畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (1): 1-10.doi: 10.11843/j.issn.0366-6964.2024.01.001
王元清, 王兢, 朱波, 陈燕, 徐凌洋, 王泽昭, 张路培, 高会江, 李俊雅*, 高雪*
收稿日期:
2023-08-16
出版日期:
2024-01-23
发布日期:
2024-01-24
通讯作者:
李俊雅,主要从事肉牛育种技术研究和新品种培育,E-mail:lijunya@caas.cn;高雪,主要从事肉牛分子育种及基因组学研究,E-mail:gaoxue@caas.cn
作者简介:
王元清(2000-),男,山东枣庄人,硕士生,主要从事牛基因组选择及选配研究,E-mail:wangyuanqing811@126.com;王兢(2000-),男,贵州织金人,硕士生,主要从事肉牛种质资源鉴定和分子身份证构建,E-mail:2549901601@qq.com
基金资助:
WANG Yuanqing, WANG Jing, ZHU Bo, CHEN Yan, XU Lingyang, WANG Zezhao, ZHANG Lupei, GAO Huijiang, LI Junya*, GAO Xue*
Received:
2023-08-16
Online:
2024-01-23
Published:
2024-01-24
摘要: 基因组选配(genomic mating,GM)是利用基因组估计育种值、风险指数(有效性)、交配亲本互补信息等概念进行选配优化的方法,其侧重于最佳的交配组合而不是截断式选择,可以有效控制群体近交速率的增长、维持遗传多样性,是基因组时代下最具前瞻性的理论方法,具有更高的可行性、有效性,有望实现长期可持续的遗传进展。本文介绍了基因组选配的基本概念、原理与方法,并综述了畜禽育种中利用基因组信息优化选配的应用现状。此外,还提出了基因组选配亟待解决的问题以及未来研究方向。通过对这些问题的探索和研究,进一步提升基因组选配的效果,为推动畜禽育种的长期可持续发展提供参考。
中图分类号:
王元清, 王兢, 朱波, 陈燕, 徐凌洋, 王泽昭, 张路培, 高会江, 李俊雅, 高雪. 基因组选配研究及其在畜禽育种中的应用[J]. 畜牧兽医学报, 2024, 55(1): 1-10.
WANG Yuanqing, WANG Jing, ZHU Bo, CHEN Yan, XU Lingyang, WANG Zezhao, ZHANG Lupei, GAO Huijiang, LI Junya, GAO Xue. Genomic Mating Research and Its Application in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 1-10.
[1] | 张 沅.家畜育种学[M].北京:中国农业出版杜, 2001.ZHANG Y.Animal breeding science[M].Beijing:China Agriculture Press, 2001.(in Chinese) |
[2] | 张 勤.遗传评估与种猪选留[J].北方牧业, 2018(11):13-14.ZHANG Q.Genetic evaluation and selection of breeding stock[J].Northern Animal Husbandry, 2018(11):13-14.(in Chinese) |
[3] | HENDERSON C R.Best linear unbiased estimation and prediction under a selection model[J].Biometrics, 1975, 31(2):423-447. |
[4] | JANSEN G B, WILTON J W.Selecting mating pairs with linear programming techniques[J].J Dairy Sci, 1985, 68(5):1302-1305. |
[5] | WILTON J W, MORRIS C A, LEIGH A O, et al.A linear programming model for beef cattle production[J].Can J Anim Sci, 1974, 54(4):693-707. |
[6] | WEIGEL K A, LIN S W.Use of computerized mate selection programs to control inbreeding of Holstein and Jersey cattle in the next generation[J].J Dairy Sci, 2000, 83(4):822-828. |
[7] | WOOLLIAMS J A, THOMSON R.A theory of genetic contributions[C]//Proceedings of the 5th World Congress on Genetics Applied to Livestock Production.Guelph:Organising Committee, 1994:127-134. |
[8] | LINDGREN D, MATHESON A C.An algorithm for increasing the genetic quality of seed from seed orchards by using the better clones in higher proportions[J].Silvae Genet, 1986, 35(5-6):173-177. |
[9] | CABALLERO A, SANTIAGO E, TORO M A.Systems of mating to reduce inbreeding in selected populations[J].Anim Sci, 1996, 62(3):431-442. |
[10] | MEUWISSEN T.Operation of conservation schemes[M]//OLDENBROEK K.Proceedings of the Utilisation and Conservation of Farm Animal Genetic Resources.Wageningen:Wagenin gen Academic Publishers, 2007:167-193. |
[11] | WOOLLIAMS J A, PONG-WONG R, VILLANUEVA B.Strategic optimisation of short-and long-term gain and inbreeding in MAS and non-MAS schemes[C]//Proceedings of the 7th World Congress on Genetics Applied to Livestock Production.Montpellier:Institut National de la Recherche Agronomique (INRA), 2002:155-162. |
[12] | KINGHORN B P, SHEPHERD R K.Mate selection for the tactical implementation of breeding programs[J].Proc Advancem Anim Breed Genet, 1999, 13:130-133. |
[13] | KINGHORN B P.An algorithm for efficient constrained mate selection[J].Genet Sel Evol, 2011, 43(1):4. |
[14] | MEUWISSEN T H E.Maximizing the response of selection with a predefined rate of inbreeding[J].J Anim Sci, 1997, 75(4):934-940. |
[15] | WRAY N R, GODDARD M E.Increasing long-term response to selection[J].Genet Sel Evol, 1994, 26(5):431. |
[16] | GRUNDY B, VILLANUEVA B, WOOLLIAMS J A.Dynamic selection procedures for constrained inbreeding and their consequences for pedigree development[J].Genet Res, 1998, 72(2):159-168. |
[17] | MEUWISSEN T H E.Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping[J]. Genet Sel Evol, 2009, 41(1):35. |
[18] | SØRENSEN A C, BERG P, WOOLLIAMS J A.The advantage of factorial mating under selection is uncovered by deterministically predicted rates of inbreeding[J].Genet Sel Evol, 2005, 37(1):57. |
[19] | OGAWA S, SATOH M.Genetic contributions of genes on sex chromosomes and mitochondrial DNA in a pedigreed population[J].Diversity, 2022, 14(2):142. |
[20] | LIU H, HENRYON M, SØRENSEN A C.Mating strategies with genomic information reduce rates of inbreeding in animal breeding schemes without compromising genetic gain[J].Animal, 2017, 11(4):547-555. |
[21] | SONESSON A K, WOOLLIAMS J A, MEUWISSEN T H E.Genomic selection requires genomic control of inbreeding[J].Genet Sel Evol, 2012, 44(1):27. |
[22] | HENRYON M, LIU H M, BERG P, et al.Pedigree relationships to control inbreeding in optimum-contribution selection realise more genetic gain than genomic relationships[J].Genet Sel Evol, 2019, 51(1):39. |
[23] | HJORTØ L, HENRYON M, LIU H M, et al.Pre-selection against a lethal recessive allele in breeding schemes with optimum-contribution selection or truncation selection[J].Genet Sel Evol, 2021, 53(1):75. |
[24] | LEGARRA A, AGUILAR I, MISZTAL I. A relationship matrix including full pedigree and genomic information[J]. J Dairy Sci, 2009, 92(9):4656-4663. |
[25] | MEUWISSEN T H E, HAYES B J, GODDARD M E.Prediction of total genetic value using genome-wide dense marker maps[J].Genetics, 2001, 157(4):1819-1829. |
[26] | VANRADEN P M.Efficient methods to compute genomic predictions[J].J Dairy Sci, 2008, 91(11):4414-4423. |
[27] | VANRADEN P M, VAN TASSELL C P, WIGGANS G R, et al.Invited review:Reliability of genomic predictions for North American Holstein bulls[J].J Dairy Sci, 2009, 92(1):16-24. |
[28] | TESSEMA B B, LIU H M, SØRENSEN A C, et al.Strategies using genomic selection to increase genetic gain in breeding programs for wheat[J].Front Genet, 2020, 11:578123. |
[29] | HABIER D, FERNANDO R L, KIZILKAYA K, et al.Extension of the Bayesian alphabet for genomic selection[J].BMC Bioinf, 2011, 12(1):186. |
[30] | HAYES B J, BOWMAN P J, CHAMBERLAIN A J, et al.Invited review:Genomic selection in dairy cattle:Progress and challenges[J].J Dairy Sci, 2009, 92(2):433-443. |
[31] | MAKANJUOLA B O, MIGLIOR F, ABDALLA E A, et al.Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations[J].J Dairy Sci, 2020, 103(6):5183-5199. |
[32] | SENO L D O, GUIDOLIN D G F, ASPILCUETA-BORQUIS R R, et al.Genomic selection in dairy cattle simulated populations[J].J Dairy Res, 2018, 85(2):125-132. |
[33] | LILLEHAMMER M, MEUWISSEN T H E, SONESSON A K.A comparison of dairy cattle breeding designs that use genomic selection[J].J Dairy Sci, 2011, 94(1):493-500. |
[34] | GUO X, CHRISTENSEN O F, OSTERSEN T, et al.Improving genetic evaluation of litter size and piglet mortality for both genotyped and nongenotyped individuals using a single-step method[J].J Anim Sci, 2015, 93(2):503-512. |
[35] | PRYCE J E, GODDARD M E, RAADSMA H W, et al.Deterministic models of breeding scheme designs that incorporate genomic selection[J].J Dairy Sci, 2010, 93(11):5455-5466. |
[36] | SAMORō A B, BUTTAZZONI L, GALLO M, et al.Genomic selection in a pig population including information from slaughtered full sibs of boars within a sib-testing program[J].Animal, 2015, 9(5):750-759. |
[37] | AKDEMIR D, SÁNCHEZ J I.Efficient breeding by genomic mating[J].Front Genet, 2016, 7:210. |
[38] | 高振东, 何 俊.基因组选配:基因组时代的高效育种[J].黑龙江畜牧兽医, 2020(24):61-64, 175.GAO Z D, HE J.Genomic Mating:efficient breeding in the genome era[J].Heilongjiang Animal Science and Veterinary Medicine, 2020(24):61-64, 175.(in Chinese) |
[39] | 何 俊, LOPES F B, 吴晓林.动物基因组选配方法与应用[J].遗传, 2019, 41(6):486-493.HE J, LOPES F B, WU X L.Methods and applications of animal genomic mating[J].Hereditas (Beijing), 2019, 41(6):486-493.(in Chinese) |
[40] | ZHANG P F, QIU X T, WANG L X, et al.Progress in genomic mating in domestic animals[J].ANIMALS, 2022, 12(18):2306. |
[41] | HOWARD D M, PONG-WONG R, KNAP P W, et al.Selective advantage of implementing optimal contributions selection and timescales for the convergence of long-term genetic contributions[J].Genet Sel Evol, 2018, 50(1):24. |
[42] | HAMILTON M G.Optimal contribution selection in highly fecund species with overlapping generations[J].J Hered, 2020, 111(7):646-651. |
[43] | SÁNCHEZ-MOLANO E, PONG-WONG R, BANOS G.Genomic-based optimum contribution in conservation and genetic improvement programs with antagonistic fitness and productivity traits[J].Front Genet, 2016, 7:25. |
[44] | LI M H, STRANDÉN I, TIIRIKKA T, et al.A comparison of approaches to estimate the inbreeding coefficient and pairwise relatedness using genomic and pedigree data in a sheep population[J].PLoS One, 2011, 6(11):e26256. |
[45] | LOPES M S, SILVA F F, HARLIZIUS B, et al.Improved estimation of inbreeding and kinship in pigs using optimized SNP panels[J].BMC Genet, 2013, 14:92. |
[46] | 杨湛澄, 黄河天, 闫青霞, 等.利用高密度SNP标记分析中国荷斯坦牛基因组近交[J].遗传, 2017, 39(1):41-47.YANG Z C, HUANG H T, YAN Q X, et al.Estimation of genomic inbreeding coefficients based on high-density SNP markers in Chinese Holstein cattle[J].Hereditas (Beijing), 2017, 39(1):41-47.(in Chinese) |
[47] | KARDOS M, LUIKART G, ALLENDORF F W.Measuring individual inbreeding in the age of genomics:marker-based measures are better than pedigrees[J].Heredity (Edinb), 2015, 115(1):63-72. |
[48] | CLARK S A, KINGHORN B P, HICKEY J M, et al.The effect of genomic information on optimal contribution selection in livestock breeding programs[J].Genet Sel Evol, 2013, 45:44. |
[49] | PRYCE J E, HAYES B J, GODDARD M E.Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information[J].J Dairy Sci, 2012, 95(1):377-388. |
[50] | CARTHY T R, MCCARTHY J, BERRY D P.A mating advice system in dairy cattle incorporating genomic information[J].J Dairy Sci, 2019, 102(9):8210-8220. |
[51] | HENRYON M, SØRENSEN A C, BERG P.Mating animals by minimising the covariance between ancestral contributions generates less inbreeding without compromising genetic gain in breeding schemes with truncation selection[J].Animal, 2009, 3(10):1339-1346. |
[52] | HE J, WU X L, ZENG Q H, et al.Genomic mating as sustainable breeding for Chinese indigenous Ningxiang pigs[J].PLoS One, 2020, 15(8):e0236629. |
[53] | SCHIERENBECK S, PIMENTEL E C G, TIETZE M, et al.Controlling inbreeding and maximizing genetic gain using semi-definite programming with pedigree-based and genomic relationships[J].J Dairy Sci, 2011, 94(12):6143-6152. |
[54] | BÉRODIER M, BERG P, MEUWISSEN T, et al.Improved dairy cattle mating plans at herd level using genomic information[J].Animal, 2021, 15(1):100016. |
[55] | BENGTSSON C, STÅLHAMMAR H, THOMASEN J R, et al.Mating allocations in Nordic Red Dairy Cattle using genomic information[J].J Dairy Sci, 2022, 105(2):1281-1297. |
[56] | GANTEIL A, POOK T, RODRIGUEZ-RAMILO S T, et al.Comparison of breeding strategies for the creation of a synthetic pig line[Z].bioRxiv, 2021, doi:10.1101/2021.09.22.461330. |
[57] | TANG Z S, YIN L L, YIN D, et al.Development and application of an efficient genomic mating method to maximize the production performances of three-way crossbred pigs[J].Brief Bioinform, 2023, 24(1):bbac587. |
[58] | 张鹏飞, 何 俊, 王立贤, 等.基于基因组和系谱信息的不同选配方案效果模拟研究[J].畜牧兽医学报, 2022, 53(10):3448-3458.ZHANG P F, HE J, WANG L X, et al.Simulation study on the effects of different mating schemes based on genomic and pedigree information[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(10):3448-3458.(in Chinese) |
[59] | ZHAO F P, ZHANG P F, WANG X Q, et al.Genetic gain and inbreeding from simulation of different genomic mating schemes for pig improvement[J].J Anim Sci Biotechnol, 2023, 14(1):87. |
[60] | SUN C, VANRADEN P M, O'CONNELL J R, et al.Mating programs including genomic relationships and dominance effects[J].J Dairy Sci, 2013, 96(12):8014-8023. |
[61] | GONZÁLEZ-DIÉGUEZ D, TUSELL L, CARILLIER-JACQUIN C, et al.SNP-based mate allocation strategies to maximize total genetic value in pigs[J].Genet Sel Evol, 2019, 51(1):55. |
[62] | 李佳芮.整合非加性效应的生猪基因组选配[D].北京:中国农业大学, 2023.LI J R.Research on pig genomic allocation strategy of integrating non-additive effects[D].Beijing:China Agricultural University, 2023.(in Chinese) |
[63] | ALILOO H, PRYCE J E, GONZÁLEZ-RECIO O, et al.Including nonadditive genetic effects in mating programs to maximize dairy farm profitability[J].J Dairy Sci, 2017, 100(2):1203-1222. |
[1] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[2] | 夏淑雯, 陈坤琳, 沈阳阳, 安振江, 赵芳, 丁强, 仲跻峰, 林志平, 王慧利. 江苏地区荷斯坦成母牛长寿性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(3): 1030-1039. |
[3] | 杨晴, 巩静, 赵雪艳, 朱晓东, 耿立英, 张传生, 王继英. 芯片和重测序在猪遗传结构研究中的应用比较[J]. 畜牧兽医学报, 2023, 54(7): 2772-2782. |
[4] | 王振宇, 张赛博, 刘文慧, 梁栋, 任小丽, 闫磊, 闫跃飞, 高腾云, 张震, 黄河天. 基于SNP芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因[J]. 畜牧兽医学报, 2023, 54(7): 2848-2857. |
[5] | 韩云珍, 阳文攀, 洪渊, 龙毅, 刘相杰, 范小萍, 李文静, 邓政, 刘鸣慧, 郑素梅, 阮国荣, 丁能水. 基于芯片数据估计不同方法对槐猪近交系数的影响[J]. 畜牧兽医学报, 2023, 54(3): 947-955. |
[6] | 孙东晓, 张胜利, 张勤, 李姣, 张桂香, 刘丑生, 郑伟杰. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54(10): 4028-4039. |
[7] | 刘宏祥, 沈永杰, 张丽华, 章双杰, 王靖, 朱杰, 陈瑜哲, 朱春红, 宋卫涛, 张丹, 陶志云, 徐文娟, 刘红林, 李慧芳. 基于简化基因组测序的娄门鸭遗传多样性评价[J]. 畜牧兽医学报, 2022, 53(6): 1735-1748. |
[8] | 张鹏飞, 何俊, 王立贤, 赵福平. 基于基因组和系谱信息的不同选配方案效果模拟研究[J]. 畜牧兽医学报, 2022, 53(10): 3448-3458. |
[9] | 王海龙, 王巧, 邢思远, 王杰, 李庆贺, 郑麦青, 崔焕先, 刘冉冉, 赵桂苹, 文杰. 基于表型和基因组信息评价北京油鸡保种群保种情况[J]. 畜牧兽医学报, 2021, 52(9): 2406-2415. |
[10] | 薛倩, 李国辉, 殷建玫, 张会永, 周成浩, 朱云芬, 邢伟杰, 苏一军, 邹剑敏, 韩威. 鸡繁殖性能近交衰退相关CpG岛差异甲基化基因的筛选[J]. 畜牧兽医学报, 2021, 52(4): 943-953. |
[11] | 母童, 虎红红, 冯小芳, 田佳, 温万, 张娟, 顾亚玲. 宁夏地区荷斯坦牛乳房性状的遗传参数估计和主成分分析[J]. 畜牧兽医学报, 2021, 52(4): 954-966. |
[12] | 王配, 王丽娜, 霍海龙, 张霞, 赵筱, 王雪飞, 霍金龙. 猪类无精症缺失基因DAZL的cDNA全长克隆、组织表达和亚细胞定位[J]. 畜牧兽医学报, 2021, 52(3): 683-692. |
[13] | 史良玉, 王立刚, 张鹏飞, 莫家远, 李洋, 王立贤, 赵福平. 不同来源大白猪总产仔数近交衰退评估[J]. 畜牧兽医学报, 2021, 52(10): 2772-2782. |
[14] | 朱波, 李姣, 汪聪勇, 徐凌洋, 陈燕, 高雪, 张路培, 高会江, 李俊雅. 我国肉用西门塔尔牛群体生长发育性状遗传参数估计及其遗传进展[J]. 畜牧兽医学报, 2020, 51(8): 1833-1844. |
[15] | 刘天飞, 罗成龙, 王艳, 周广源, 马杰, 舒鼎铭, 苏国生, 瞿浩. 基于简化基因组测序技术和基因芯片技术比较研究黄羽肉鸡基因组选择[J]. 畜牧兽医学报, 2020, 51(10): 2378-2386. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||