畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 492-500.doi: 10.11843/j.issn.0366-6964.2025.02.002
收稿日期:
2024-03-20
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
何冉
E-mail:2022303116@stu.sicau.edu.cn;ranhe1991@sicau.edu.cn
作者简介:
郭茂川(1997-),女,佤族,四川射洪人,硕士,主要从事动物寄生虫病研究,E-mail: 2022303116@stu.sicau.edu.cn
基金资助:
Received:
2024-03-20
Online:
2025-02-23
Published:
2025-02-26
Contact:
HE Ran
E-mail:2022303116@stu.sicau.edu.cn;ranhe1991@sicau.edu.cn
摘要:
疥螨宿主广泛,呈全球分布,疥螨感染可威胁宿主健康,并对养殖业造成严重经济损失。目前疥螨致病机制尚未明确,疥螨感染仍无理想的诊治措施,而研究疥螨基因功能对解决这一难题意义重大。近年来,随着分子生物学的不断发展,促进了疥螨基因功能和致病机制的深入研究,为疥螨研究奠定了数据基础。本文主要综述迄今疥螨重要功能基因及其在防治应用上的研究进展,以期为从分子水平上深入了解疥螨致病机制、寻找高效诊治手段提供新思路。
中图分类号:
郭茂川, 何冉. 疥螨功能基因及其应用的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 492-500.
GUO Maochuan, HE Ran. Research Progress of Functional Genes in Sarcoptes scabiei and Its Application[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 492-500.
1 |
MORONI B , ROSSI L , BERNIGAUD C , et al. Zoonotic episodes of scabies: a global overview[J]. Pathogens, 2022, 11 (2): 213.
doi: 10.3390/pathogens11020213 |
2 | FISCHER K, LU H, FERNANDO D D, et al. Scabies multi-omics to identify novel diagnostic or therapeutic targets[M]//FISCHER K, CHOSIDOW O. Scabies. Cham: Springer, 2023: 91-102. |
3 |
RIDER S D , MORGAN M S , ARLIAN L G . Draft genome of the scabies mite[J]. Parasit Vectors, 2015, 8, 585.
doi: 10.1186/s13071-015-1198-2 |
4 | MOFIZ E , DEBORAH C , SEEMANN T , et al. Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var. hominis and var. suis[J]. GigaScience, 2016, 5 (1): 23. |
5 |
MOFIZ E , SEEMANN T , BAHLO M , et al. Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections[J]. PLoS Negl Trop Dis, 2016, 10 (2): e0004384.
doi: 10.1371/journal.pntd.0004384 |
6 |
KORHONEN P K , GASSER R B , MA G X , et al. High-quality nuclear genome for Sarcoptes scabiei-A critical resource for a neglected parasite[J]. PLoS Negl Trop Dis, 2020, 14 (10): e0008720.
doi: 10.1371/journal.pntd.0008720 |
7 |
XU J , WANG Q H , WANG S , et al. Comparative genomics of Sarcoptes scabiei provide new insights into adaptation to permanent parasitism and within-host species divergence[J]. Transbound Emerg Dis, 2022, 69 (6): 3468- 3484.
doi: 10.1111/tbed.14706 |
8 |
HU L , ZHAO Y E , YANG Y J , et al. De novo RNA-Seq and functional annotation of Sarcoptes scabiei canis[J]. Parasitol Res, 2016, 115 (7): 2661- 2670.
doi: 10.1007/s00436-016-5013-6 |
9 |
HE R , GU X B , LAI W M , et al. Transcriptome-microRNA analysis of Sarcoptes scabiei and host immune response[J]. PLoS One, 2017, 12 (5): e0177733.
doi: 10.1371/journal.pone.0177733 |
10 |
AKUTA T , MINEGISHI D , KIDO N , et al. Development of a rapid scabies immunodiagnostic assay based on transcriptomic analysis of Sarcoptes scabiei var.nyctereutis[J]. Sci Rep, 2021, 11 (1): 6455.
doi: 10.1038/s41598-021-85290-7 |
11 |
AL-DABBAGH J , YOUNIS R , ISMAIL N . The currently available diagnostic tools and treatments of scabies and scabies variants: an updated narrative review[J]. Medicine (Baltimore), 2023, 102 (21): e33805.
doi: 10.1097/MD.0000000000033805 |
12 | GUILLOT J, LOSSON B, DELSART M, et al. Sarcoptic mange in wild and domestic animals[M]//FISCHER K, CHOSIDOW O. Scabies. Cham: Springer, 2023: 313-343. |
13 |
ABSIL G , LEBAS E , LIBON F , et al. Scabies and therapeutic resistance: current knowledge and future perspectives[J]. JEADV Clin Pract, 2022, 1 (3): 157- 164.
doi: 10.1002/jvc2.25 |
14 |
JOHNSON-ARBOR K . Ivermectin: a mini-review[J]. Clin Toxicol (Phila), 2022, 60 (5): 571- 575.
doi: 10.1080/15563650.2022.2043338 |
15 |
MOUNSEY K E , DENT J A , HOLT D C , et al. Molecular characterisation of a pH-gated chloride channel from Sarcoptes scabiei[J]. Invert Neurosci, 2007, 7 (3): 149- 156.
doi: 10.1007/s10158-007-0050-6 |
16 |
KHALIL S , ABBAS O , KIBBI A G , et al. Scabies in the age of increasing drug resistance[J]. PLoS Negl Trop Dis, 2017, 11 (11): e0005920.
doi: 10.1371/journal.pntd.0005920 |
17 |
MOUNSEY K E , PASAY C J , ARLIAN L G , et al. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites[J]. Parasit Vectors, 2010, 3, 43.
doi: 10.1186/1756-3305-3-43 |
18 |
PETTERSSON E U , LJUNGGREN E L , MORRISON D A , et al. Functional analysis and localisation of a delta-class glutathione S-transferase from Sarcoptes scabiei[J]. Int J Parasitol, 2005, 35 (1): 39- 48.
doi: 10.1016/j.ijpara.2004.09.006 |
19 |
DOUGALL A , HOLT D C , FISCHER K , et al. Identification and characterization of Sarcoptes scabiei and Dermatophagoides pteronyssinus glutathione S-transferases: implication as a potential major allergen in crusted scabies[J]. Am J Trop Med Hyg, 2005, 73 (5): 977- 984.
doi: 10.4269/ajtmh.2005.73.977 |
20 | MOLIN E U , MATTSSON J G . Effect of acaricides on the activity of glutathione transferases from the parasitic mite Sarcoptes scabiei[J]. Parasitology, 2008, 135 (Pt 1): 115- 123. |
21 | 李爽, 刘群. 寄生虫谷胱甘肽转移酶的研究进展[J]. 中国兽医科学, 2021, 51 (1): 113- 118. |
LI S , LIU Q . Advances in the research of glutathione S-transferase in parasites[J]. Chinese Veterinary Science, 2021, 51 (1): 113- 118. | |
22 |
PASAY C , ARLIAN L , MORGAN M , et al. High-resolution melt analysis for the detection of a mutation associated with permethrin resistance in a population of scabies mites[J]. Med Vet Entomol, 2008, 22 (1): 82- 88.
doi: 10.1111/j.1365-2915.2008.00716.x |
23 |
RIEBENBAUER K , PURKHAUSER K , WALOCHNIK J , et al. Detection of a knockdown mutation in the voltage-sensitive sodium channel associated with permethrin tolerance in Sarcoptes scabiei var. hominis mites[J]. J Eur Acad Dermatol Venereol, 2023, 37 (11): 2355- 2361.
doi: 10.1111/jdv.19288 |
24 |
WANG T , GASSER R B , KORHONEN P K , et al. Proteomic analysis of Sarcoptes scabiei reveals that proteins differentially expressed between eggs and female adult stages are involved predominantly in genetic information processing, metabolism and/or host-parasite interactions[J]. PLoS Negl Trop Dis, 2022, 16 (12): e0010946.
doi: 10.1371/journal.pntd.0010946 |
25 | 陈奕君, 周璇, 谢跃. 动物内寄生虫丝氨酸蛋白酶研究进展[J]. 动物医学进展, 2023, 44 (10): 80- 84. |
CHEN Y J , ZHOU X , XIE Y . Advance in serine proteases of animal endoparasites[J]. Progress in Veterinary Medicine, 2023, 44 (10): 80- 84. | |
26 |
BECKHAM S A , BOYD S E , REYNOLDS S , et al. Characterization of a serine protease homologous to house dust mite group 3 allergens from the scabies mite Sarcoptes scabiei[J]. J Biol Chem, 2009, 284 (49): 34413- 34422.
doi: 10.1074/jbc.M109.061911 |
27 |
FERNANDO D D , FISCHER K . Proteases and pseudoproteases in parasitic arthropods of clinical importance[J]. FEBS J, 2020, 287 (19): 4284- 4299.
doi: 10.1111/febs.15546 |
28 |
MAHMOOD W , VIBERG L T , FISCHER K , et al. An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules[J]. PLoS Negl Trop Dis, 2013, 7 (11): e2525.
doi: 10.1371/journal.pntd.0002525 |
29 | JALOLIDINOVNA I Z . Morphology and histology of skin[J]. Texas J Med Sci, 2023, 16, 52- 56. |
30 | 杨妙贤, 黄灏, 黄一诺, 等. 天冬氨酸蛋白酶与寄生虫[J]. 热带医学杂志, 2019, 19 (7): 932- 936. |
YANG M X , HUANG H , HUANG Y N , et al. Aspartic proteases of parasites[J]. Journal of Tropical Medicine, 2019, 19 (7): 932- 936. | |
31 |
INAM W , WALTON S , KHAN S , et al. Molecular drug targets for scabies: a medicinal chemistry perspective[J]. Future Med Chem, 2020, 12 (24): 2225- 2238.
doi: 10.4155/fmc-2020-0182 |
32 |
KHAN A , SOHAIB M , ULLAH R , et al. Structure-based in silico design and in vitro acaricidal activity assessment of Acacia nilotica and Psidium guajava extracts against Sarcoptes scabiei var.cuniculi[J]. Parasitol Res, 2022, 121 (10): 2901- 2915.
doi: 10.1007/s00436-022-07615-3 |
33 |
FISCHER K , LANGENDORF C G , IRVING J A , et al. Structural mechanisms of inactivation in scabies mite serine protease paralogues[J]. J Mol Biol, 2009, 390 (4): 635- 645.
doi: 10.1016/j.jmb.2009.04.082 |
34 |
BERGSTRÖM F C , REYNOLDS S , JOHNSTONE M , et al. Scabies mite inactivated serine protease paralogs inhibit the human complement system[J]. J Immunol, 2009, 182 (12): 7809- 7817.
doi: 10.4049/jimmunol.0804205 |
35 |
REYNOLDS S L , PIKE R N , MIKA A , et al. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway[J]. PLoS Negl Trop Dis, 2014, 8 (5): e2872.
doi: 10.1371/journal.pntd.0002872 |
36 |
SWE P M , FISCHER K . A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth[J]. PLoS Negl Trop Dis, 2014, 8 (6): e2928.
doi: 10.1371/journal.pntd.0002928 |
37 |
SWE P M , CHRISTIAN L D , LU H C , et al. Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes- An in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S.pyogenes to infect mite-induced skin lesions[J]. PLoS Negl Trop Dis, 2017, 11 (3): e0005437.
doi: 10.1371/journal.pntd.0005437 |
38 |
MIKA A , GOH P , HOLT D C , et al. Scabies mite peritrophins are potential targets of human host innate immunity[J]. PLoS Negl Trop Dis, 2011, 5 (9): e1331.
doi: 10.1371/journal.pntd.0001331 |
39 |
FERNANDO D D , REYNOLDS S L , HARTEL G , et al. A unique group of scabies mite pseudoproteases promotes cutaneous blood coagulation and delays plasmin-induced fibrinolysis[J]. PLoS Negl Trop Dis, 2021, 15 (1): e0008997.
doi: 10.1371/journal.pntd.0008997 |
40 | WILLIS C , FISCHER K , WALTON S F , et al. Scabies mite inactivated serine protease paralogues are present both internally in the mite gut and externally in feces[J]. Am J Trop Med Hyg, 2006, 75 (4): 683- 687. |
41 | MIKA A , REYNOLDS S L , MOHLIN F C , et al. Novel scabies mite serpins inhibit the three pathways of the human complement system[J]. PLoS One, 2012, 7 (7): e40489. |
42 | MIKA A , REYNOLDS S L , PICKERING D , et al. Complement inhibitors from scabies mites promote streptococcal growth-a novel mechanism in infected epidermis?[J]. PLoS Negl Trop Dis, 2012, 6 (7): e1563. |
43 | BERNIGAUD C, TAYLOR S, FISCHER K. Scabies-associated microbiota[M]//FISCHER K, CHOSIDOW O. Scabies. Cham: Springer, 2023: 103-117. |
44 | SWE P M , ZAKRZEWSKI M , WADDELL R , et al. High-throughput metagenome analysis of the Sarcoptes scabiei internal microbiota and in-situ identification of intestinal Streptomyces sp.[J]. Sci Rep, 2019, 9 (1): 11744. |
45 | BERNIGAUD C , ZAKRZEWSKI M , TAYLOR S , et al. First description of the composition and the functional capabilities of the skin microbial community accompanying severe scabies infestation in humans[J]. Microorganisms, 2021, 9 (5): 907. |
46 | NÆSBORG-NIELSEN C , EISENHOFER R , FRASER T A , et al. Sarcoptic mange changes bacterial and fungal microbiota of bare-nosed wombats (Vombatus ursinus)[J]. Parasit Vectors, 2022, 15 (1): 323. |
47 | LI S R , WANG J , TIAN X , et al. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects[J]. Front Immunol, 2023, 14, 905467. |
48 | FERNANDO D D , REYNOLDS S L , ZAKRZEWSKI M , et al. Phylogenetic relationships, stage-specific expression and localisation of a unique family of inactive cysteine proteases in Sarcoptes scabiei[J]. Parasit Vectors, 2018, 11 (1): 301. |
49 | XU Y T , XU Z Y , GU X B , et al. Immunomodulatory effects of two recombinant arginine kinases in Sarcoptes Scabiei on host peripheral blood mononuclear cells[J]. Front Immunol, 2022, 13, 1035729. |
50 | XU Z Y , XU Y T , GU X B , et al. Effects of Sarcoptes scabiei translationally controlled tumor protein (TCTP) on histamine release and degranulation of KU812 cells[J]. Int J Mol Sci, 2022, 23 (21): 12865. |
51 | NÆSBORG-NIELSEN C , WILKINSON V , MEJIA-PACHECO N , et al. Evidence underscoring immunological and clinical pathological changes associated with Sarcoptes scabiei infection: synthesis and meta-analysis[J]. BMC Infect Dis, 2022, 22 (1): 658. |
52 | HE R , ZHANG Q , XU L Y , et al. Characterization of a novel galectin in Sarcoptes scabiei and its role in regulating macrophage functions[J]. Front Microbiol, 2023, 14, 1251475. |
53 | NWUFOH O C , SADIQ A N , EMIKPE B O . The seroprevalence of Sarcoptes scabiei var.canis and its associated risk factors in dogs in Ibadan, Southwest Nigeria[J]. J Immunoassay Immunochem, 2019, 40 (5): 473- 484. |
54 | HAAS C , ROSSI S , MEIER R , et al. Evaluation of a commercial ELISA for the detection of antibodies to Sarcoptes scabiei in wild boar (Sus scrofa)[J]. J Wildl Dis, 2015, 51 (3): 729- 733. |
55 | RAMBOZZI L , MENZANO A , LAVIN S , et al. Biotin-avidin amplified ELISA for detection of antibodies to Sarcoptes scabiei in chamois (Rupicapra spp.)[J]. Vet Res, 2004, 35 (6): 701- 708. |
56 | SHEN N X , HE R , LIANG Y Q , et al. Expression and characterisation of a Sarcoptes scabiei protein tyrosine kinase as a potential antigen for scabies diagnosis[J]. Sci Rep, 2017, 7 (1): 9639. |
57 | XU J , HUANG X , HE M L , et al. Identification of a novel PYP-1 gene in Sarcoptes scabiei and its potential as a serodiagnostic candidate by indirect-ELISA[J]. Parasitology, 2018, 145 (6): 752- 761. |
58 | XU J , HUANG X , DONG X W , et al. Serodiagnostic potential of alpha-enolase from Sarcoptes scabiei and its possible role in host-mite interactions[J]. Front Microbiol, 2018, 9, 1024. |
59 | HE R , SHEN N X , ZHANG H J , et al. Molecular characteristics and serodiagnostic potential of chitinase-like protein from Sarcoptes scabiei[J]. Oncotarget, 2017, 8 (48): 83995- 84005. |
60 | RAMPTON M , WALTON S F , HOLT D C , et al. Antibody responses to Sarcoptes scabiei apolipoprotein in a porcine model: relevance to immunodiagnosis of recent infection[J]. PLoS One, 2013, 8 (6): e65354. |
61 | SHEN N X , CHEN Y H , WEI W R , et al. Comparative analysis of the allergenic characteristics and serodiagnostic potential of recombinant chitinase-like protein-5 and -12 from Sarcoptes scabiei[J]. Parasit Vectors, 2021, 14 (1): 148. |
62 | 李鑫, 唐志强, 张浩吉, 等. 疥螨Sar s 14.3过敏原蛋白原核表达及间接ELISA方法的建立[J]. 中国人兽共患病学报, 2023, 39 (1): 28- 37. |
LI X , TANG Z Q , ZHANG H J , et al. Prokaryotic expression of Sar s 14.3 allergen from Sarcoptes scabiei and establishment of an indirect ELISA method[J]. Chinese Journal of Zoonoses, 2023, 39 (1): 28- 37. | |
63 | NAZ S , DESCLOZEAUX M , MOUNSEY K E , et al. Characterization of Sarcoptes scabiei tropomyosin and paramyosin: immunoreactive allergens in scabies[J]. Am J Trop Med Hyg, 2017, 97 (3): 851- 860. |
64 | CASAIS R , MILLÁN J , ROSELL J M , et al. Evaluation of an ELISA using recombinant Ssλ20ΔB3 antigen for the serological diagnosis of Sarcoptes scabiei infestation in domestic and wild rabbits[J]. Vet Parasitol, 2015, 214 (3-4): 315- 321. |
65 | ZHENG Y , HE R , HE M L , et al. Characterization of Sarcoptes scabiei cofilin gene and assessment of recombinant cofilin protein as an antigen in indirect-ELISA for diagnosis[J]. BMC Infect Dis, 2016, 16, 21. |
66 | HE R , SHEN N X , LIN H , et al. Molecular characterization of calmodulin from Sarcoptes scabiei[J]. Parasitol Int, 2017, 66 (2): 1- 6. |
67 | ZHANG R H , ZHENG W P , WU X H , et al. Characterisation and analysis of thioredoxin peroxidase as a potential antigen for the serodiagnosis of sarcoptic mange in rabbits by dot-ELISA[J]. BMC Infect Dis, 2013, 13, 336. |
68 | MA Z T , GUO J N , JIANG L , et al. Lateral flow immunoassay (LFIA) for dengue diagnosis: recent progress and prospect[J]. Talanta, 2024, 267, 125268. |
69 | 贾新月, 马静, 张艳艳, 等. 动物寄生虫口服疫苗研究进展[J]. 中国畜牧兽医, 2022, 49 (9): 3569- 3580. |
JIA X Y , MA J , ZHANG Y Y , et al. Research progress on oral vaccine of animal parasites[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49 (9): 3569- 3580. | |
70 | 古小彬. 兔疥螨虫株的分子分类及其疫苗研究[D]. 雅安: 四川农业大学, 2009. |
GU X B. The study of molecular taxomomic status about scabies mites isolated from rabbits and vaccine in Sarcoptes scabiei[D]. Ya'an: Sichuan Agricultural University, 2009. (in Chinese) | |
71 | GU X B , XIE Y , WANG S X , et al. Immune response induced by candidate Sarcoptes scabiei var.cuniculi DNA vaccine encoding paramyosin in mice[J]. Exp Appl Acarol, 2014, 63 (3): 401- 412. |
72 | SHEN N X , ZHANG H J , REN Y J , et al. A chitinase-like protein from Sarcoptes scabiei as a candidate anti-mite vaccine that contributes to immune protection in rabbits[J]. Parasit Vectors, 2018, 11 (1): 599. |
73 | SHEN N X , WEI W R , CHEN Y H , et al. An antibody persistent and protective two rSsCLP-based subunit cocktail vaccine against Sarcoptes scabiei in a rabbit model[J]. Vaccines (Basel), 2020, 8 (1): 129. |
74 | SHEN N X , WEI W R , CHEN Y H , et al. Vaccination with a cocktail vaccine elicits significant protection against Sarcoptes scabiei in rabbits, whereas the multi-epitope vaccine offers limited protection[J]. Exp Parasitol, 2023, 245, 108442. |
75 | FERNANDO D D , KORHONEN P K , GASSER R B , et al. An RNA interference tool to silence genes in Sarcoptes scabiei eggs[J]. Int J Mol Sci, 2022, 23 (2): 873. |
[1] | 吕永乐, 郑雯, 王签慧, 朱家琦, 黄晓琦, 曹中赞, 栾新红. 抗代谢相关脂肪性肝病的天然活性物质研究进展[J]. 畜牧兽医学报, 2025, 56(1): 45-62. |
[2] | 王梦迪, 王恒, 鲁秀香, 王昱旻, 樊文杰, 姚晨, 刘鹏翔, 马延杰, 杨国宇. 锰纳米佐剂的制备及生物学效应[J]. 畜牧兽医学报, 2024, 55(8): 3374-3382. |
[3] | 李竟, 张元旭, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 机器学习全基因组选择研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2281-2292. |
[4] | 张元旭, 李竟, 王泽昭, 陈燕, 徐凌洋, 张路培, 高雪, 高会江, 李俊雅, 朱波, 郭鹏. 动物遗传评估软件研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1827-1841. |
[5] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[6] | 曹晋康, 张纯, 王佳瑶, 李晓彤, 王鹏宇, 方颖妍, 张昱, 丁宁, 姜力. 中国荷斯坦公牛不同耐冻性精子的蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(3): 1052-1061. |
[7] | 周梦婷, 宋银娟, 许健, 李斌, 冉多良, 储岳峰. 基于碳水化合物的佐剂作用机制研究进展[J]. 畜牧兽医学报, 2024, 55(2): 491-501. |
[8] | 闵祥玉, 卫佳丽, 许彪, 刘汇涛, 郑军军, 王桂武. 梅花鹿鹿茸全长转录组测序及鹿茸产量相关基因的挖掘[J]. 畜牧兽医学报, 2024, 55(12): 5549-5566. |
[9] | 蔡子雯, 孙志刚, 司晓慧, 吕若一, 刘晓晔. 动物病原感染性呼吸系统疾病兽药研究进展及新药研发趋势分析[J]. 畜牧兽医学报, 2024, 55(11): 4872-4889. |
[10] | 王元清, 王兢, 朱波, 陈燕, 徐凌洋, 王泽昭, 张路培, 高会江, 李俊雅, 高雪. 基因组选配研究及其在畜禽育种中的应用[J]. 畜牧兽医学报, 2024, 55(1): 1-10. |
[11] | 王琳, 马黎, 张博, 邓俊, 张浩, 欧阳晓芳, 严达伟, 董新星. 大型迪庆藏猪不同生长阶段背脂与腹脂脂质代谢差异基因及调控网络分析[J]. 畜牧兽医学报, 2023, 54(2): 520-533. |
[12] | 吕若一, 司晓慧, 孙志刚, 史晓敏, 刘晓晔. 猪链球菌耐药现状分析及感染防控措施[J]. 畜牧兽医学报, 2023, 54(12): 4920-4933. |
[13] | 毕睿晨, 刘相泽, 胡泽琼, 杨美雪, 乔嘉宁, 黄嘉, 郭芳申, 孔令华, 王忠. 植物多酚在家禽领域应用研究进展[J]. 畜牧兽医学报, 2023, 54(11): 4488-4501. |
[14] | 夏春秋, 万发春, 刘磊, 沈维军, 肖定福. 缬氨酸的生物学功能及其在畜禽日粮中的应用[J]. 畜牧兽医学报, 2023, 54(11): 4502-4513. |
[15] | 孙东晓, 张胜利, 张勤, 李姣, 张桂香, 刘丑生, 郑伟杰. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54(10): 4028-4039. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||