

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 6130-6144.doi: 10.11843/j.issn.0366-6964.2025.12.017
乔利英1,2(
), 徐常松1,2, 张莉1,2, 丁毅2,3, 潘洋洋1,2, 杨凯捷1,2, 刘建华1,2, 刘文忠1,2,3,*(
)
收稿日期:2025-07-16
出版日期:2025-12-23
发布日期:2025-12-24
通讯作者:
刘文忠
E-mail:liyingqiao1970@163.com;tglwzyc@163.com
作者简介:乔利英(1970-),女,山西定襄人,高级实验师,主要从事动物遗传资源的分子评价与种质创新研究,E-mail:liyingqiao1970@163.com
基金资助:
QIAO Liying1,2(
), XU Changsong1,2, ZHANG Li1,2, DING Yi2,3, PAN Yangyang1,2, YANG Kaijie1,2, LIU Jianhua1,2, LIU Wenzhong1,2,3,*(
)
Received:2025-07-16
Online:2025-12-23
Published:2025-12-24
Contact:
LIU Wenzhong
E-mail:liyingqiao1970@163.com;tglwzyc@163.com
摘要:
旨在研究CTCF对绵羊前体脂肪细胞分化的作用及其调控机制。本研究采集4只8月龄的广灵大尾羊不同部位脂肪组织,实时荧光定量PCR(qRT-PCR)检测CTCF的表达水平;1只3日龄健康广灵大尾羊中分离原代前体脂肪细胞,在前体脂肪细胞内过表达或干扰CTCF基因,每个处理组设置3个重复。采用qRT-PCR、蛋白质印迹法(Western blotting)和油红O染色技术检测该基因对绵羊前体脂肪细胞分化的调控作用;对过表达CTCF的绵羊前体脂肪细胞进行转录组测序分析,筛选差异基因和通路,探索CTCF调控脂代谢相关信号通路的分子机制。结果表明,CTCF在尾部脂肪中的表达量显著高于肾周和皮下脂肪组织(P < 0.05);与对照组相比,过表达CTCF后,成脂标志基因的表达水平较对照组显著升高(P < 0.05),细胞内脂滴生成量增加;干扰CTCF后结果相反。转录组分析结果显示,两组间筛选出1 079个差异表达基因,这些差异表达基因富集到一些脂肪代谢相关通路,包括鞘脂信号通路、FoxO信号通路和AMPK信号通路等,筛选出CCND2、ITGA7、BRCA1、LAMA5和CCNE2等影响脂肪代谢的候选基因。本研究结果表明,CTCF能够促进绵羊前体脂肪细胞的分化,并揭示出影响CTCF脂肪代谢的相关通路及候选基因。
中图分类号:
乔利英, 徐常松, 张莉, 丁毅, 潘洋洋, 杨凯捷, 刘建华, 刘文忠. CTCF调控绵羊前体脂肪细胞分化的功能研究[J]. 畜牧兽医学报, 2025, 56(12): 6130-6144.
QIAO Liying, XU Changsong, ZHANG Li, DING Yi, PAN Yangyang, YANG Kaijie, LIU Jianhua, LIU Wenzhong. Study on Function of CTCF Regulating the Differentiation of Ovine Preadipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6130-6144.
表 1
基因mRNA的qPCR引物"
| 名称 Name | GenBank登录号 GenBank accession number | 序列(5′→3′) Sequence | 产物大小/bp Products length |
| CTCF正向引物CTCF forward primer | XM_027978089.3 | TGCTGAGCCAGACTTGGATG | 150 |
| CTCF反向引物CTCF reverse primer | TGTTTGGGCTGGTTGGTTCT | ||
| β-actin正向引物β-actin forward primer | NM_001009784.3 | TGATGATATTGCTGCGCTCG | 194 |
| β-actin正向引物β-actin reverse primer | GGGTCAGGATGCCTCTCTTG |
表 3
成脂标志基因mRNA的qPCR引物"
| 名称 Name | GenBank登录号 GenBank accession number | 序列(5′→3′) Sequence | 产物大小/bp Products length |
| PPARγ正向引物PPARγ forward primer | NM_001100921.1 | ATCTTGACGGGAAAGACGAC | 156 |
| PPARγ反向引物PPARγ reverse primer | AAACTGACACCCCTGGAAGAT | ||
| C/EBPα正向引物C/EBPα forward primer | NM_001308574.1 | TCCGTGGACAAGAACAGCAA | 137 |
| C/EBPα反向引物C/EBPα reverse primer | TCATTGTCACTGGTCAGCTCC | ||
| FABP4正向引物FABP4 forward primer | NM_001114667.1 | AAACTGGGATGGGAAATCAACC | 109 |
| FABP4反向引物FABP4 reverse primer | TGCTCTCTCGTAAACTCTGGTAGC | ||
| Adiponectin正向引物Adiponectin forward primer | NM_001308565.1 | ATCCCCGGGCTGTACTACTT | 129 |
| Adiponectin反向引物Adiponectin reverse primer | CTGGTCCACGTTCTGGTTCT |
表 4
过表达CTCF数据质量统计"
| 样品 Sample | 原始读数 Raw Reads | 原始碱基数/G Raw Bases | 高质量读数 Clean Reads | 高质量碱基数/G Clean Bases | GC碱基/% GC | Q20/% | Q30/% |
| NC1 | 47 491 428 | 7.12 | 45 464 734 | 6.82 | 49.89 | 99.15 | 96.14 |
| NC2 | 42 400 148 | 6.36 | 39 968 312 | 6.00 | 49.94 | 99.16 | 96.33 |
| NC3 | 40 446 960 | 6.07 | 37 627 358 | 5.64 | 51.64 | 99.09 | 96.05 |
| CTCF1 | 48 650 008 | 7.30 | 48 493 692 | 7.27 | 53.34 | 98.97 | 95.47 |
| CTCF2 | 47 789 778 | 7.17 | 47 701 964 | 7.16 | 53.17 | 99.09 | 95.95 |
| CTCF3 | 43 215 118 | 6.48 | 39 365 356 | 5.90 | 52.47 | 99.10 | 96.16 |
表 5
过表达CTCF影响的脂肪代谢相关通路"
| ID | 功能描述 Description | 上调基因数 Up_Gene | 下调基因数 Down_Gene |
| KEGG:oas04071 | 鞘脂信号通路Sphingolipid signaling pathway | 42 | 33 |
| KEGG:oas04140 | 动物中的自噬Autophagy - animal | 58 | 51 |
| KEGG:oas04068 | FoxO信号通路FoxO signaling pathway | 42 | 33 |
| KEGG:oas04152 | AMPK信号通路AMPK signaling pathway | 44 | 30 |
| KEGG:oas04920 | 脂肪细胞因子信号通路Adipocytokine signaling pathway | 31 | 13 |
| KEGG:oas04668 | TNF信号通路TNF signaling pathway | 42 | 24 |
| KEGG:oas04012 | ErbB信号通路ErbB signaling pathway | 29 | 20 |
| KEGG:oas04340 | Hedgehog信号通路Hedgehog signaling pathway | 20 | 15 |
| KEGG:oas04910 | 胰岛素信号通路Insulin signaling pathway | 47 | 35 |
| KEGG:oas04151 | PI3K/AKT信号通路PI3K-Akt signaling pathway | 104 | 73 |
表 6
过表达CTCF影响的脂肪代谢相关差异表达基因"
| 基因 Gene | 基因描述 Genes description | log2FoldChange | P adj |
| CCND2 | 细胞周期蛋白D2 Cyclin D2 | 1.292 942 3 | 3.41E-41 |
| ITGA7 | 整合素α Integrin alpha | 1.681 550 6 | 1.37E-27 |
| BRCA1 | 乳腺癌易感基因1 Breast cancer 1 | -1.112 138 1 | 1.71E-25 |
| THBS2 | 血栓反应蛋白2 Thrombospondin 2 | 1.228 085 9 | 9.33E-24 |
| LAMA5 | 层粘连蛋白亚基α5 Laminin subunit alpha 5 | 1.170 862 7 | 1.96E-22 |
| CCNE2 | 细胞周期蛋白E2 Cyclin E2 | -1.489 787 5 | 7.47E-20 |
| FLT1 | FMS相关酪氨酸激酶1 Fms-related tyrosine kinase 1 | 1.125 907 1 | 7.90E-13 |
| ITGA11 | 整合素α11 Integrin alpha 11 | 1.171 872 6 | 9.35E-11 |
| LAMB3 | 层粘连蛋白亚基β3 Laminin subunit beta 3 | 1.413 894 0 | 8.08E-09 |
| HRAS | 哈维鼠肉瘤病毒癌基因同源物Harvey rat sarcoma viral oncogene homolog | 1.046 932 3 | 9.84E-07 |
| RET | 原癌基因Ret proto-oncogeneret | 1.422 387 5 | 5.31E-06 |
| ARRB1 | β-抑制蛋白1 Arrestin beta 1 | 2.014 686 3 | 3.89E-05 |
| LAMC3 | 层粘连蛋白亚基γ3 Laminin subunit gamma 3 | 1.150 422 0 | 0.000 268 6 |
| FLT4 | FMS相关酪氨酸激酶4 Fms-related tyrosine kinase 4 | 3.567 906 7 | 0.002 841 4 |
| FGF2 | 成纤维细胞生长因子2 Fibroblast growth factor 2 | 1.009 390 2 | 0.003 289 3 |
| 1 |
KALDS P , LUO Q , SUN K , et al. Trends towards revealing the genetic architecture of sheep tail patterning: promising genes and investigatory pathways[J]. Anim Genet, 2021, 52 (6): 799- 812.
doi: 10.1111/age.13133 |
| 2 |
DENG J , XIE XL , WANG DF , et al. Paternal origins and migratory episodes of domestic sheep[J]. Curr Biol, 2020, 30 (20): 4085- 4095.
doi: 10.1016/j.cub.2020.07.077 |
| 3 | 赵有璋. 羊生产学[M]. 北京: 中国农业出版社, 2002: 98. |
| ZHAO Y Z . Sheep production[M]. Beijing: China Agriculture Press, 2002: 98. | |
| 4 | LEE J E , SCHMIDT H , LAI B , et al. Transcriptional and epigenomic regulation of adipogenesis[J]. Mol Cell Biol, 2019, 39 (11): e00601- e00618. |
| 5 |
BARQUISSAU V , GHANDOUR R A , AILHAUD G , et al. Control of adipogenesis by oxylipins, GPCRs and PPARs[J]. Biochimie, 2017, 136, 3- 11.
doi: 10.1016/j.biochi.2016.12.012 |
| 6 |
LI Y , JIN D , XIE W , et al. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively[J]. Curr Stem Cell Res Ther, 2018, 13 (3): 185- 192.
doi: 10.2174/1574888X12666171012141908 |
| 7 | YANG W , YANG C , LUO J , et al. Adiponectin promotes preadipocyte differentiation via the PPARγ pathway[J]. Mol Med Rep, 2018, 17 (1): 428- 435. |
| 8 |
ZHANG M , SHAO Y , GAO B , et al. Erchen decoction mitigates lipid metabolism disorder by the regulation of PPARγ and LPL gene in a high-fat diet c57b/6 mice model[J]. Evid based Complement Alternat Med, 2020, 2020, 9102475.
doi: 10.1155/2020/9102475 |
| 9 | KLENOVA E M , NICOLAS R H , PATERSON H F , et al. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms[J]. Mol Cell Biol, 1993, 13 (12): 7612- 7624. |
| 10 |
ARZATE-MEJÍA R G , RECILLAS-TARGA F , CORCES V G . Developing in 3D: the role of CTCF in cell differentiation[J]. Development, 2018, 145 (6): dev137729.
doi: 10.1242/dev.137729 |
| 11 |
KIM S , YU N K , KAANG B K . CTCF as a multifunctional protein in genome regulation and gene expression[J]. Exp Mol Med, 2015, 47 (6): e166.
doi: 10.1038/emm.2015.33 |
| 12 |
ONG C T , CORCES V G . CTCF: an architectural protein bridging genome topology and function[J]. Nat Rev Genet, 2014, 15 (4): 234- 246.
doi: 10.1038/nrg3663 |
| 13 |
DUBOIS-CHEVALIER J , OGER F , DEHONDT H , et al. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation[J]. Nucleic Acids Res, 2014, 42 (17): 10943- 10959.
doi: 10.1093/nar/gku780 |
| 14 |
CHEN Y , HE R , HAN Z , et al. Cooperation of ATF4 and CTCF promotes adipogenesis through transcriptional regulation[J]. Cell Biol Toxicol, 2022, 38 (5): 741- 763.
doi: 10.1007/s10565-021-09608-x |
| 15 |
TOWBIN H , STAEHELIN T , GORDON J . Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications[J]. Proc Natl Acad Sci USA, 1979, 76 (9): 4350- 4354.
doi: 10.1073/pnas.76.9.4350 |
| 16 | 李涛, 陈卫林, 卢岩, 等. 哈萨克羊不同部位脂肪特性的研究[J]. 中国油脂, 2018, 43 (7): 32-35, 40. |
| LI T , CHEN W L , LU Y , et al. Fat characteristics in different parts of Kazak sheep[J]. China Oils and Fats, 43 (7): 32-35, 40. | |
| 17 | 张越, 曹贵方. 绵羊尾脂沉积的研究进展[J]. 当代畜禽养殖业, 2022 (4): 16- 18. |
| ZHANG Y , CAO G F . Research progress on tail fat deposition in sheep[J]. Journal of Agricultural and Livestock Products Processing, 2022 (4): 16- 18. | |
| 18 | QIN H , HAN Z , ZHANG W , et al. CTCF modulates adipocyte lipolysis via directly regulating the expression of Beclin 1 with the cooperation of PPARγ[J]. Cellular Signal, 2024 (113): 110968. |
| 19 | CHEN Y , HE R , HAN Z , et al. Cooperation of ATF4 and CTCF promotes adipogenesis through transcriptional regulation[J]. Cell Biol Toxicol, 2021, 38 (5): 1- 23. |
| 20 |
RAICHUR S , WANG S T , CHAN P W , et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance[J]. Cell Metab, 2014, 20 (5): 919.
doi: 10.1016/j.cmet.2014.10.007 |
| 21 |
YANG G , BADEANLOU L , BIELAWSKI J , et al. Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome[J]. Am J Physiol endocrinol Metab, 2009, 297 (1): E211- E224.
doi: 10.1152/ajpendo.91014.2008 |
| 22 |
QIAO L , ZHAO B , LIU X , et al. TPT1 promotes the adipogenic differentiation of stromal vascular fractions via the PI3K/AKT pathway and FOXO1 in sheep[J]. J Appl Anim Res, 2023, 51 (1): 388- 396.
doi: 10.1080/09712119.2023.2203745 |
| 23 |
SONG Y , ZHANG J , JIANG C , et al. FOXO1 regulates the formation of bovine fat by targeting CD36 and STEAP4[J]. Int J Biol Macromol, 2023, 248, 126025.
doi: 10.1016/j.ijbiomac.2023.126025 |
| 24 |
ARMONI M , HAREL C , KARNI S , et al. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity[J]. J Biol Chem, 2006, 281 (29): 19881- 19891.
doi: 10.1074/jbc.M600320200 |
| 25 |
LI Y , XU S , MIHAYLOVA M M , et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice[J]. Cell Metab, 2011, 13 (4): 376- 388.
doi: 10.1016/j.cmet.2011.03.009 |
| 26 | 袁弯弯. Asprosin通过TLR4-cAMP-AMPK-ULK1通路促进脂肪细胞自噬抑制白色脂肪褐色化参与肥胖的发生[D]. 南昌: 南昌大学, 2022. |
| YUAN W W. Asprosin inhibits browning by promoting the autophagy ofadipocyte via TLR4-cAMP-AMPK-ULK1 pathway in white adiposetissue[D]. Nanchang: Nanchang University, 2022. (in Chinese) | |
| 27 |
SUN T , HAO Z , MENG F , et al. The effects of sika deer antler peptides on 3T3-L1 preadipocytes and C57BL/6 mice via activating AMPK signaling and gut microbiota[J]. Molecules, 2025, 30 (5): 1173.
doi: 10.3390/molecules30051173 |
| 28 |
SICINSKI P , DONAHER JL , GENG Y , et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis[J]. Nature, 1996, 384 (6608): 470- 474.
doi: 10.1038/384470a0 |
| 29 |
GENG Y , YU Q , SICINSKA E , et al. Cyclin E ablation in the mouse[J]. Cell, 2003, 114 (4): 431- 443.
doi: 10.1016/S0092-8674(03)00645-7 |
| 30 |
YAO C C , ZIOBER B L , SQUILLACE R M , et al. Alpha7 integrin mediates cell adhesion and migration on specific laminin isoforms[J]. J Biol Chem, 1996, 271 (41): 25598- 25603.
doi: 10.1074/jbc.271.41.25598 |
| 31 |
AUMAILLEY M , BRUCKNER-TUDERMAN L , CARTER W , et al. A simplified laminin nomenclature[J]. Matrix Biol, 2005, 24 (5): 326- 332.
doi: 10.1016/j.matbio.2005.05.006 |
| 32 |
CHEN H J , YAN X Y , SUN A , et al. High-fat-diet-induced extracellular matrix deposition regulates integrin - FAK signals in adipose tissue to promote obesity[J]. Mol Nutr Food Res, 2022, 66 (7): e2101088.
doi: 10.1002/mnfr.202101088 |
| 33 |
JIAO H , KULYTÉ A , NÄSLUND E , et al. Whole-exome sequencing suggests LAMB3 as a susceptibility gene for morbid obesity[J]. Diabetes, 2016, 65 (10): 2980- 2989.
doi: 10.2337/db16-0522 |
| 34 | 王思元, 刘迪, 张伟红, 等. 基于转录组测序分析牛不同脂肪组织的脂肪沉积差异研究[J]. 西北农业学报, 2021, 30 (12): 1755- 1766. |
| WANG S Y , LIU D , ZHANG W H , et al. Analysis of the difference of fat deposition in different adipose tissues of cattle based on transcriptome sequencing[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30 (12): 1755- 1766. | |
| 35 |
ZHAO R , KAAKATI R , LIU X , et al. CRISPR/Cas9-mediated BRCA1 knockdown adipose stem cells promote breast cancer progression[J]. Plast Reconstr Surg, 2019, 143 (3): 747- 756.
doi: 10.1097/PRS.0000000000005316 |
| 36 |
ORTEGA F J , MORENO-NAVARRETE J M , MAYAS D , et al. Breast cancer 1 (BrCa1) may be behind decreased lipogenesis in adipose tissue from obese subjects[J]. PLoS One, 2012, 7 (5): e33233.
doi: 10.1371/journal.pone.0033233 |
| 37 |
WENG M , ZHU X . Thrombospondin-2 induces M2 macrophage polarization through fatty acid metabolism to drive lung adenocarcinoma proliferation[J]. Anticancer Drugs, 2025, 36 (6): 459- 467.
doi: 10.1097/CAD.0000000000001713 |
| 38 | 欧阳翱镕. 肿瘤相关脂肪细胞促进前列腺癌骨转移及其分子机制的初步研究[D]. 广州: 南方医科大学, 2024. |
| OUYANG A R. A preliminary study of tumor-associated adipocytespromoting bone metastasis of prostate cancer and itsmolecular mechanism[D]. Guangzhou: Southern Medical University, 2024. (in Chinese) | |
| 39 |
HAO J , LIU Z , JU W , et al. Role and mechanism of FLT4 in high-fat diet-induced obesity in mice[J]. Biocheml Biophys Res Commun, 2023, 675, 61- 70.
doi: 10.1016/j.bbrc.2023.06.025 |
| [1] | 刘丹妮, 种丽伟, 宫平, 魏佩玲, 柴婷, 耿天颖, 吴伟伟, 郑文新. 山羊感染绵羊肺炎支原体的病理学分析[J]. 畜牧兽医学报, 2026, 57(1): 423-431. |
| [2] | 胡金玲, 钟奇祺, 黄程, 雷明刚. AKR1B1介导AMPK/mTOR/S6通路调控猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2025, 56(8): 3722-3733. |
| [3] | 范婧, 李伟, 朱妍, 勿都巴拉, 史佳慧, 胡斯乐, 吴江鸿. 湖羊不同发育期瘤胃形态学变化及基因表达差异研究[J]. 畜牧兽医学报, 2025, 56(8): 3773-3786. |
| [4] | 魏康康, 马贵, 李文迪, 田雨, 张令锴, 朱继红, 胡亚美. 单细胞测序技术在绵羊卵巢生长发育过程中的研究进展[J]. 畜牧兽医学报, 2025, 56(7): 3080-3087. |
| [5] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
| [6] | 赵峂, 王亚慧, 吴天弋, 高晨, 高霄霄, 张路培, 高会江, 李俊雅. 过表达和干扰PRKD1基因对牛成骨细胞分化的影响[J]. 畜牧兽医学报, 2025, 56(7): 3188-3198. |
| [7] | 乔利英, 王万年, 张莉, 庞志旭, 张思颖, 李一凡, 刘文忠. 基于基因组标记对绵羊品种分类的机器学习方法研究[J]. 畜牧兽医学报, 2025, 56(5): 2157-2167. |
| [8] | 郭妍岩, 张羽欣, 陆瑞, 李玉鹏, 陈龙宾, 张金龙, 姚大为, 阮维斌, 张效生, 郭晓飞. 哺乳动物卵泡发育阶段颗粒细胞增殖与分化的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1484-1493. |
| [9] | 龚宇轩, 黑伟, 鲍武, 陈佳仪, 李萌, 郭晓红, 李步高. TMEM182基因调控猪骨骼肌卫星细胞成肌分化的研究[J]. 畜牧兽医学报, 2025, 56(4): 1676-1688. |
| [10] | 马应天, 姜璐瑶, 李增开, 秦剑平, 赵建华, 贺玉芳, 宋宇轩, 张磊. 矢车菊素-3-芸香糖苷对奶绵羊精液冷冻保存效果的影响[J]. 畜牧兽医学报, 2025, 56(4): 1768-1778. |
| [11] | 李艳娥, 梁友萍, 樊洁, 吴芳燕, 尧香悦, 李毛却乎, 次仁仓决, 郝桂英, 古小彬. 绵羊痒螨钙网蛋白对兔外周血单个核细胞Th1/Th2和Th17/Treg免疫平衡的影响[J]. 畜牧兽医学报, 2025, 56(4): 1910-1918. |
| [12] | 杨宇婷, 陈国梁, 常巧宁, 鲍武, 刘靖超, 姬梦婷, 荣晓音, 郭晓红, 杨阳, 李步高. miR-375-3p靶向Fam229a调控猪前体脂肪细胞分化[J]. 畜牧兽医学报, 2025, 56(3): 1120-1133. |
| [13] | 闫炎, 刘晏辰, 王仲发, 李旻娟, 何玉楠, 关伟军, 姜运良. 洛岛红鸡卵黄囊源性间充质干细胞的分离培养及其分化潜能研究[J]. 畜牧兽医学报, 2025, 56(3): 1252-1263. |
| [14] | 杨杨, 李良远, 万鹏程, 卢守亮, 刘长彬, 杨华, 王立民, 代蓉, 周平. 绵羊季节性发情性状核心基因和关键lncRNA的筛选与分析[J]. 畜牧兽医学报, 2025, 56(3): 1264-1277. |
| [15] | 余昕雅, 何海健, 王磊, 倪语晨, 杜静, 周莹珊, 董婉玉, 王晓杜. LncRNA 18850对猪流行性腹泻病毒复制的影响[J]. 畜牧兽医学报, 2025, 56(3): 1366-1375. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||