation during in vitro maturation on the developmental competence of bovine OPU-derived oocytes[J].Genes (Basel), 2022, 13(2):324. |
[2] | FERRÉ L B, KJELLAND M E, TAIYEB A M, et al.Recent progress in bovine in vitro-derived embryo cryotolerance:Impact of in vitro culture systems, advances in cryopreservation and future considerations[J].Reprod Domest Anim, 2020, 55(6):659-676. |
[3] | NIEMANN H, KUES W A.Application of transgenesis in livestock for agriculture and biomedicine[J].Anim Reprod Sci, 2003, 79(3-4):291-317. |
[4] | HASLER J F.The current status and future of commercial embryo transfer in cattle[J].Anim Reprod Sci, 2003, 79(3-4):245-264. |
[5] | BLONDIN P.Logistics of large scale commercial IVF embryo production[J].Reprod Fertil Dev, 2017, 29(1):32-36. |
[6] | PERRY G.Statistics of embryo collection and transfer in domestic farm animals[J].ET Newsletter, 2017, 35:8-23. |
[7] | MATOBA S, YOSHIOKA H, MATSUDA H, et al.Optimizing production of in vivo-matured oocytes from superstimulated Holstein cows for in vitro production of embryos using X-sorted sperm[J].J Dairy Sci, 2014, 97(2):743-753. |
[8] | JAFFE L A, EGBERT J R.Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle[J]. Annu Rev Physiol, 2017, 79:237-260. |
[9] | COTICCHIO G, DAL CANTO M, MIGNINI RENZINI M, et al.Oocyte maturation:gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization[J].Hum Reprod Update, 2015, 21(4):427-454. |
[10] | PINCUS G, ENZMANN E V.The comparative behavior of mammalian eggs in vivo and in vitro:I.The activation of ovarian eggs[J].J Exp Med, 1935, 62(5):655-675. |
[11] | ASSEY R J, HYTTEL P, GREVE T, et al.Oocyte morphology in dominant and subordinate follicles[J].Mol Reprod Dev, 1994, 37(3):335-344. |
[12] | MACHATKOVA M, KRAUSOVA K, JOKESOVA E, et al.Developmental competence of bovine oocytes:effects of follicle size and the phase of follicular wave on in vitro embryo production[J].Theriogenology, 2004, 61(2-3):329-335. |
[13] | FRANCIOSI F, COTICCHIO G, LODDE V, et al.Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes[J].Biol Reprod, 2014, 91(3):61. |
[14] | GONG X Q, LI H M, ZHAO Y Q.The improvement and clinical application of human oocyte in vitro maturation (IVM)[J]. Reprod Sci, 2022, 29(8):2127-2135. |
[15] | GILCHRIST R B, LUCIANO A M, RICHANI D, et al.Oocyte maturation and quality:role of cyclic nucleotides[J].Reproduction, 2016, 152(5):R143-R157. |
[16] | MENG L, WU Z F, ZHAO K, et al.Transcriptome analysis of porcine granulosa cells in healthy and atretic follicles:Role of steroidogenesis and oxidative stress[J].Antioxidants (Basel), 2020, 10(1):22. |
[17] | TAKAHASHI M.Oxidative stress and redox regulation on in vitro development of mammalian embryos[J].J Reprod Dev, 2012, 58(1):1-9. |
[18] | CAJAS Y N, CAÑÓN-BELTRÁN K, DE GUEVARA M L, et al.Antioxidant nobiletin enhances oocyte maturation and subsequent embryo development and quality[J].Int J Mol Sci, 2020, 21(15):5340. |
[19] | WANG L, TANG J H, WANG L, et al.Oxidative stress in oocyte aging and female reproduction[J].J Cell Physiol, 2021, 236(12):7966-7983. |
[20] | SUDOH T, MINAMINO N, KANGAWA K, et al.C-type natriuretic peptide (CNP):a new member of natriuretic peptide family identified in porcine brain[J].Biochem Biophys Res Commun, 1990, 168(2):863-870. |
[21] | SELLITTI D F, KOLES N, MENDONÇA M C.Regulation of C-type natriuretic peptide expression[J].Peptides, 2011, 32(9):1964-1971. |
[22] | STRĄCZYČŃSKA P, PAPIS K, MORAWIEC E, et al.Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes[J].Reprod Biol Endocrinol, 2022, 20(1):37. |
[23] | UEDA Y, YASODA A, YAMASHITA Y, et al.C-type natriuretic peptide restores impaired skeletal growth in a murine model of glucocorticoid-induced growth retardation[J].Bone, 2016, 92:157-167. |
[24] | NAKAGAWA H, SAITO Y.Roles of natriuretic peptides and the significance of neprilysin in cardiovascular diseases[J].Biology (Basel), 2022, 11(7):1017. |
[25] | BOHARA M, KAMBE Y, NAGAYAMA T, et al.C-type natriuretic peptide modulates permeability of the blood-brain barrier[J].J Cereb Blood Flow Metab, 2014, 34(4):589-596. |
[26] | HU P, LIU S Y, ZHANG D D, et al.Urinary c-type natriuretic peptide excretion:a promising biomarker to detect underlying renal injury and remodeling both acutely and chronically[J].Biomark Med, 2016, 10(9):999-1008. |
[27] | ZHANG M J, SU Y Q, SUGIURA K, et al.Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes[J].Science, 2010, 330(6002):366-369. |
[28] | DE SOUSA P A, WATSON A J, SCHULTZ G A, et al.Oogenetic and zygotic gene expression directing early bovine embryogenesis:a review[J].Mol Reprod Dev, 1998, 51(1):112-121. |
[29] | MEHLMANN L M, SAEKI Y, TANAKA S, et al.The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes[J]. Science, 2004, 306(5703):1947-1950. |
[30] | HINCKLEY M, VACCARI S, HORNER K, et al.The G-protein-coupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes[J].Dev Biol, 2005, 287(2):249-261. |
[31] | FRANCIOSI F, COTICCHIO G, LODDE V, et al.Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes[J].Biol Reprod, 2014, 91(3):61. |
[32] | SOTO-HERAS S, PARAMIO M T, THOMPSON J G.Effect of pre-maturation with C-type natriuretic peptide and 3-isobutyl-1-methylxanthine on cumulus-oocyte communication and oocyte developmental competence in cattle[J].Anim Reprod Sci, 2019, 202:49-57. |
[33] | JIA Z W, YANG X Y, LIU K.Treatment of cattle oocytes with C-type natriuretic peptide before in vitro maturation enhances oocyte mitochondrial function[J].Anim Reprod Sci, 2021, 225:106685. |
[34] | XI G Y, AN L, JIA Z W, et al.Natriuretic peptide receptor 2(NPR2) localized in bovine oocyte underlies a unique mechanism for C-type natriuretic peptide (CNP)-induced meiotic arrest[J].Theriogenology, 2018, 106:198-209. |
[35] | ZHANG T, FAN X M, LI R L, et al.Effects of pre-incubation with C-type natriuretic peptide on nuclear maturation, mitochondrial behavior, and developmental competence of sheep oocytes[J].Biochem Biophys Res Commun, 2018, 497(1):200-206. |
[36] | HORI Y S, KUNO A, HOSODA R, et al.Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress[J].PLoS One, 2013, 8(9):e73875. |
[37] | DI EMIDIO G, FALONE S, VITTI M, et al.SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging[J].Hum Reprod, 2014, 29(9):2006-2017. |
[38] | COMBELLES C M H, GUPTA S, AGARWAL A.Could oxidative stress influence the in-vitro maturation of oocytes?[J].Reprod Biomed Online, 2009, 18(6):864-980. |
[39] | NIE J Y, SUI L, ZHANG H T, et al.Mogroside V protects porcine oocytes from in vitro ageing by reducing oxidative stress through SIRT1 upregulation[J].Aging (Albany NY), 2019, 11(19):8362-8373. |
[40] | YONG W, MA H Y, NA M, et al.Roles of melatonin in the field of reproductive medicine[J].Biomed Pharmacother, 2021, 144:112001. |
[41] | MESALAM A, KHAN I, LEE K L, et al.2-Methoxystypandrone improves in vitro-produced bovine embryo quality through inhibition of IKBKB[J].Theriogenology, 2017, 99:10-20. |
[42] | YANG M H, TAO J L, CHAI M L, et al.Melatonin improves the quality of inferior bovine oocytes and promoted their subsequent IVF embryo development:Mechanisms and results[J].Molecules, 2017, 22(12):2059. |
[43] | SUN Z Y, ZHANG P, WANG J J, et al.Melatonin alleviates meiotic defects in fetal mouse oocytes induced by Di (2-ethylhexyl) phthalate in vitro[J].Aging (Albany NY), 2018, 10(12):4175-4187. |
[44] | YANG F X, LI L, CHEN K L, et al.Melatonin alleviates β-zearalenol and HT-2 toxin-induced apoptosis and oxidative stress in bovine ovarian granulosa cells[J].Environ Toxicol Pharmacol, 2019, 68:52-60. |
[45] | REITER R J.Functional pleiotropy of the neurohormone melatonin:Antioxidant protection and neuroendocrine regulation[J]. Front Neuroendocrinol, 1995, 16(4):383-415. |
[46] | TAN D X, REITER R J.Mitochondria:The birth place, battle ground and the site of melatonin metabolism in cells[J].Melatonin Res, 2019, 2(1):44-66. |
[47] | REITER R J, TAN D X, MANCHESTER L C, et al.Melatonin:Detoxification of oxygen and nitrogen-based toxic reactants[J].Adv Exp Med Biol, 2003, 527:539-548. |
[48] | TAN D X, MANCHESTER L C, TERRON M P, et al.One molecule, many derivatives:A never-ending interaction of melatonin with reactive oxygen and nitrogen species?[J].J Pineal Res, 2007, 42(1):28-42. |
[49] | MONIRUZZAMAN M, GHOSAL I, DAS D, et al.Melatonin ameliorates H2O2-induced oxidative stress through modulation of Erk/Akt/NFkB pathway[J].Biol Res, 2018, 51(1):17. |
[50] | TANABE M, TAMURA H, TAKETANI T, et al.Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice[J].J Reprod Dev, 2015, 61(1):35-41. |
[51] | TAMURA H, JOZAKI M, TANABE M, et al.Importance of melatonin in assisted reproductive technology and ovarian aging[J].Int J Mol Sci, 2020, 21(3):1135. |
[52] | NIU Y J, ZHOU W J, NIE Z W, et al.Melatonin enhances mitochondrial biogenesis and protects against rotenone-induced mitochondrial deficiency in early porcine embryos[J].J Pineal Res, 2020, 68(2):e12627. |
[53] | El-RAEY M, GESHI M, SOMFAI T, et al.Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle[J].Mol Reprod Dev, 2011, 78(4):250-262. |
[54] | KHAN H L, BHATTI S, ABBAS S, et al.Melatonin levels and microRNA (miRNA) relative expression profile in the follicular ambient microenvironment in patients undergoing in vitro fertilization process[J].J Assist Reprod Genet, 2021, 38(2):443-459. |
[55] | SHI J M, TIAN X Z, ZHOU G B, et al.Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes[J].J Pineal Res, 2009, 47(4):318-323. |
[56] | ZHU Q, DING D, YANG H, et al.Melatonin protects mitochondrial function and inhibits oxidative damage against the decline of human oocytes development caused by prolonged cryopreservation[J].Cells, 2022, 11(24):4018. |
[57] | MANJUNATHA B M, DEVARAJ M, GUPTA P S P, et al.Effect of taurine and melatonin in the culture medium on buffalo in vitro embryo development[J].Reprod Domest Anim, 2009, 44(1):12-16. |
[58] | CHATTORAJ A, SETH M, MAITRA S K.Influence of serotonin on the action of melatonin in MIH-induced meiotic resumption in the oocytes of carp Catla catla[J].Comp Biochem Physiol A Mol Integr Physiol, 2008, 150(3):301-306. |
[59] | GUTIÉRREZ-AÑEZ J C, LUCAS-HAHN A, HADELER K G, et al.Melatonin enhances in vitro developmental competence of cumulus-oocyte complexes collected by ovum pick-up in prepubertal and adult dairy cattle[J].Theriogenology, 2021, 161:285-293. |
[60] | YUAN Y, SPATE L D, REDEL B K, et al.Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation[J].Proc Natl Acad Sci U S A, 2017, 114(29):E5796-E5804. |
[61] | DELAFONTAINE P, SONG Y H, LI Y X.Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels[J].Arterioscler Thromb Vasc Biol, 2004, 24(3):435-444. |
[62] | VELAZQUEZ M A, SPICER L J, WATHES D C.The role of endocrine insulin-like growth factor-I (IGF-I) in female bovine reproduction[J].Domest Anim Endocrinol, 2008, 35(4):325-342. |
[63] | YU J S L, CUI W.Proliferation, survival and metabolism:the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination[J].Development, 2016, 143(17):3050-3060. |
[64] | LI X H, DAI Y F, ALLEN W R.Influence of insulin-like growth factor-I on cytoplasmic maturation of horse oocytes in vitro and organization of the first cell cycle following nuclear transfer and parthenogenesis[J].Biol Reprod, 2004, 71(4):1391-1396. |
[65] | SIROTKIN A V, DUKESOVÁ J, MAKAREVICH A V, et al.Evidence that growth factors IGF-I, IGF-II and EGF can stimulate nuclear maturation of porcine oocytes via intracellular protein kinase A[J].Reprod Nutr Dev, 2000, 40(6):559-569. |
[66] | CARNEIRO G, LORENZO P, PIMENTEL C, et al.Influence of insulin-like growth factor-I and its interaction with gonadotropins, estradiol, and fetal calf serum on in vitro maturation and parthenogenic development in equine oocytes[J].Biol Reprod, 2001, 65(3):899-905. |
[67] | WASIELAK M, BOGACKI M.Apoptosis inhibition by insulin-like growth factor (IGF)-I during in vitro maturation of bovine oocytes[J].J Reprod Dev, 2007, 53(2):419-426. |
[68] | DEMEESTERE I, GERVY C, CENTNER J, et al.Effect of insulin-like growth factor-I during preantral follicular culture on steroidogenesis, in vitro oocyte maturation, and embryo development in mice[J].Biol Reprod, 2004, 70(6):1664-1669. |
[69] | YANG S, YANG Y Z, HAO H S, et al.Supplementation of EGF, IGF-1, and Connexin 37 in IVM medium significantly improved the maturation of bovine oocytes and vitrification of their IVF blastocysts[J].Genes (Basel), 2022, 13(5):805. |
[70] | VELAZQUEZ M A, HADELER K G, HERRMANN D, et al.In vivo oocyte IGF-1 priming increases inner cell mass proliferation of in vitro-formed bovine blastocysts[J].Theriogenology, 2012, 78(3):517-527. |
[71] | CURRIN L, GLANZNER W G, GUTIERREZ K, et al.Optimizing swine in vitro embryo production with growth factor and antioxidant supplementation during oocyte maturation[J].Theriogenology, 2022, 194:133-143. |
[72] | SHABANKAREH H K, ZANDI M.Developmental potential of sheep oocytes cultured in different maturation media:effects of epidermal growth factor, insulin-like growth factor I, and cysteamine[J].Fertil Steril, 2010, 94(1):335-340. |
[73] | ORNITZ D M, ITOH N.The fibroblast growth factor signaling pathway[J].Wiley Interdiscip Rev Dev Biol, 2015, 4(3):215-266. |
[74] | ALMEIDA A P, SARAIVA M V A, ALVES FILHO J G, et al.Gene expression and immunolocalization of fibroblast growth factor 2 in the ovary and its effect on the in vitro culture of caprine preantral ovarian follicles[J].Reprod Domest Anim, 2012, 47(1):20-25. |
[75] | SANTOS J M, MENEZES V G, BARBERINO R S, et al.Immunohistochemical localization of fibroblast growth factor-2 in the sheep ovary and its effects on pre-antral follicle apoptosis and development in vitro[J].Reprod Domest Anim, 2014, 49(3):522-528. |
[76] | LU C L, YAN J, ZHI X, et al.Basic fibroblast growth factor promotes macaque follicle development in vitro[J].Reproduction, 2015, 149(5):425-433. |
[77] | BARROS R G, LIMA P F, SOARES A C S, et al.Fibroblast growth factor 2 regulates cumulus differentiation under the control of the oocyte[J].J Assist Reprod Genet, 2019, 36(5):905-913. |
[78] | DU C, DAVIS J S, CHEN C, et al.FGF2/FGFR signaling promotes cumulus-oocyte complex maturation in vitro[J].Reproduction, 2021, 161(2):205-214. |
[79] | MONDAL S, MOR A, REDDY I J, et al.Effect of fibroblast growth factor 2(FGF2) and insulin transferrin selenium (ITS) on in vitro maturation, fertilization and embryo development in sheep[J].Braz Arch Biol Technol, 2015, 58(4):521-525. |
[80] | FIELDS S D, HANSEN P J, EALY A D.Fibroblast growth factor requirements for in vitro development of bovine embryos[J]. Theriogenology, 2011, 75(8):1466-1475. |
[81] | LI S H, HWU Y M, LU C H, et al.VEGF and FGF2 improve revascularization, survival, and oocyte quality of cryopreserved, subcutaneously-transplanted mouse ovarian tissues[J].Int J Mol Sci, 2016, 17(8):1237. |
[82] | FISCHER P, HILFIKER-KLEINER D.Role of gp130-mediated signalling pathways in the heart and its impact on potential therapeutic aspects[J].Br J Pharmacol, 2008, 153(S1):S414-S427. |
[83] | TANG Y, LUO Y, JIANG Z L, et al.Jak/Stat3 signaling promotes somatic cell reprogramming by epigenetic regulation[J].Stem Cells, 2012, 30(12):2645-2656. |
[84] | VENDRELL-FLOTATS M, GARCÍA-MARTÍNEZ T, MARTÍNEZ-RODERO I, et al.In vitro maturation in the presence of leukemia inhibitory factor modulates gene and miRNA expression in bovine oocytes and embryos[J].Sci Rep, 2020, 10(1):17777. |
[85] | SPATE L D, MURPHY S L, BENNE J A, et al.In vitro-matured gilt oocytes can have equal or better developmental competence than sow oocytes with new maturation media[J].Reprod Fertil Dev, 2016, 29(1):150. |
[86] | DE MATOS D G, MILLER K, SCOTT R, et al.Leukemia inhibitory factor induces cumulus expansion in immature human and mouse oocytes and improves mouse two-cell rate and delivery rates when it is present during mouse in vitro oocyte maturation[J]. Fertil Steril, 2008, 90(6):2367-2375. |
[87] | DANG-NGUYEN T Q, HARAGUCHI S, KIKUCHI K, et al.Leukemia inhibitory factor promotes porcine oocyte maturation and is accompanied by activation of signal transducer and activator of transcription 3[J].Mol Reprod Dev, 2014, 81(3):230-239. |
[88] | MO X H, WU G Q, YUAN D S, et al.Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development[J].Mol Reprod Dev, 2014, 81(7):608-618. |
[89] | PTAK G, LOPES F, MATSUKAWA K, et al.Leukaemia inhibitory factor enhances sheep fertilization in vitro via an influence on the oocyte[J].Theriogenology, 2006, 65(9):1891-1899. |
[90] | AN L Y, LIU J, DU Y Y, et al.Synergistic effect of cysteamine, leukemia inhibitory factor, and Y27632 on goat oocyte maturation and embryo development in vitro[J].Theriogenology, 2018, 108:56-62. |
[91] | KOCYIGIT A, CEVIK M.Effects of leukemia inhibitory factor and insulin-like growth factor-I on the cell allocation and cryotolerance of bovine blastocysts[J].Cryobiology, 2015, 71(1):64-69. |
[92] | SERRANO ALBAL M, SILVESTRI G, KIAZIM L G, et al.Supplementation of porcine in vitro maturation medium with FGF2, LIF, and IGF1 enhances cytoplasmic maturation in prepubertal gilts oocytes and improves embryo quality[J].Zygote, 2022, 30(6):801-808. |
[93] | STOECKLEIN K S, ORTEGA M S, SPATE L D, et al.Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1[J].PLoS One, 2021, 16(2):e0243727. |
[94] | TIAN H, QI Q, YAN F X, et al.Enhancing the developmental competence of prepubertal lamb oocytes by supplementing the in vitro maturation medium with sericin and the fibroblast growth factor 2-leukemia inhibitory factor-Insulin-like growth factor 1 combination[J].Theriogenology, 2021, 159:13-19. |
[95] | SU Y Q, DENEGRE J M, WIGGLESWORTH K, et al.Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte-cumulus cell complex[J].Dev Biol, 2003, 263(1):126-138. |
[96] | MEINECKE B, KRISCHEK C.MAPK/ERK kinase (MEK) signalling is required for resumption of meiosis in cultured cumulus-enclosed pig oocytes[J].Zygote, 2003, 11(1):7-16. |
[97] | PROCHÁZKA R, PETLACH M, NAGYOVÁ E, et al.Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro:Comparison with gonadotropins[J]. Reproduction, 2011, 141(4):425-435. |
[98] | TONG C, FAN H Y, CHEN D Y, et al.Effects of MEK inhibitor U0126 on meiotic progression in mouse oocytes:Microtuble organization, asymmetric division and metaphase II arrest[J].Cell Res, 2003, 13(5):375-383. |
[99] | PROCHÁZKA R, BARTKOVÁ A, NĚMCOVÁ L, et al.The role of MAPK3/1 and AKT in the acquisition of high meiotic and developmental competence of porcine oocytes cultured in vitro in FLI medium[J].Int J Mol Sci, 2021, 22(20):11148. |
[100] | STEFANELLO J R, BARRETA M H, PORCIUNCULA P M, et al.Effect of angiotensin II with follicle cells and insulin-like growth factor-I or insulin on bovine oocyte maturation and embryo development[J].Theriogenology, 2006, 66(9):2068-2076. |
[1] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[2] | 陈丽丽, 赵康, 夏敏, 芦娜, 马毅. 不同出生季节对天津地区荷斯坦牛泌乳性能的影响[J]. 畜牧兽医学报, 2024, 55(5): 1970-1977. |
[3] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[4] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[5] | 黄金, 李思远, 毛立, 蔡旭航, 谢玲玲, 王府, 周华, 李基棕, 李彬. 牛冠状病毒S1蛋白的真核表达及间接ELISA方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(5): 2050-2060. |
[6] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[7] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[8] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[9] | 修豪宇, 李迎军, 原开敏, 汪超, 杨书含, 吕丽华, 王栋. 母牛发情期间躯体不同部位温度变化规律研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1381-1388. |
[10] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[11] | 郭雪莲, 李永琴, 李瑞乾, 李昊, 靳双媛, 王雪妍, 杜家伟, 许立华. 牛呼吸道合胞体病毒G和F蛋白的生物学功能[J]. 畜牧兽医学报, 2024, 55(4): 1478-1487. |
[12] | 王中波, 刘爽, 贺丽霞, 冯雪, 杨梦丽, 汪书哲, 刘源, 冯兰, 丁晓玲, 冀国尚, 杨润军, 张路培, 马云. 固原黄牛不同部位肌肉组织代谢组学分析[J]. 畜牧兽医学报, 2024, 55(4): 1565-1578. |
[13] | 黄显朋, 邢嘉仪, 白媛媛, 姜雨婷, 麻志伟, 付伟, 兰道亮. 牦牛六个多能性相关转录因子OSKMNL的克隆和多顺反子慢病毒载体的构建[J]. 畜牧兽医学报, 2024, 55(4): 1579-1591. |
[14] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[15] | 尚恺圆, 江明锋, 官久强, 安添午, 赵洪文, 柏琴, 吴伟生, 李华德, 谢荣清, 沙泉, 罗晓林, 张翔飞. 围产期母体营养调控对犊牦牛生长发育、血清生化及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(4): 1638-1648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||