

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4839-4850.doi: 10.11843/j.issn.0366-6964.2025.10.007
俞良诚1,2(
), 孙博1, 任曼2, 闫雪3, 刘宽博1, 宋佳1, 岳隆耀2, 王薇薇1,*(
), 赵晨1,*(
)
收稿日期:2024-11-07
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
王薇薇,赵晨
E-mail:yulc369@163.com;www@ags.ac.cn;zc@ags.ac.cn
作者简介:俞良诚(1999-), 男, 安徽宣城人, 硕士生, 主要从事粮油危害物生物降解研究, E-mail: yulc369@163.com
基金资助:
YU Liangcheng1,2(
), SUN Bo1, REN Man2, YAN Xue3, LIU Kuanbo1, SONG Jia1, YUE Longyao2, WANG Weiwei1,*(
), ZHAO Chen1,*(
)
Received:2024-11-07
Online:2025-10-23
Published:2025-11-01
Contact:
WANG Weiwei, ZHAO Chen
E-mail:yulc369@163.com;www@ags.ac.cn;zc@ags.ac.cn
摘要:
玉米赤霉烯酮(ZEN)及其衍生物是全球危害最严重的真菌毒素之一, 严重威胁粮食安全和人类健康。ZEN的生物降解技术开发一直是研究的热点。其中酶降解法因其特异性和有效性受到了广泛关注, ZEN降解酶主要包括漆酶、锰过氧化物酶和内酯水解酶。相较于前两类酶, 内酯水解酶因其高活性、降解机制清晰且降解产物无毒等优点, 使其具有ZEN脱毒酶制剂开发潜力。但天然酶在工业生产条件下的稳定性较差, 难以满足产品制备和实际应用的要求。通过理性或半理性设计等优化手段提升天然酶的活性和稳定性是目前的热点研究方向。本文综述了微生物源ZEN内酯水解酶的基因挖掘、特性表征、分子改造手段及其应用, 旨在阐明生物脱毒法在工业生产和畜牧业应用中的优势与挑战, 为开发高活性、高稳定性ZEN脱毒酶制剂提供新思路。
中图分类号:
俞良诚, 孙博, 任曼, 闫雪, 刘宽博, 宋佳, 岳隆耀, 王薇薇, 赵晨. 玉米赤霉烯酮内酯水解酶的研究及其在畜禽日粮中的应用[J]. 畜牧兽医学报, 2025, 56(10): 4839-4850.
YU Liangcheng, SUN Bo, REN Man, YAN Xue, LIU Kuanbo, SONG Jia, YUE Longyao, WANG Weiwei, ZHAO Chen. The Research on Zearalenone Lactonase and Its Application in Livestock and Poultry Diets[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4839-4850.
表 1
现有报道的ZEN内酯水解酶"
| 名称(PDB代码) Name(PDB code) | 来源生物Source organism | 底物Substrate | 最适pH/温度(℃) Optimal pH/ temperature(℃) | 比活/(U·mg-1) Specific activities | 参考文献References |
| ZHD101 (BAC02717) | C. rosea | ZEN、α/β-ZOL、α/β-ZAL、ZAN | 10.5/37~45 | NR | [ |
| ZenH (WP_269305865.1) | Aeromicrobium sp. HA | ZEN | 7.0/55 | 7.05 | [ |
| ZENM (RYP08044.1) | Monosporascus sp. GIB2 | ZEN、α-ZOL、α-ZAL | 9.0/60 | 333 | [ |
| ZenC (XM_958243.3) | Neurospora crassa | ZEN | 8.0/45 | 530.4 | [ |
| ZHD518 (XM_013418296) | NR | ZEN、α/β-ZOL、α/β-ZAL | 8.0/40 | 207 | [ |
| ZHD607 (KIW70607) | Phialophora americana | ZEN | 8.0/35 | 4 940±28.06 | [ |
| ZHD11D (XM_018146622) | Phialophora attinorum | ZEN | 8.0/35 | 304.7 | [ |
| ZHD11A (NR) | P. macrospora | ZEN | 8.0/40 | 220 | [ |
| ZHD-P (KF515221) | Trichoderma aggressivum | ZEN | 7.5~9.0/45 | 191 | [ |
| ZHRnZ (GAP90066.2) | R. necatrix | ZEN、α/β-ZOL、α-ZAL | 9.0/45 | NR | [ |
| ZENY (CP137687) | Bacillus subtilis YT-4 | ZEN | 8.0/37 | 1 060±0.06 | [ |
| ZenR (OR497749) | Rhodococcus erythropolis HQ | ZEN | 8.0~9.0/55 | 20.04 | [ |
| ZENG (ALI16790.1) | Gliocladium roseum | ZEN、α-ZOL、α-ZAL | 7.0/38 | 315 | [ |
| CbZHD (XP_016613277.1) | Cladophialophora bantiana | ZEN | 8.0/35 | 219 | [ |
| 1 |
BENNETT J W , KLICH M . Mycotoxins[J]. Clin Microbiol Rev, 2003, 16 (3): 497- 516.
doi: 10.1128/CMR.16.3.497-516.2003 |
| 2 | STOB M , BALDWIN R S , TUITE J , et al. Isolation of an anabolic, uterotrophic compound from corn infected with Gibberella zeae[J]. Nature, 1962, 196, 1318. |
| 3 |
SUN H Y , HE Z Q , XIONG D W , et al. Mechanisms by which microbial enzymes degrade four mycotoxins and application in animal production: A review[J]. Anim Nutr, 2023, 15, 256- 274.
doi: 10.1016/j.aninu.2023.09.003 |
| 4 | LOI M , FANELLI F , LIUZZI V , et al. Mycotoxin biotransformation by native and commercial enzymes: present and future perspectives[J]. Toxins(Basel), 2017, 9 (4): 111. |
| 5 |
HAO W , GUAN S , LI A P , et al. Mycotoxin occurrence in feeds and raw materials in china: a five-year investigation[J]. Toxins, 2023, 15 (1): 63.
doi: 10.3390/toxins15010063 |
| 6 |
LIU M Y , ZHANG X , LUAN H N , et al. Bioenzymatic detoxification of mycotoxins[J]. Front Microbiol, 2024, 15, 1434987.
doi: 10.3389/fmicb.2024.1434987 |
| 7 |
XU H W , WANG L Z , SUN J D , et al. Microbial detoxification of mycotoxins in food and feed[J]. Crit Rev Food Sci Nutr, 2022, 62 (18): 4951- 4969.
doi: 10.1080/10408398.2021.1879730 |
| 8 | TAKAHASH-ANDO N , KIMURA M , KAKEYA H , et al. A novel lactonohydrolase responsible for the detoxification of zearalenone: enzyme purification and gene cloning[J]. Biochem J, 2002, 365 (Pt 1): 1- 6. |
| 9 | FRUHAUF S , NOVAK B , NAGL V , et al. Biotransformation of the mycotoxin zearalenone to its metabolites hydrolyzed zearalenone (HZEN) and decarboxylated hydrolyzed zearalenone (DHZEN) diminishes its estrogenicity in vitro and in vivo[J]. Toxins(Basel), 2019, 11 (8): 481. |
| 10 |
TAKAHASH-ANDO N , TOKAI T , HAMAMOTO H , et al. Efficient decontamination of zearalenone, the mycotoxin of cereal pathogen, by transgenic yeasts through the expression of a synthetic lactonohydrolase gene[J]. Appl Microbiol Biotechnol, 2005, 67 (6): 838- 844.
doi: 10.1007/s00253-004-1816-y |
| 11 |
TAKAHASHI-ANDO N , OHSATO S , SHIBATA T . Metabolism of zearalenone by genetically modified organisms expressing the detoxification gene from Clonostachys rosea[J]. Appl Environ Microbiol, 2004, 70 (6): 3239- 3245.
doi: 10.1128/AEM.70.6.3239-3245.2004 |
| 12 |
YANG W C , HSU T C , CHENG K C , et al. Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability[J]. Microb Cell Fact, 2017, 16 (1): 102.
doi: 10.1186/s12934-017-0714-9 |
| 13 |
FRUHAUF S , PVHRINGER D , THAMHESL M , et al. Bacterial lactonases ZenA with noncanonical structural features hydrolyze the mycotoxin zearalenone[J]. ACS Catal, 2024, 14 (5): 3392- 3410.
doi: 10.1021/acscatal.4c00271 |
| 14 |
SUN Z P , FANG Y T , ZHU Y H , et al. Biotransformation of zearalenone to non-estrogenic compounds with two novel recombinant lactonases from Gliocladium[J]. BMC Microbiol, 2024, 24 (1): 75.
doi: 10.1186/s12866-024-03226-3 |
| 15 |
JIANG X , TEHREEM S , RAHIM K . Enhancing the thermal stability and activity of zearalenone lactone hydrolase to promote zearalenone degradation via semi-rational design[J]. Enzyme Microb Technol, 2024, 180, 110499.
doi: 10.1016/j.enzmictec.2024.110499 |
| 16 |
LIU X L , WANG Y N , FANG X , et al. Characteristics of a novel zearalenone lactone hydrolase ZHRnZ and its thermostability modification[J]. Int J Mol Sci, 2024, 25 (17): 9665.
doi: 10.3390/ijms25179665 |
| 17 |
HU J Q , WANG G , HOU M X , et al. New hydrolase from Aeromicrobium sp. HA for the biodegradation of zearalenone: identification, mechanism, and application[J]. J Agric Food Chem, 2023, 71 (5): 2411- 2420.
doi: 10.1021/acs.jafc.2c06410 |
| 18 |
OUYANG B B , ZHANG W L , GUANG C E , et al. Identification and modification of enzymatic substrate specificity through residue alteration in the cap domain: A thermostable zearalenone lactonase[J]. J Agric Food Chem, 2023, 71 (48): 18943- 18952.
doi: 10.1021/acs.jafc.3c07228 |
| 19 |
BI K , ZHANG W , XIAO Z Z , et al. Characterization, expression and application of a zearalenone degrading enzyme from Neurospora crassa[J]. AMB Express, 2018, 8 (1): 194.
doi: 10.1186/s13568-018-0723-z |
| 20 | WANG M X , YIN L F , HU H Z , et al. Expression, functional analysis and mutation of a novel neutral zearalenone-degrading enzyme[J]. Int J Biol Macromol, 2018, 118 (Pt A): 1284- 1292. |
| 21 |
YU X R , TU T , LUO H Q , et al. Biochemical characterization and mutational analysis of a lactone hydrolase from Phialophora americana[J]. J Agric Food Chem, 2020, 68 (8): 2570- 2577.
doi: 10.1021/acs.jafc.9b05853 |
| 22 |
WANG Z X , LUO F F , JIANG S J , et al. Biochemical characterization and molecular modification of a zearalenone hydrolyzing enzyme Zhd11D from Phialophora attinorum[J]. Enzyme Microb Technol, 2023, 170, 110286.
doi: 10.1016/j.enzmictec.2023.110286 |
| 23 |
CHEN S R , PAN L , LIU S Y , et al. Recombinant expression and surface display of a zearalenone lactonohydrolase from Trichoderma aggressivum in Escherichia coli[J]. Protein Expr Purif, 2021, 187, 105933.
doi: 10.1016/j.pep.2021.105933 |
| 24 |
SHI J H , MWABULILI F , XIE Y L , et al. Characterization, structural analysis, and thermal stability mutation of a new zearalenone-degrading enzyme mined from Bacillus subtilis[J]. J Agric Food Chem, 2024, 72 (6): 3025- 3035.
doi: 10.1021/acs.jafc.3c06767 |
| 25 | HU J Q , DU S L , QIU H , et al. A hydrolaseproduced by Rhodococcus erythropolis HQ is responsible for the detoxification of zearalenone[J]. Toxins(Basel), 2023, 15 (12): 688. |
| 26 |
ZHANG Z X , XU W , WU H , et al. Identification of a potent enzyme for the detoxification of zearalenone[J]. J Agric Food Chem, 2020, 68 (1): 376- 383.
doi: 10.1021/acs.jafc.9b06223 |
| 27 | HUI R J , HU X Y , LIU W T , et al. Characterization and crystal structure of a novel zearalenone hydrolase from Cladophialophora bantiana[J]. Acta Crystallogr F Struct Biol Commun, 2017, 73 (Pt 9): 515- 519. |
| 28 |
RAUWERDINK A , KAZLAUSKAS R J . How the same core catalytic machinery catalyzes seventeen different reactions: the Ser-His-Asp catalytic triad of α/β-Hydrolase fold enzymes[J]. ACS Catal, 2015, 5 (10): 6153- 6176.
doi: 10.1021/acscatal.5b01539 |
| 29 |
ZHOU J , ZHU L D , CHEN J F , et al. Degradation mechanism for zearalenone ring-cleavage by zearalenone hydrolase RmZHD: A QM/MM study[J]. Sci Total Environ, 2020, 709, 135897.
doi: 10.1016/j.scitotenv.2019.135897 |
| 30 | VOET D , VOET J G . Biochemistry(3rd ed)[M]. NewYork: Wiley, 2004. |
| 31 |
LIU Q , X G H , FENG Y . The state-of-the-art strategies of protein engineering for enzyme stabilization[J]. Biotechnol Adv, 2019, 37 (4): 530- 537.
doi: 10.1016/j.biotechadv.2018.10.011 |
| 32 |
LIU F X , MALAPHAN W , XING F G , et al. Biodetoxification of fungal mycotoxins zearalenone by engineered probiotic bacterium Lactobacillus reuteri with surface-displayed lactonohydrolase[J]. Appl Microbiol Biotechnol, 2019, 103 (21-22): 8813- 8824.
doi: 10.1007/s00253-019-10153-1 |
| 33 |
ZHENG Y Y , LIU W T , CHEN C C , et al. Crystal structure of a mycoestrogen-detoxifying lactonase from Rhinocladiella mackenziei: Molecular insight into ZHD substrate selectivity[J]. ACS Catalysis, 2018, 8 (5): 4294- 4298.
doi: 10.1021/acscatal.8b00464 |
| 34 |
XU Z X , LIU W D , CHEN C C , et al. Enhanced α-zearalenol hydrolyzing activity of a mycoestrogen-detoxifying lactonase by structure-based engineering[J]. ACS Catalysis, 2016, 6 (11): 7657- 7663.
doi: 10.1021/acscatal.6b01826 |
| 35 |
LIN M , TAN J , XU Z B , et al. Computational design of enhanced detoxification activity of a zearalenone lactonase from Clonostachys rosea in acidic medium[J]. RSC Adv, 2019, 9 (54): 31284- 31295.
doi: 10.1039/C9RA04964A |
| 36 |
XING X Y , CHEN X W , YOU X H , et al. Zearalenone degrading enzyme evolution to increase the hydrolysis efficiency under acidic conditions by the rational design[J]. Food Chem, 2024, 456, 140088.
doi: 10.1016/j.foodchem.2024.140088 |
| 37 |
FU X , XU M , LI T , et al. The improved expression and stability of zearalenone lactonohydrolase from Escherichia coli BL21 (DE3)[J]. Appl Biochem Microbiol, 2021, 57, 79- 85.
doi: 10.1134/S0003683821010075 |
| 38 |
KI M R , PACK S P . Fusion tags to enhance heterologous protein expression[J]. Appl Microbiol Biotechnol, 2020, 104 (6): 2411- 2425.
doi: 10.1007/s00253-020-10402-8 |
| 39 |
FANG J P , SHENG L N , YE Y L , et al. Biochemical characterization and application of zearalenone lactone hydrolase fused with a multifunctional short peptide[J]. J Agr Food Chem, 2024, 72 (32): 18146- 18154.
doi: 10.1021/acs.jafc.4c01296 |
| 40 |
LIU W N , TU T , GU Y , et al. Insight into the thermophilic mechanism of a glycoside hydrolase family 5 β-mannanase[J]. J Agric Food Chem, 2019, 67 (1): 473- 483.
doi: 10.1021/acs.jafc.8b04860 |
| 41 |
GAVRILOV Y , DAGAN S , LEVY Y . Shortening a loop can increase protein native state entropy[J]. Proteins, 2015, 83 (12): 2137- 2146.
doi: 10.1002/prot.24926 |
| 42 |
ZHOU H J , LI L , ZHAN B W , et al. The Trp183 is essential in lactonohydrolase ZHD detoxifying zearalenone and zearalenols[J]. Biochem Biophys Res Commun, 2020, 522 (4): 986- 989.
doi: 10.1016/j.bbrc.2019.11.178 |
| 43 | WANG M X , ZHANG F Y , XIANG L , et al. Enhancing the activity of zearalenone lactone hydrolase toward the more toxic α-zearalanol via a single-point mutation[J]. App Environ Microbiol, 2024, 90 (3): e0181823. |
| 44 | AZAM M S , YU D Z , LIU N , et al. Degrading ochratoxin A and zearalenone mycotoxins using a multifunctional recombinant enzyme[J]. Toxins(Basel), 2019, 11 (5): 301. |
| 45 |
XIA Y , QIU Y Y , WU Z F , et al. Preparation of recombinant Kluyveromyces lactis agents for simultaneous degradation of two mycotoxins[J]. AMB Express, 2022, 12 (1): 20.
doi: 10.1186/s13568-022-01361-6 |
| 46 |
XIANG L , WANG Q H , ZHOU Y L , et al. High-level expression of a ZEN-detoxifying gene by codon optimization and biobrick in Pichia pastoris[J]. Microbiol Res, 2016, 193, 48- 56.
doi: 10.1016/j.micres.2016.09.004 |
| 47 | 王义春, 王龑, 江均平, 等. 玉米赤霉烯酮降解酶多拷贝毕赤酵母菌株的构建及高效表达[J]. 生物工程学报, 2020, 36 (2): 372- 380. |
| WANG Y C , WANG Y , JIANG J P , et al. High expression of zearalenone degrading enzyme in Pichia pastoris[J]. Chinese Journal of Biotechnology, 2020, 36 (2): 372- 380. | |
| 48 | KOVALSKY P , KOS G , NÄHERE K , et al. Co-Occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize - An extensive survey[J]. Toxins(Basel), 2016, 8 (12): 363. |
| 49 | 周建川, 史东辉, 计成. 玉米赤霉烯酮和脱氧雪腐镰刀菌烯醇对动物毒性的研究进展[J]. 动物营养学报, 2020, 32 (6): 2460- 2466. |
| ZHOU J C , SHI D H , JI C , et al. Research progress on toxicity of zearalenone and deoxynivalenol in animals[J]. Chinese Journal of Animal Nutrition, 2020, 32 (6): 2460- 2466. | |
| 50 |
CAI P R , LIU S Q , TU Y , et al. Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone[J]. Sci Total Environ, 2024, 911, 168648.
doi: 10.1016/j.scitotenv.2023.168648 |
| 51 |
WU K T , REN C X , GONG Y F , et al. The insensitive mechanism of poultry to zearalenone: A review[J]. Anim Nutr, 2021, 7 (3): 587- 594.
doi: 10.1016/j.aninu.2021.01.002 |
| 52 | TSO K , JU J , FAN Y , et al. Enzyme degradation reagents effectively remove mycotoxins deoxynivalenol and zearalenone from pig and poultry artificial digestive juices[J]. Toxins(Basel), 2019, 11 (10): 599. |
| 53 | 王相生, 孙亚宁, 阮崇美, 等. 玉米赤霉烯酮降解酶在枯草芽孢杆菌中的表达及其对母猪繁殖性能的影响[J]. 动物营养学报, 2017, 29 (11): 4019- 4025. |
| WANG X S , SUN Y N , RUAN C M , et al. Expression of zearalenone degrading enzyme in Bacillus subilis and its effects on reproductive performance of sows[J]. Chinese Journal of Animal Nutrition, 2017, 29 (11): 4019- 4025. | |
| 54 | 邓增炜. 三种ZEN降解剂对ZEN暴露仔猪的保护效果评价[D]. 雅安: 四川农业大学, 2022: 11-17. |
| DENG Z W. Evaluation of protective effects of three zearalenone-degrading agents on zearalenone-exposed piglets[D]. Yaan: Sichuan Agricultural University, 2022: 11-17. (in Chinese) | |
| 55 |
DÄNICKE S , CARLSON L , HEYMANN A , et al. Inactivation of zearalenone (ZEN) and deoxynivalenol (DON) in complete feed for weaned piglets: Efficacy of ZEN hydrolase ZenA and of sodium metabisulfite (SBS) as feed additives[J]. Mycotoxin Res, 2023, 39 (3): 201- 218.
doi: 10.1007/s12550-023-00486-2 |
| 56 | GRUBER-DORNINGER C , KILLINGER M , HÖBARTNER-GUßL A , et al. Enzymatic degradation of zearalenone in the gastrointestinal tract of pigs, chickens, and rainbow trout[J]. Toxins(Basel), 2023, 15 (1): 48. |
| 57 |
VALGAEREN B , THÉRON L , CROUBELS S , et al. The role of roughage provision on the absorption and disposition of the mycotoxin deoxynivalenol and its acetylated derivatives in calves: From field observations to toxicokinetics[J]. Arch Toxicol, 2019, 93 (2): 293- 310.
doi: 10.1007/s00204-018-2368-8 |
| 58 |
SEELING K , DÄNICKE S , VALENTA H , et al. Effects of Fusarium toxin-contaminated wheat and feed intake level on the biotransformation and carry-over of deoxynivalenol in dairy cows[J]. Food Addit Contam, 2006, 23 (10): 1008- 1020.
doi: 10.1080/02652030600723245 |
| 59 | GRUBER-DORNINGER C , FASS J , DOUPOVEC B , et al. Metabolism of zearalenone in the rumen of dairy cows with and without application of a zearalenone-degrading enzyme[J]. Toxins(Basel), 2021, 13 (2): 84. |
| [1] | 高博泉, 王秀敏, 韩冰, 陶慧, 王振龙, 王金全. 漆酶降解霉菌毒素研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3650-3657. |
| [2] | 朱爱文, 王健, 朱戈辉, 刘海霞, 平措班旦, 王军, 德庆卓嘎, 闫伟, 韩大勇. 玉米赤霉烯酮致彭波半细毛羊睾丸支持细胞增殖凋亡、氧化应激及NAC保护机制[J]. 畜牧兽医学报, 2025, 56(6): 2752-2764. |
| [3] | 詹清宇, 邓娟丽, 刘虎军, 尹鹏, 王红亮, 李天天. 玉米赤霉烯酮及其衍生物的毒性和减毒机制研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2056-2069. |
| [4] | 颜琼娴, 陈文勋, 惠浩阳, 彭灿, 汤少勋, 周小玲, 谭支良. 玉米赤霉烯酮对山羊生长性能、胃肠道发酵模式和菌群结构的影响研究[J]. 畜牧兽医学报, 2023, 54(3): 1109-1123. |
| [5] | 唐紫雯, 程华琴, 刘冬菊, 彭毛卓玛, 杨雪, 李键, 殷实. 原花青素对玉米赤霉烯酮诱导牦牛颗粒细胞氧化损伤的保护作用研究[J]. 畜牧兽医学报, 2022, 53(9): 3006-3017. |
| [6] | 张凯照, 胡会, 许泽锴, 王诗倩, 崔红杰, 黄小红. 玉米赤霉烯酮对鸡胚成纤维细胞的毒性作用[J]. 畜牧兽医学报, 2022, 53(5): 1615-1625. |
| [7] | 曹倩颖, 郑豪, 王娅玲, 邹辉, 顾建红, 袁燕, 刘学忠, 刘宗平, 卞建春. 玉米赤霉烯酮致PC12细胞自噬流阻滞的相关作用机制[J]. 畜牧兽医学报, 2022, 53(4): 1270-1279. |
| [8] | 王宗捷, 张瑞雪, 刘守勤, 靳亚平, 林鹏飞. 玉米赤霉烯酮诱导山羊子宫内膜基质细胞凋亡的研究[J]. 畜牧兽医学报, 2021, 52(2): 535-542. |
| [9] | 吴峰洋, 崔嘉, 杨新宇, 陈宝江. 玉米赤霉烯酮对后备母猪子宫和卵巢抗氧化和炎症指标及相关基因表达的影响[J]. 畜牧兽医学报, 2020, 51(7): 1637-1645. |
| [10] | 吴峰洋, 杨新宇, 栗金丽, 陈宝江. 玉米赤霉烯酮对母猪的繁殖毒性研究进展[J]. 畜牧兽医学报, 2020, 51(2): 227-233. |
| [11] | 裴亚萍, 赵瑾, 孙娜, 孙盼盼, 孙耀贵, 范阔海, 尹伟, 李宏全. 咖啡酸对玉米赤霉烯酮诱导小鼠卵巢颗粒细胞凋亡的保护作用[J]. 畜牧兽医学报, 2020, 51(12): 3068-3075. |
| [12] | 陈亚, 魏全伟, 杜文超, 郑卫江, 丁威, 邢军, 石放雄. 乳果糖和富氢水对断奶仔猪采食霉变玉米后引起卵巢机能障碍的缓解作用[J]. 畜牧兽医学报, 2018, 49(12): 2641-2651. |
| [13] | 蔡国栋, 孙凯, 项自来, 王玲, 邹辉, 顾建红, 袁燕, 刘学忠, 刘宗平, 卞建春. 玉米赤霉烯酮对小鼠T淋巴细胞体外活化、增殖的影响[J]. 畜牧兽医学报, 2017, 48(7): 1357-1364. |
| [14] | 魏单平, 刘玉洁, 孙向丽, 闫峰宾, 蒋瑞瑞, 康相涛, 王彦彬. 玉米赤霉烯酮降解菌的筛选及其活性检测[J]. 畜牧兽医学报, 2017, 48(4): 761-768. |
| [15] | 郑王龙,刘青,王亚军,黄沁怡,徐辉,王宜安,顾建红,袁燕,刘学忠,刘宗平,卞建春. 玉米赤霉烯酮对小鼠睾丸间质细胞内StAR蛋白及类固醇合成关键酶表达的影响[J]. 畜牧兽医学报, 2014, 45(7): 1091-1096. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||