畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (8): 3348-3357.doi: 10.11843/j.issn.0366-6964.2023.08.020
徐茜, 杨柏高, 张航, 冯肖艺, 郝海生, 杜卫华, 朱化彬, 张培培, 赵学明*
收稿日期:
2022-11-28
出版日期:
2023-08-23
发布日期:
2023-08-22
通讯作者:
赵学明,主要从事家畜胚胎生物技术研究,E-mail:zhaoxueming@caas.cn
作者简介:
徐茜(1998-),女,四川眉山人,硕士,主要从事动物繁殖研究,E-mail:82101202351@caas.cn
基金资助:
XU Xi, YANG Baigao, ZHANG Hang, FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, ZHANG Peipei, ZHAO Xueming*
Received:
2022-11-28
Online:
2023-08-23
Published:
2023-08-22
摘要: 旨在探明β-烟酰胺单核苷酸(nicotinamide mononucleotide,NMN)对牛卵母细胞脂滴含量和玻璃化冷冻效果的影响。本研究将牛卵母细胞置于含1 μmol·L-1NMN的培养液中进行体外成熟(in vitro,IVM)、玻璃化和体外受精(in vitro fertilization,IVF),检测了牛卵母细胞的脂滴含量、活性氧(reactive oxygen species,ROS)水平、凋亡水平和发育能力;添加NMN组作为NMN处理组,未添加NMN组作为新鲜对照组;添加NMN且进行玻璃化处理的作为NMN玻璃化组,未添加NMN但进行玻璃化处理的作为玻璃化对照组。结果表明,NMN组牛卵母细胞的脂滴含量、ROS水平、凋亡水平均显著低于新鲜对照组(P<0.05),卵裂率((89.57±7.58)%)和囊胚率((45.63±3.78)%)均显著高于新鲜对照组((80.77±0.70)%,(36.90±1.20)%,P<0.05);同时,NMN玻璃化组牛卵母细胞的ROS水平和凋亡水平也显著低于玻璃化对照组(P<0.05),并且解冻后的存活率((97.25±0.11)%)、卵裂率((75.47±1.11)%)和囊胚率((33.75±1.43)%)均显著高于玻璃化对照组((89.29±1.16)%、(52.00±1.26)%、(15.38±1.73)%,P<0.05)。本研究结果表明,添加NMN可以有效降低牛卵母细胞的脂滴含量,降低玻璃化牛卵母细胞的ROS水平和凋亡水平,从而提高玻璃化牛卵母细胞的发育能力。
中图分类号:
徐茜, 杨柏高, 张航, 冯肖艺, 郝海生, 杜卫华, 朱化彬, 张培培, 赵学明. β-烟酰胺单核苷酸对牛卵母细胞脂滴含量及冷冻效果的影响[J]. 畜牧兽医学报, 2023, 54(8): 3348-3357.
XU Xi, YANG Baigao, ZHANG Hang, FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Effects of NMN on Lipid Droplet Content and Cryopreservation Effect of Bovine Oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3348-3357.
[1] | ARGYLE C E, HARPER J C, DAVIES M C.Oocyte cryopreservation:where are we now?[J].Hum Reprod Update, 2016, 22(4):440-449. |
[2] | RIENZI L, GRACIA C, MAGGIULLI R, et al.Oocyte, embryo and blastocyst cryopreservation in ART:systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance[J].Hum Reprod Update, 2017, 23(2):139-155. |
[3] | THARASANIT T, THUWANUT P.Oocyte cryopreservation in domestic animals and humans:principles, techniques and updated outcomes[J].Animals (Basel), 2021, 11(10):2949. |
[4] | ANGEL-VELEZ D, DE COSTER T, AZARI-DOLATABAD N, et al.New alternative mixtures of cryoprotectants for equine immature oocyte vitrification[J].Animals (Basel), 2021, 11(11):3077. |
[5] | SOMFAI T, KIKUCHI K.Vitrification of porcine oocytes and zygotes in microdrops on a solid metal surface or liquid nitrogen[M]//WOLKERS W F, OLDENHOF H.Cryopreservation and Freeze-Drying Protocols.New York:Springer, 2021:455-468. |
[6] | MORRELL J M, MAYER I.Reproduction biotechnologies in germplasm banking of livestock species:a review[J].Zygote, 2017, 25(5):545-557. |
[7] | MAYER I.The role of reproductive sciences in the preservation and breeding of commercial and threatened teleost fishes[M]//COMIZZOLI P, BROWN J L, HOLT W V.Reproductive Sciences in Animal Conservation.Cham:Springer, 2019:187-224. |
[8] | WALKER Z, LANES A, GINSBURG E.Oocyte cryopreservation review:outcomes of medical oocyte cryopreservation and planned oocyte cryopreservation[J].Reprod Biol Endocrinol, 2022, 20(1):10. |
[9] | SOMFAI T, HIRAO Y.Vitrification of immature bovine oocytes in protein-free media:the impact of the cryoprotectant treatment protocol, base medium, and ovary storage[J].Theriogenology, 2021, 172:47-54. |
[10] | MOAWAD A R, CHOI I, ZHU J, et al.Caffeine and oocyte vitrification:sheep as an animal model[J].Int J Vet Sci Med, 2018, 6(S1):S41-S48. |
[11] | JIMéNEZ-TRIGOS E, VICENTE J S, MARCO-JIMÉNEZ F.First pregnancy and live birth from vitrified rabbit oocytes after intraoviductal transfer and in vivo fertilization[J].Theriogenology, 2014, 82(4):599-604. |
[12] | KAMOSHITA M, FUJIWARA K, ITO J, et al.Highly successful production of viable mice derived from vitrified germinal vesicle oocytes[J].PLoS One, 2021, 16(3):e0248050. |
[13] | HAO T, ZHANG P P, HAO H S, et al.The combination treatment of cholesterol-loaded methyl-β-cyclodextrin and methyl-β-cyclodextrin significantly improves the fertilization capacity of vitrified bovine oocytes by protecting fertilization protein JUNO[J].Reprod Domest Anim, 2021, 56(3):519-530. |
[14] | HOCHI S, IDE M, UENO S, et al.High survival of bovine mature oocytes after nylon mesh vitrification, as assessed by intracytoplasmic sperm injection[J].J Reprod Dev, 2022, 68(5):335-339. |
[15] | KAGAWA S, HIRAIZUMI S, BAI H, et al.Cattle production by intracytoplasmic sperm injection into oocytes vitrified after ovum pick-up[J].Theriogenology, 2022, 185:121-126. |
[16] | UM D E, SHIN H, PARK D, et al.Molecular analysis of lipid uptake-and necroptosis-associated factor expression in vitrified-warmed mouse oocytes[J].Reprod Biol Endocrinol, 2020, 18(1):37. |
[17] | RUIZ-CONCA M, VENDRELL M, SABÉS-ALSINA M, et al.Coenzyme Q10 supplementation during in vitro maturation of bovine oocytes (Bos taurus) helps to preserve oocyte integrity after vitrification[J].Reprod Domest Anim, 2017, 52(S4):52-54. |
[18] | GARCÍA-MARTÍNEZ T, VENDRELL-FLOTATS M, MARTÍNEZ-RODERO I, et al.Glutathione ethyl ester protects in vitro-maturing bovine oocytes against oxidative stress induced by subsequent vitrification/warming[J].Int J Mol Sci, 2020, 21(20):7547. |
[19] | ANCHAMPARUTHY V M, PEARSON R E, GWAZDAUSKAS F C.Expression pattern of apoptotic genes in vitrified-thawed bovine oocytes[J].Reprod Domest Anim, 2010, 45(5):e83-e90. |
[20] | ARCARONS N, VENDRELL-FLOTATS M, YESTE M, et al.Cryoprotectant role of exopolysaccharide of Pseudomonas sp.ID1 in the vitrification of IVM cow oocytes[J].Reprod Fertil Dev, 2019, 31(9):1507-1519. |
[21] | WANG N, HAO H S, LI C Y, et al.Calcium ion regulation by BAPTA-AM and ruthenium red improved the fertilisation capacity and developmental ability of vitrified bovine oocytes[J].Sci Rep, 2017, 7(1):10652. |
[22] | ZHAO N, LIU X J, LI J T, et al.Endoplasmic reticulum stress inhibition is a valid therapeutic strategy in vitrifying oocytes[J]. Cryobiology, 2015, 70(1):48-52. |
[23] | ZHOU G B, LI N.Bovine oocytes cryoinjury and how to improve their development following cryopreservation[J].Anim Biotechnol, 2013, 24(2):94-106. |
[24] | SPRÍCIGO J F, MORATÓ R, ARCARONS N, et al.Assessment of the effect of adding L-carnitine and/or resveratrol to maturation medium before vitrification on in vitro-matured calf oocytes[J].Theriogenology, 2017, 89:47-57. |
[25] | AMSTISLAVSKY S, MOKROUSOVA V, BRUSENTSEV E, et al.Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos:a review[J].Biopreserv Biobank, 2019, 17(1):76-83. |
[26] | GENICOT G, LEROY J L M R, SOOM A V, et al.The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes[J].Theriogenology, 2005, 63(4):1181-1194. |
[27] | DUNNING K R, RUSSELL D L, ROBKER R L.Lipids and oocyte developmental competence:the role of fatty acids and β-oxidation[J].Reproduction, 2014, 148(1):R15-R27. |
[28] | ARAV A, ZERON Y, LESLIE S B, et al.Phase transition temperature and chilling sensitivity of bovine oocytes[J].Cryobiology, 1996, 33(6):589-599. |
[29] | DE KRUYFF B, VAN DIJCK P W M, GOLDBACH R W, et al.Influence of fatty acid and sterol composition on the lipid phase transition and activity of membrane-bound enzymes in Acholeplasma laidlawii[J].Biochim Biophys Acta, 1973, 330(3):269-282. |
[30] | YESTE M.Sperm cryopreservation update:cryodamage, markers, and factors affecting the sperm freezability in pigs[J]. Theriogenology, 2016, 85(1):47-64. |
[31] | KIM J G, PARTHASARATHY S.Oxidation and the spermatozoa[J].Semin Reprod Med, 1998, 16(4):235-239. |
[32] | WU L L Y, DUNNING K R, YANG X, et al.High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates[J].Endocrinology, 2010, 151(11):5438-5445. |
[33] | MAREI W F A, VAN DEN BOSCH L, PINTELON I, et al.Mitochondria-targeted therapy rescues development and quality of embryos derived from oocytes matured under oxidative stress conditions:a bovine in vitro model[J].Hum Reprod, 2019, 34(10):1984-1998. |
[34] | AARDEMA H, VOS P L A M, LOLICATO F, et al.Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence[J].Biol Reprod, 2011, 85(1):62-69. |
[35] | FU X W, WU G Q, LI J J, et al.Positive effects of forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes[J].Theriogenology, 2011, 75(2):268-275. |
[36] | CHANKITISAKUL V, SOMFAI T, INABA Y, et al.Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes[J].Theriogenology, 2013, 79(4):590-598. |
[37] | REN L, FU B, MA H, et al.Effects of mechanical delipation in porcine oocytes on mitochondrial distribution, ROS activity and viability after vitrification[J].Cryo Letters, 2015, 36(1):30-36. |
[38] | PODDAR S K, SIFAT A E, HAQUE S, et al.Nicotinamide mononucleotide:exploration of diverse therapeutic applications of a potential molecule[J].Biomolecules, 2019, 9(1):34. |
[39] | MILLS K F, YOSHIDA S, STEIN L R, et al.Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice[J].Cell Metab, 2016, 24(6):795-806. |
[40] | KLIMOVA N, FEARNOW A, LONG A, et al.NAD+ precursor modulates post-ischemic mitochondrial fragmentation and reactive oxygen species generation via SIRT3 dependent mechanisms[J].Exp Neurol, 2020, 325:113144. |
[41] | BRAIDY N, BERG J, CLEMENT J, et al.Role of nicotinamide adenine dinucleotide and related precursors as therapeutic targets for age-related degenerative diseases:rationale, biochemistry, pharmacokinetics, and outcomes[J].Antioxid Redox Signal, 2019, 30(2):251-294. |
[42] | KISS T, GILES C B, TARANTINI S, et al.Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects[J].GeroScience, 2019, 41(4):419-439. |
[43] | NAHLE A, JOSEPH Y D, PEREIRA S, et al.Nicotinamide mononucleotide prevents free fatty acid-induced reduction in glucose tolerance by decreasing insulin clearance[J].Int J Mol Sci, 2021, 22(24):13224. |
[44] | UDDIN G M, YOUNGSON N A, DOYLE B M, et al.Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice:comparison with exercise[J].Sci Rep, 2017, 7(1):15063. |
[45] | DALL M, HASSING A S, TREEBAK J T.NAD+ and NAFLD-caution, causality and careful optimism[J].J Physiol, 2022, 600(5):1135-1154. |
[46] | WANG X N, HU X J, ZHANG L, et al.Nicotinamide mononucleotide administration after sever hypoglycemia improves neuronal survival and cognitive function in rats[J].Brain Res Bull, 2020, 160:98-106. |
[47] | NADEESHANI H, LI J Y, YING T L, et al.Nicotinamide mononucleotide (NMN) as an anti-aging health product-promises and safety concerns[J].J Adv Res, 2022, 37:267-278. |
[48] | UDDIN G M, YOUNGSON N A, CHOWDHURY S S, et al.Administration of nicotinamide mononucleotide (NMN) reduces metabolic impairment in male mouse offspring from obese mothers[J].Cells, 2020, 9(4):791. |
[49] | ZHAO X M, REN J J, DU W H, et al.Effect of vitrification on promoter CpGisland methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes[J].Fertil Steril, 2013, 100(1):256-261. |
[50] | HOU Y P, DAI Y P, ZHU S E, et al.Bovine oocytes vitrified by the open pulled straw method and used for somatic cell cloning supported development to term[J].Theriogenology, 2005, 64(6):1381-1391. |
[51] | BRACKETT B G, OLIPHANT G.Capacitation of rabbit spermatozoa in vitro[J].Biol Reprod, 1975, 12(2):260-274. |
[52] | WANG L Y, CHEN Y R, WEI J R, et al.Administration of nicotinamide mononucleotide improves oocyte quality of obese mice[J]. Cell Prolif, 2022, 55(11):e13303. |
[53] | 张紫薇, 于 博, 戴佳格, 等.小檗碱对玻璃化冷冻猪卵母细胞脂滴含量及胚胎发育的影响[J].北京农学院学报, 2020, 35(1):67-74.ZHANG Z W, YU B, DAI J G, et al.Effects of berberine on lipid droplets content and embryo development in vitrified frozen porcine oocytes[J].Journal of Beijing University of Agriculture, 2020, 35(1):67-74.(in Chinese) |
[54] | LOWE J L, BARTOLAC L K, BATHGATE R, et al.Cryotolerance of porcine blastocysts is improved by treating in vitro matured oocytes with L-carnitine prior to fertilization[J].J Reprod Dev, 2017, 63(3):263-270. |
[55] | XU H X, JIA C, CHENG W X, et al.The effect of L-carnitine additive during in vitro maturation on the vitrification of pig oocytes[J].Cell Reprogram, 2020, 22(4):198-207. |
[56] | ABSALÓN-MEDINA V A, BEDFORD-GUAUS S J, GILBERT R O, et al.The effects of conjugated linoleic acid isomers cis-9, trans-11 and trans-10, cis-12 on in vitro bovine embryo production and cryopreservation[J].J Dairy Sci, 2014, 97(10):6164-6176. |
[57] | AGHAZ F, VAISI-RAYGANI A, KHAZAEI M, et al.Enhanced cryoprotective effect of melatonin and resveratrol by coencapsulation:improved in vitro development of vitrified-warmed mouse germinal vesicle oocytes[J].Biopreserv Biobank, 2021, 19(3):184-193. |
[58] | MIHALAS B P, DE IULIIS G N, REDGROVE K A, et al.The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte[J].Sci Rep, 2017, 7(1):6247. |
[59] | ALAM F, SYED H, AMJAD S, et al.Interplay between oxidative stress, SIRT1, reproductive and metabolic functions[J].Curr Res Physiol, 2021, 4:119-124. |
[60] | AGARWAL A, MALDONADO ROSAS I, ANAGNOSTOPOULOU C, et al.Oxidative stress and assisted reproduction:a comprehensive review of its pathophysiological role and strategies for optimizing embryo culture environment[J].Antioxidants (Basel), 2022, 11(3):477. |
[61] | TAKAHASHI T, INABA Y, SOMFAI T, et al.Supplementation of culture medium with L-carnitine improves development and cryotolerance of bovine embryos produced in vitro[J].Reprod Fertil Dev, 2013, 25(4):589-599. |
[62] | SUN Y X, YUAN X L, ZHANG F F, et al.Berberine ameliorates fatty acid-induced oxidative stress in human hepatoma cells[J]. Sci Rep, 2017, 7(1):11340. |
[63] | MIAO Y L, CUI Z K, GAO Q, et al.Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes[J].Cell Rep, 2020, 32(5):107987. |
[64] | SONG M J, LI Y, ZHOU Y H, et al.Nicotinamide mononucleotide supplementation improves the quality of porcine oocytes under heat stress[J].J Anim Sci Biotechnol, 2022, 13(1):68. |
[65] | XIANG X Y, LIU T, WU Y, et al.Berberine alleviates palmitic acid-induced podocyte apoptosis by reducing reactive oxygen species-mediated endoplasmic reticulum stress[J].Mol Med Rep, 2021, 23(1):3. |
[66] | RAZA S H A, ABD EL-AZIZ A H, ABDELNOUR S A, et al.The role of forskolin as a lipolytic stimulator during in vitro oocyte maturation and the in vitro embryo production of livestock[J].Reprod Domest Anim, 2021, 56(12):1486-1496. |
[67] | SU L J, ZHANG J H, GOMEZ H, et al.Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J].Oxid Med Cell Longev, 2019, 2019:5080843. |
[68] | FERNÁNDEZ A, ORDÓÑEZ R, REITER R J, et al.Melatonin and endoplasmic reticulum stress:relation to autophagy and apoptosis[J]. J Pineal Res, 2015, 59(3):292-307. |
[69] | GIARETTA E, SPINACI M, BUCCI D, et al.Effects of resveratrol on vitrified porcine oocytes[J].Oxid Med Cell Longev, 2013, 2013:920257. |
[70] | VALLORANI C, SPINACI M, BUCCI D, et al.Pig oocyte vitrification by cryotop method and the activation of the apoptotic cascade[J].Anim Reprod Sci, 2012, 135(1-4):68-74. |
[71] | KALO D, ROTH Z.Involvement of the sphingolipid ceramide in heat-shock-induced apoptosis of bovine oocytes[J].Reprod Fertil Dev, 2011, 23(7):876-888. |
[72] | MENG Y F, PU Q, DAI S Y, et al.Nicotinamide mononucleotide alleviates hyperosmolarity-induced IL-17a secretion and macrophage activation in corneal epithelial cells/macrophage co-culture system[J].J Inflamm Res, 2021, 14:479-493. |
[73] | WAN Y X, HE B, ZHU D Y, et al.Nicotinamide mononucleotide attenuates doxorubicin-induced cardiotoxicity by reducing oxidative stress, inflammation and apoptosis in rats[J].Arch Biochem Biophys, 2021, 712:109050. |
[74] | BERTOLDO M J, LISTIJONO D R, HO W H J, et al.NAD+ repletion rescues female fertility during reproductive aging[J].Cell Rep, 2020, 30(6):1670-1681.e7. |
[75] | MIAO Y L, LI X Y, SHI X Y, et al.Nicotinamide mononucleotide restores the meiotic competency of porcine oocytes exposed to ethylene glycol butyl ether[J].Front Cell Dev Biol, 2021, 9:628580. |
[1] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[2] | 董书餐, 毛帅翔, 伍翠莹, 李耀坤, 孙宝丽, 郭勇庆, 邓铭, 刘德武, 柳广斌. 雄激素受体抑制剂恩杂鲁胺对山羊卵泡颗粒细胞增殖凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2022-2031. |
[3] | 王吉英, 尹蕊如, 谢星, 王海燕, 刘胡栋, 胡辉, 熊祺琰, 冯志新, 邵国青, 于岩飞. 猪肺炎支原体乳酸脱氢酶在诱导猪支气管上皮细胞凋亡中的作用[J]. 畜牧兽医学报, 2024, 55(5): 2195-2205. |
[4] | 李秋云, 田芯源, 廖文圣, 张焕容, 任玉鹏, 杨发龙, 朱江江, 向华. SOCS2对山羊鼻甲骨细胞增殖、周期及凋亡的影响[J]. 畜牧兽医学报, 2024, 55(5): 2226-2240. |
[5] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[6] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[7] | 虎巧燕, 翟相钦, 李一丹, 韩家乐, 雷初朝, 党瑞华. Bta-miR-101对牛睾丸支持细胞增殖、凋亡及分泌的影响[J]. 畜牧兽医学报, 2024, 55(3): 1040-1051. |
[8] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[9] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
[10] | 邱文粤, 苏依曼, 叶嘉莉, 章心婷, 庞晓玥, 王荣梅, 谢子茂, 张辉, 唐兆新, 苏荣胜. 积雪草酸通过调控细胞凋亡和自噬缓解脂多糖诱导肉鸡急性肾损伤的研究[J]. 畜牧兽医学报, 2024, 55(2): 809-821. |
[11] | 陈松彪, 刘飞飞, 尚珂, 余祖华, 何雷, 魏颖, 陈建, 张春杰, 程相朝, 丁轲. 病毒感染与宿主抗感染免疫之间“博弈”——凋亡、坏死和焦亡分子机制[J]. 畜牧兽医学报, 2024, 55(1): 59-70. |
[12] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[13] | 神英超, 陶力, 任宏, 王希生, 田书岳, 杜明, 芒来, 格日乐其木格. 卵母细胞成熟相关激素和生长因子受体在马扩展型和紧凑型卵丘-卵母细胞复合体表达的研究[J]. 畜牧兽医学报, 2023, 54(9): 3735-3744. |
[14] | 宋美君, 郝科兴, 海思妤, 陈岩, 王静, 胡广东. SRIF-14对绵羊子宫内膜上皮细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54(8): 3325-3334. |
[15] | 王婉洁, 陈南珠, 邹惠影, 周心仪, 郝海生, 庞云渭, 朱化彬, 赵学明, 余大为, 杜卫华. 过表达组蛋白甲基转移酶ASH1L对牛卵丘细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54(8): 3358-3368. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||