

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4988-4997.doi: 10.11843/j.issn.0366-6964.2025.10.019
李云鹏(
), 韩小曼, 俞咏麒, 蔡佳炜, 赵博昊, 陈阳, 吴信生*(
)
收稿日期:2025-03-28
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
吴信生
E-mail:lion2540931239@163.com;xswu@yzu.edu.cn
作者简介:李云鹏(2001-),男,江苏南京人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail: lion2540931239@163.com
基金资助:
LI Yunpeng(
), HAN Xiaoman, YU Yongqi, CAI Jiawei, ZHAO Bohao, CHEN Yang, WU Xinsheng*(
)
Received:2025-03-28
Online:2025-10-23
Published:2025-11-01
Contact:
WU Xinsheng
E-mail:lion2540931239@163.com;xswu@yzu.edu.cn
摘要:
旨在对基质金属蛋白酶组织抑制剂(tissue inhibitor of matrix metalloproteinases,TIMPs)家族成员中的TIMP1进行克隆和分析,通过过表达与敲减TIMP1,探究TIMP1对毛囊毛乳头细胞(dermal papilla cells,DPCs)毛囊生长相关基因的调控作用。本研究通过分子克隆TIMP1编码区(coding sequence,CDS)序列,并对其进行生物信息学功能分析。之后,构建过表达载体pcDNA 3.1-TIMP1并设计合成siRNA,在DPCs中过表达和敲低TIMP1,检测毛囊生长发育相关基因的表达,并通过EdU和CCK-8检测DPCs的增殖水平。结果显示,兔TIMP1基因的CDS区全长624 bp,共编码207个氨基酸。生物信息学分析表明TIMP1蛋白存在信号肽,不包含跨膜结构域,在不同哺乳动物中存在同源性。在DPCs中过表达TIMP1能够极显著上调BMP2(bone morphogenetic protein 2)、SFRP2(secreted frizzled-related protein 2)、TGFβ1(tranforming growth factorβ1)基因的mRNA表达水平(P < 0.01),极显著下调WNT2(wnt family member 2)基因的mRNA表达水平(P < 0.01),敲减TIMP1能显著下调BMP2、SFRP2基因的mRNA的表达(P < 0.05),极显著下调TGFβ1基因的mRNA表达(P < 0.01)。此外,EdU和CCK-8结果显示过表达TIMP1能够抑制DPCs的增殖,敲低TIMP1能够促进DPCs的增殖。本研究成功克隆家兔TIMP1基因CDS序列,并对其生物信息学功能进行预测,初步分析TIMP1对毛囊生长相关基因的调控作用,验证了其抑制DPCs增殖的作用,为阐明家兔毛囊生长发育的理论研究提供参考。
中图分类号:
李云鹏, 韩小曼, 俞咏麒, 蔡佳炜, 赵博昊, 陈阳, 吴信生. 家兔TIMP1基因的克隆表达及其对毛乳头细胞增殖的影响[J]. 畜牧兽医学报, 2025, 56(10): 4988-4997.
LI Yunpeng, HAN Xiaoman, YU Yongqi, CAI Jiawei, ZHAO Bohao, CHEN Yang, WU Xinsheng. Cloning and Expression of TIMP1 in Oryctolagus Cunicilus and Its Impact on the Proliferation of Dermal Papilla Cells[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4988-4997.
表 1
主要试剂"
| 试剂名称Reagent name | 公司名称Company name | 所在地Location |
| 间充质干细胞培养基Mesenchymal stem cell medium | SciencellⓇ公司 | 美国 |
| TaKaRa胶回收试剂盒 | TaKaRa公司 | 日本 |
| MiniBEST Agarose Gel DNA Extraction Kit Ver 4.0 | ||
| SteadyPure通用型RNA提取试剂盒 | 艾科瑞生物工程有限公司 | 中国长沙 |
| SteadyPure Universal RNA Extraction Kit | ||
| SYBR Green Pro Taq HS预混型qPCR试剂盒Ⅱ | 艾科瑞生物工程有限公司 | 中国长沙 |
| SYBR Green Premix Pro Taq HS qPCR Kit Ⅱ | ||
| 琼脂糖Agarose | BioFroxx公司 | 德国 |
| BeyoClickTMEdU-555细胞增殖检测试剂盒 | 碧云天生物技术有限公司 | 中国上海 |
| BeyoClickTM EdU Cell Proliferation Kit with AF555 | ||
| 免疫染色固定液P0098 Immunol Staining Fix Solution | 碧云天生物技术有限公司 | 中国上海 |
| 免疫染色封闭液P0102 Immunol Staining Blocking Buffer | 碧云天生物技术有限公司 | 中国上海 |
| 免疫染色强力通透液 | 碧云天生物技术有限公司 | 中国上海 |
| P20097 Enhanced Immunostaining Permeabilization Buffer | ||
| CCK-8 CCK-8 Cell Counting Kit | 诺唯赞生物科技股份有限公司 | 中国南京 |
| LipofectamineTM2000转染试剂 | Invitrogen公司 | 美国 |
| LipofectamineTM 2000 Transfection Reagent | ||
| 无内毒素大提质粒盒EndoFree Maxi Plasmid Kit | 天根生化科技有限公司 | 中国北京 |
| 干扰RNA si-RNA | 苏州吉玛基因股份有限公司 | 中国苏州 |
表 3
荧光定量引物序列"
| 基因名称Gene | 引物序列(5′→3′) Sequence | 退火温度/℃ Tm | 产物长度/bp Products size |
| TIMP1 | F: CTGCGGGTACTCCCACAAAT | 60.40 | 157 |
| R: AGCGTAGGTCTTGGTGAAGC | |||
| GAPDH | F: TGGAATCCACTGGCGTCTTC | 57.45 | 241 |
| R: GTCATGAGCCCCTCCACAAT | |||
| SFRP2 | F: GGCCACGAGACCATGAAAGA | 57.45 | 239 |
| R: CGATCGCACTCGAGCATGT | |||
| BMP2 | F: TCGTTGGAAGAACTGCCAGAA | 55.40 | 159 |
| R: ATGATGGAAACCGCTGTCGT | |||
| FGF2 | F: GGCTGTACTGCAAAAACGGG | 57.45 | 161 |
| R: AGCAAGGTAACGGTTTGCAC | |||
| TGFβ1 | F: TCTGGAACGGGCTCAACATC | 57.45 | 174 |
| R: CAGAAGTTGGCGTGGTAGCC | |||
| WNT2 | F: CTCTCGGTGGAATCTGGCTG | 55.40 | 224 |
| R: ATACTGGCACTCTGCTGTCC |
| 1 | 吴望, 赵一平, 沈芯宇, 等. 毛囊干细胞及其环境调控[J]. 皮肤科学通报, 2024, 41 (5): 489- 496. |
| WU W , ZHAP Y P , SHEN X Y , et al. Hair follicle stem cells and their environmental regulation[J]. Dermatology Bulletin, 2024, 41 (5): 489- 496. | |
| 2 | LIN X Y , ZHU L , HE J . Morphogenesis, growth cycle and molecular regulation of hair follicles[J]. Front Cell Dev Biol, 2022, 12, 899095. |
| 3 |
LEE J H , CHOI S . Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration[J]. Exp Mol Med, 2024, 56 (1): 110- 117.
doi: 10.1038/s12276-023-01151-5 |
| 4 |
SUN P P , WANG Z , LI S X , et al. Autophagy induces hair follicle stem cell activation and hair follicle regeneration by regulating glycolysis[J]. Cell Biosci, 2024, 14 (1): 6.
doi: 10.1186/s13578-023-01177-2 |
| 5 |
曹馨予, 蔡佳炜, 鲍志远, 等. ATG14调控家兔毛囊毛乳头细胞自噬进程的功能探究[J]. 畜牧兽医学报, 2024, 55 (8): 3472- 3481.
doi: 10.11843/j.issn.0366-6964.2024.08.020 |
|
CAO X Y , CAI J W , BAO Z Y , et al. The function analysis of ATG14 regulates the autophagy process in rabbit hair follicle dermal papilla cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (8): 3472- 3481.
doi: 10.11843/j.issn.0366-6964.2024.08.020 |
|
| 6 | 谭秀琼, 崔旭, 冉艾, 等. 兔产品市场现状与前景分析[J]. 中国养兔杂志, 2024 (4): 39- 40. |
| TAN X Q , CUI X , RAN A , et al. Current market status and future prospects analysis of rabbit products[J]. China Rabbit Farming Journal, 2024 (4): 39- 40. | |
| 7 |
ALMUNTASHIRI S , ALHUMAID A , ZHU Y , et al. TIMP-1 and its potential diagnostic and prognostic value in pulmonary diseases[J]. Chin Med J Pulm Crit Care Med, 2023, 1 (2): 67- 76.
doi: 10.1016/j.pccm.2023.05.002 |
| 8 |
PAKPAHAN N D , KYAWSOEWIN M , MANOKAWINCHOKE J , et al. Intermittent compressive force regulates matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human periodontal ligament cells[J]. Arch Oral Biol, 2024, 165, 106011.
doi: 10.1016/j.archoralbio.2024.106011 |
| 9 |
HANDARI S D , RAHMAN M S , SARGOWO D , et al. Colchicine modulates TIMP1, MMP1, and pMAP4 expression to enhance extracellular matrix degradation in 3T3 fibroblast-mediated myocardial infarction[J]. J Pharm Pharmacogn Res, 2024, 12 (3): 586- 593.
doi: 10.56499/jppres23.1937_12.3.586 |
| 10 |
HOU C , MIAO Y , WANG X , et al. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle[J]. Exp Ther Med, 2016, 12 (1): 231- 237.
doi: 10.3892/etm.2016.3319 |
| 11 | LI W J , CHEN W , FU X B , et al. Expression of matrix metalloproteinases and their inhibitors in fetal skin and their biological significance[J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2006 (5): 303- 306. |
| 12 |
ZHOU L , WANG H , JING J , et al. Regulation of hair follicle development by exosomes derived from dermal papilla cells[J]. Biochem Biophys Res Commun, 2018, 500 (2): 325- 332.
doi: 10.1016/j.bbrc.2018.04.067 |
| 13 |
XIONG Y , LIU Y , SONG Z Q , et al. Identification of Wnt/β-catenin signaling pathway in dermal papilla cells of human scalp hair follicles: TCF4 regulates the proliferation and secretory activity of dermal papilla cell[J]. J Dermatol, 2014, 41 (1): 84- 91.
doi: 10.1111/1346-8138.12313 |
| 14 | 高媛. 人毛囊真皮细胞外基质对鞘杯细胞生物学特性的影响[D]. 广州: 南方医科大学, 2022. |
| GAO Y. Effects of extracellular matrix from dermal substructure of human hair follicle on biological characteristics of dermal cup cell[D]. Guangzhou: Southern Medical University, 2022. (in Chinese) | |
| 15 |
SINGH B , SCHOEB T R , BAJPAI P , et al. Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function[J]. Cell Death Dis, 2018, 9 (7): 735.
doi: 10.1038/s41419-018-0765-9 |
| 16 | LI J , ZHAO B , ZHANG X , et al. Establishment and functional characterization of immortalized rabbit dermal papilla cell lines[J]. Anim Biotechnol, 2023, 34 (8): 4050- 4059. |
| 17 | WILKINS M R , GASTEIGER E , BAIROCH A , et al. Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol, 1999, 112, 531- 552. |
| 18 |
PETERSEN T N , BRUNAK S , VON HEIJNE G , et al. SignalP 4.0: discriminating signal peptides from transmembrane regions[J]. Nat Methods, 2011, 8 (10): 785- 786.
doi: 10.1038/nmeth.1701 |
| 19 |
MöLLER S , CRONING M D R , APWEILER R . Evaluation of methods for the prediction of membrane spanning regions[J]. Bioinformatics, 2001, 17 (7): 646- 653.
doi: 10.1093/bioinformatics/17.7.646 |
| 20 |
DELEAGE G . ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments[J]. Bioinformatics, 2017, 33 (24): 3991- 3992.
doi: 10.1093/bioinformatics/btx521 |
| 21 |
WATERHOUSE A , BERTONI M , BIENERT S , et al. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic Acids Res, 2018, 46 (W1): W296- W303.
doi: 10.1093/nar/gky427 |
| 22 |
KUMAR S , STECHER G , LI M , et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms[J]. Mol Biol Evol, 2018, 35 (6): 1547- 1549.
doi: 10.1093/molbev/msy096 |
| 23 |
HORTON P , PARK K J , OBAYASHI T , et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Res, 2007, 35, W585- W587.
doi: 10.1093/nar/gkm259 |
| 24 |
LAO G , REN M , WANG X , et al. Human tissue inhibitor of metalloproteinases-1 improved wound healing in diabetes through its anti-apoptotic effect[J]. Exp Dermatol, 2019, 28 (5): 528- 535.
doi: 10.1111/exd.13442 |
| 25 | ALAEE M , SHAHSAVARI G , YAZDI M , et al. 3, 4 Dihydroxyphenylethanol may inhibit metastasis in HepG2 cells by influencing the expression of miR-21 and genes associated with metastasis[J]. Rep Biochem Mol Biol, 2024, 13 (2): 254- 262. |
| 26 |
DE ALMEIDA H , ZIGRINO P , MVLLER F , et al. Human scalp dermal papilla and fibrous sheath cells have a different expression profile of matrix metalloproteinases in vitro when compared to scalp dermal fibroblasts[J]. Arch Dermatol Res, 2005, 297 (3): 121- 126.
doi: 10.1007/s00403-005-0587-3 |
| 27 |
KWACK M H , HAMIDA O B , KIM M K , et al. Establishment and characterization of matched immortalized human frontal and occipital scalp dermal papilla cell lines from androgenetic alopecia[J]. Sci Rep, 2023, 13 (1): 21421.
doi: 10.1038/s41598-023-48942-4 |
| 28 |
ZHAO J , QUAN Z , WANG H , et al. Novel strategy for hair regeneration: Exosomes and collagenous sequences of human a1 (ⅩⅦ) chain enhance hair follicle stem cell activity by regulating the hsa-novel-238a-CASP9 axis[J]. Exp Cell Res, 2025, 446 (2): 114483.
doi: 10.1016/j.yexcr.2025.114483 |
| 29 |
TIAN Y , YANG X , DU J , et al. Differential methylation and transcriptome Integration analysis identified differential methylation annotation genes and functional research related to hair follicle development in Sheep[J]. Front Genet, 2021, 12, 735827.
doi: 10.3389/fgene.2021.735827 |
| 30 |
LIU J Y , LIU B , MU Q , et al. Melatonin promotes the proliferation of dermal papilla cells in cashmere goats via activation of chi-let-7d-5p/WNT2 axis[J]. Genomics, 2024, 116 (6): 110961.
doi: 10.1016/j.ygeno.2024.110961 |
| 31 |
ZHOU T , CHEN Y , ZHAO B , et al. Characterization and functional analysis of SIAH1 during skin and hair follicle development in the angora rabbit (Oryctolagus cuniculus)[J]. Hereditas, 2020, 157 (1): 10.
doi: 10.1186/s41065-020-00126-0 |
| 32 |
WANG F , ZHANG X , DAI Y , et al. The frzb gene regulates hair follicle development in rabbits via the wnt/b-catenin signalling pathway[J]. World Rabbit Sci, 2023, 31, 171- 178.
doi: 10.4995/wrs.2023.18171 |
| 33 |
KIM B K , YOON S K . Expression of Sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation[J]. Ann Dermatol, 2014, 26 (1): 79- 87.
doi: 10.5021/ad.2014.26.1.79 |
| 34 |
ZHAO B H , CHEN Y , YANG N , et al. miR-218-5p regulates skin and hair follicle development through Wnt/β-catenin signaling pathway by targeting SFRP2[J]. J Cell Physiol, 2019, 234, 20329- 20341.
doi: 10.1002/jcp.28633 |
| 35 |
SU R , ZHANG W G , SHARMA R , et al. Characterization of BMP2 gene expression in embryonic and adult inner mongolia cashmere goat (Capra hircus) hair follicles[J]. Can J Anim Sci, 2009, 89 (4): 457- 462.
doi: 10.4141/CJAS08130 |
| 36 |
CAI B J , ZHENG Y P , YAN J D , et al. BMP2-mediated PTEN enhancement promotes differentiation of hair follicle stem cells by inducing autophagy[J]. Exp Cell Res, 2019, 385 (2): 111647.
doi: 10.1016/j.yexcr.2019.111647 |
| 37 |
CHALMERS F E , DUSOLD J E , SHAIK J A , et al. Targeted deletion of TGFβ1 in basal keratinocytes causes profound defects in stratified squamous epithelia and aberrant melanocyte migration[J]. Dev Biol, 2022, 485, 9- 23.
doi: 10.1016/j.ydbio.2022.02.009 |
| 38 |
WANG K W , LIN B L , BREMS J J , et al. Hepatic apoptosis can modulate liver fibrosis through TIMP1 pathway[J]. Apoptosis, 2013, 18 (5): 566- 577.
doi: 10.1007/s10495-013-0827-5 |
| 39 | ZHOU W Y , KONG F G , ZHOU J H , et al. Knockdown of tissue inhibitor of metalloproteinase 1 suppresses cell apoptosis in cerebral infarction rat model[J]. Int J Clin Exp Pathol, 2016, 9 (4): 4377- 4384. |
| 40 |
XI Y , HUANG H , ZHAO Z , et al. Tissue inhibitor of metalloproteinase 1 suppresses growth and differentiation of osteoblasts and differentiation of osteoclasts by targeting the AKT pathway[J]. Exp Cell Res, 2020, 394 (1): 112189.
doi: 10.1016/j.yexcr.2020.112189 |
| [1] | 常铄, 孙秀柱, 任战军, 王淑辉. 家兔基因组学研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3578-3590. |
| [2] | 韩小曼, 孙少宁, 杨洁, 沈宁, 鲍志远, 蔡佳炜, 赵博昊, 陈阳, 吴信生. 家兔MSX2基因的克隆表达及生物信息学分析[J]. 畜牧兽医学报, 2025, 56(6): 2724-2732. |
| [3] | 孔辰, 田云, 高红瑞, 蔡蓓. 3D细胞培养技术及其在毛囊发育研究中的应用[J]. 畜牧兽医学报, 2025, 56(1): 15-25. |
| [4] | 曹馨予, 蔡佳炜, 鲍志远, 姚漱玉, 李云鹏, 陈阳, 吴信生, 赵博昊. ATG14调控家兔毛囊毛乳头细胞自噬进程的功能探究[J]. 畜牧兽医学报, 2024, 55(8): 3472-3481. |
| [5] | 张莉蕊, 张北育, 李玉娟, 刘永需, 赵红, 李福昌, 刘磊. 饲粮蛋氨酸水平对安哥拉兔产毛性能和毛囊发育的影响[J]. 畜牧兽医学报, 2024, 55(7): 3024-3031. |
| [6] | 王小松, 李冬, 李淑, 陈佳力, 刘永需, 赵红, 李福昌, 刘磊. 不同饲粮铜水平对安哥拉兔生产性能及毛囊发育的影响[J]. 畜牧兽医学报, 2024, 55(7): 3032-3039. |
| [7] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
| [8] | 康佳, 段香茹, 尹雪姣, 杨若晨, 李太春, 单新雨, 陈美静, 张英杰, 刘月琴. 半胱氨酸、蛋氨酸对体外培养绒山羊次级毛囊生长及毛乳头细胞增殖的影响[J]. 畜牧兽医学报, 2024, 55(2): 515-527. |
| [9] | 陈春, 康昭风, 魏岳, 黎观红, 武艳平, 谢金防. Wnt3a基因多态性与崇仁麻鸡皮肤毛囊性状相关性研究[J]. 畜牧兽医学报, 2023, 54(7): 2810-2823. |
| [10] | 许甜甜, 张彤彤, 王蒙, 王昕. 转录因子Foxq1通过WNT/β-catenin信号通路影响绒山羊毛囊干细胞增殖的研究[J]. 畜牧兽医学报, 2023, 54(6): 2653-2661. |
| [11] | 李玉娟, 张原铭, 张北育, 李福昌, 刘磊. 饲粮赖氨酸水平对安哥拉兔产毛性能及毛囊发育的影响[J]. 畜牧兽医学报, 2023, 54(5): 2013-2019. |
| [12] | 袁生, 李安琪, 吕文珂, 羊露露, 周峰, 黄良宗, 白挨泉, 温峰, 黄淑坚, 郭锦玥. 一株猪伪狂犬病病毒的主要毒力相关基因的变异分析及其对家兔的致病性[J]. 畜牧兽医学报, 2023, 54(5): 2195-2199. |
| [13] | 王佳宁, 张自强, 孔德婧, 冯彩彩, 张飞可, 刘玉梅. 家兔肺炎克雷伯菌的分离鉴定[J]. 畜牧兽医学报, 2023, 54(12): 5198-5206. |
| [14] | 张希宇, 翟频, 王璠, 戴莹莹, 赵博昊, 陈阳, 吴信生. KRT16在长毛兔毛囊发育过程中的表达规律及功能探究[J]. 畜牧兽医学报, 2023, 54(1): 157-167. |
| [15] | 房映栋, 程翠翠, 陆佳, 程玉娇, 张睿, 李沛轩, 王雯慧. 分泌IgA和IgG的浆细胞在家兔鼻腔中的分布特征[J]. 畜牧兽医学报, 2022, 53(8): 2751-2762. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||