

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4851-4862.doi: 10.11843/j.issn.0366-6964.2025.10.008
冉红丽1(
), 温馨1, 胥娇娇1, 陈龙海1, 吴银宝1,2,3,4,*(
)
收稿日期:2024-12-24
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
吴银宝
E-mail:3350656529@qq.com;wuyinbao@scau.edu.cn
作者简介:冉红丽(2003-), 女, 土家族, 贵州铜仁人, 本科生, 主要从事智慧养殖研究, E-mail: 3350656529@qq.com
基金资助:
RAN Hongli1(
), WEN Xin1, XU Jiaojiao1, CHEN Longhai1, WU Yinbao1,2,3,4,*(
)
Received:2024-12-24
Online:2025-10-23
Published:2025-11-01
Contact:
WU Yinbao
E-mail:3350656529@qq.com;wuyinbao@scau.edu.cn
摘要:
抗性基因mcr-1作为介导细菌对"最后一道防线"抗生素黏菌素产生耐药性的关键遗传元件, 一经发现就成为当前研究热点之一, 对公共卫生构成潜在威胁。本文旨在探讨种养循环模式下黏菌素抗性基因mcr-1的归趋。本文首先概述了mcr-1的抗性机制、水平传播、适应性代价和补偿性进化, 然后介绍了mcr-1在种养循环系统中的赋存、转归与水平传播特征, 并探讨了影响其传播的关键因素, 最后提出相应的防控措施, 以期为循环农业的高质量发展和公共卫生安全提供参考。
中图分类号:
冉红丽, 温馨, 胥娇娇, 陈龙海, 吴银宝. 种养循环模式中黏菌素抗性基因mcr-1的归趋[J]. 畜牧兽医学报, 2025, 56(10): 4851-4862.
RAN Hongli, WEN Xin, XU Jiaojiao, CHEN Longhai, WU Yinbao. Fate of the Colistin Resistance Gene mcr-1 in Crop-Livestock Integrated Farming Systems[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4851-4862.
表 1
mcr-1在畜禽养殖中的赋存特征"
| 样本来源 Sample sources | 样本种类 Sample type | 样本数量 Sample size | 采样时间 Sampling time | 地域分布 Geographical distribution | 检出率或丰度 Detection rate or abundance |
| 畜禽肠道 Livestock intestinal tract | 鸡Chicken | 275 | 2021年前 | 中国 | 5.8%[ |
| 鸭Duck | 15 | 2024年 | 中国(广东) | 100%[ | |
| 猪Pig | 325 | 2023年 | 中国(上海) | 41.8%[ | |
| 猪Pig | 804 | 2012—2014年 | 中国(广东、广西、湖南、江西) | 20.6%[ | |
| 牛Cattle | 118 | 2018年 | 中国(辽宁、陕西、贵州和湖南) | 0.02 copies/16S rRNA gene copies[ | |
| 畜禽粪便 Livestock manure | 鸡粪Chicken manure | 202 | 2021年前 | 英国、德国、保加利亚、意大利、法国、西班牙、波兰、比利时、荷兰 | 7.4%[ |
| 鸭粪Duck manure | 66 | 2022年 | 中国(青岛) | 24.2%[ | |
| 猪粪Pig manure | 753 | 2019年 | 中国(武汉) | 59.6%[ | |
| 猪粪Pig manure | 57 | 2021年 | 西班牙 | 7.0%[ | |
| 牛粪Cattle manure | 51 | 2019年 | 中国(江苏、浙江) | 31.3%[ | |
| 牛粪Cattle manure | 152 | 2021年 | 西班牙 | 8.6%[ | |
| 畜禽污水 Livestock sewage | 鸡场Chicken farm | 53 | 2020年 | 中国东部 | 69.9%[ |
| 鸭场Duck farm | 143 | 2017年 | 中国(广东) | 22.4%[ | |
| 猪场Pig farm | 412 | 2016—2019年 | 中国(北京、河南、山东、四川和浙江) | >85%[ | |
| 猪场Pig farm | 65 | 2019年 | 中国(广东、福建、江苏、山东、河南和辽宁) | 64.6%[ | |
| 猪场Pig farm | / | 2016年 | 中国(武汉) | 5.0×104 copies·L-1[ |
| 1 | 张扬, 王璐瑶. 中国种养结合发展模式研究进展[J]. 农业科学, 2021, 11 (10): 951- 956. |
| ZHANG Y , WANG L Y . Research progress on the development mod-el of the combination of planting and breed-ing in China[J]. Hans Journal of Agricultural Sciences, 2021, 11 (10): 951- 956. | |
| 2 | ZHENG B , XU H , HUANG C , et al. Occurrence and genomic characterization of two mcr-1-producing Escherichia coli isolates from the same mink farmer[J]. mSphere, 2019, 4 (6): e00602- e00619. |
| 3 |
LIU Y , WANG Y , WALSH T R , et al. Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: a microbiological and molecular biological study[J]. Lancet Infect Dis, 2016, 16 (2): 161- 168.
doi: 10.1016/S1473-3099(15)00424-7 |
| 4 |
WANG X , LI L , SUN F , et al. Detection of mcr-1-positive Escherichia coli in slaughterhouse wastewater collected from Dawen river[J]. Vet Med Sci, 2021, 7 (5): 1587- 1592.
doi: 10.1002/vms3.489 |
| 5 |
ELBEDIWI M , LI Y , PAUDYAL N , et al. Global burden of colistin-resistant bacteria: mobilized colistin resistance genes study (1980-2018)[J]. Microorganisms, 2019, 7 (10): 461.
doi: 10.3390/microorganisms7100461 |
| 6 |
LIU J , LIU Y , SHEN Y , et al. Plasmid-mediated colistin-resistance genes: mcr[J]. Trends Microbiol, 2024, 32 (4): 365- 378.
doi: 10.1016/j.tim.2023.10.006 |
| 7 | 王雪杨, 蒋君瑶, 杨璐, 等. 黏菌素促进mcr-1阳性IncI2质粒在大肠杆菌间的接合转移[J]. 中国农业科学, 2022, 55 (14): 2862- 2874. |
| WANG X Y , JIANG J Y , YANG L , et al. Colistin promotes mcr-1-positive inci2 plasmid conjugation between Escherichia coli[J]. Scientia Agricultura Sinica, 2022, 55 (14): 2862- 2874. | |
| 8 | 中华人民共和国农业部. 中华人民共和国农业部公告第2428号[EB/OL]. 2016. [2024-12-12] https://www.moa.gov.cn/nybgb/2016/dibaqi/201712/t20171219_6102822.htm. |
| Ministry of Agriculture of the People's Republic of China. Ministry of Agriculture of the People's Republic of China announcement No. 2428[EB/OL]. 2016. [2024-12-12] https://www.moa.gov.cn/nybgb/2016/dibaqi/201712/t20171219_6102822.htm(in Chinese) | |
| 9 | 陈勇, 李亚鑫, 王亚瑄, 等. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39 (6): 102- 108. |
| CHEN Y , LI Y X , WANG Y X , et al. Research progress in the molecular mechanism of mcr-1 mediated polymyxin resistance[J]. Biotechnology Bulletin, 2023, 39 (6): 102- 108. | |
| 10 | 李硕, 刑平. 磷酸乙醇胺转移酶mcr-1结构与功能的研究[J]. 四川大学学报(自然科学版), 2018, 1127- 1132. |
| LI S , XING P . Study on the structure and function of phosphoethanolamine transferase mcr-1[J]. Journal of Sichuan University (Natural Science Edition), 2018, 1127- 1132. | |
| 11 |
GAO R , HU Y , LI Z , et al. Dissemination and mechanism for the mcr-1 colistin resistance[J]. PLOS Pathog, 2016, 12 (11): e1005957.
doi: 10.1371/journal.ppat.1005957 |
| 12 |
HUANG J . Why does lateral transfer occur in so many species and how?[J]. Chinese Science Bulletin, 2017, 62 (12): 1221- 1225.
doi: 10.1360/N972016-00639 |
| 13 |
ZHU L , ZHOU Z , LIU Y , et al. Comprehensive understanding of the plasmid-mediated colistin resistance genemcr-1in aquatic environments[J]. Environ Sci Technol, 2020, 54 (3): 1603- 1613.
doi: 10.1021/acs.est.9b05919 |
| 14 | 王新兴, 郑常委, 王巧云, 等. MCR-1介导多粘菌素耐药机制的研究进展[J]. 中国动物传染病学报, 2018, 26 (6): 4. |
| WANG X X , ZHENG C W , WANG Q Y , et al. Research advances in the mechanism of mcr-1-mediated colistin resistance[J]. Chinese Journal of Animal Infectious Diseases, 2018, 26 (6): 4. | |
| 15 |
WANG M , LIU P , ZHOU Q , et al. Estimating the contribution of bacteriophage to the dissemination of antibiotic resistance genes in pig feces[J]. Environ Pollut, 2018, 238, 291- 298.
doi: 10.1016/j.envpol.2018.03.024 |
| 16 |
HOLMES A H , MOORE L S P , SUNDSFJORD A , et al. Understanding the mechanisms and drivers of antimicrobial resistance[J]. The Lancet, 2016, 387 (10014): 176- 187.
doi: 10.1016/S0140-6736(15)00473-0 |
| 17 | FENG J , XU Z , ZHUANG Y , et al. The prevalence, diagnosis, and dissemination of mcr-1 in colistin resistance: progress and challenge[J]. Decod Infect Transm, 2023, 1, 100007. |
| 18 |
JIANG Y , ZHANG Y , LU J , et al. Clinical relevance and plasmid dynamics of mcr-1-positive Escherichia coli in China: a multicentre case-control and molecular epidemiological study[J]. The Lancet Microbe, 2020, 1 (1): e24- e33.
doi: 10.1016/S2666-5247(20)30001-X |
| 19 |
ALI A , FONTANA H , SANO E , et al. Genomic features of a high-risk mcr-1.1-positive escherichia coli st10 isolated from cattle farm environment[J]. Environ Sci Pollut Res Int, 2021, 28 (38): 54147- 54152.
doi: 10.1007/s11356-021-15437-6 |
| 20 |
XIAOMIN S , YIMING L , YUYING Y , et al. Global impact of mcr-1-positive enterobacteriaceae bacteria on "one health"[J]. Crit Rev Microbiol, 2020, 46 (5): 565- 577.
doi: 10.1080/1040841X.2020.1812510 |
| 21 |
JIANG L , ZHU H , WEI J , et al. Enterobacteriaceae genome-wide analysis reveals roles for P1-like phage-plasmids in transmission of mcr-1, tetX4 and other antibiotic resistance genes[J]. Genomics, 2023, 115 (2): 110572.
doi: 10.1016/j.ygeno.2023.110572 |
| 22 | 蒋宇轩, 袁琳, 路娟娥, 等. 动物源性黏菌素耐药基因mcr-1携带率变化及适应性代价的研究进展[J]. 黑龙江畜牧兽医, 2023 (19): 22- 28. |
| JIANG Y X , YUAN L , LU J E , et al. Advances in the changing carriage rates and adaptive costs of mcr-1 gene in zoonotic colistin resistance[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023 (19): 22- 28. | |
| 23 |
YANG Q , LI M , SPILLER O B , et al. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms[J]. Nat Commun, 2017, 8 (1): 2012- 2054.
doi: 10.1038/s41467-017-01944-z |
| 24 |
GUO Z , FENG S , LIANG L , et al. Assessment of the reversibility of resistance in the absence of antibiotics and its relationship with the resistance gene's fitness cost: a genetic study with mcr-1[J]. The Lancet Microbe, 2024, 5 (8): 100846.
doi: 10.1016/S2666-5247(24)00052-1 |
| 25 | 王媛. 多粘菌素对mcr-1阳性细菌体外敏感性测定方法的比较及耐药性对细菌适应性和毒力的影响[D]. 杭州: 浙江大学, 2021. |
| WANG Y. Comparison of in vitro susceptibility assays of polymyxin to mcr-1-positive bacteria and the effect of drug resistance on bacterial adaptability and virulence[D]. Hangzhou: Zhejiang University, 2021. (in Chinese) | |
| 26 |
DAHLBERG C , CHAO L . Amelioration of the cost of conjugative plasmid carriage in eschericha coli K12[J]. Genetics, 2003, 165 (4): 1641- 1649.
doi: 10.1093/genetics/165.4.1641 |
| 27 |
YANG Q E , MACLEAN C , PAPKOU A , et al. Compensatory mutations modulate the competitiveness and dynamics of plasmid-mediated colistin resistance in Escherichia coli clones[J]. ISME J, 2020, 14 (3): 861- 865.
doi: 10.1038/s41396-019-0578-6 |
| 28 | LIAO Z , SMIRNOV A . FinO/ProQ-family proteins: an evolutionary perspective[J]. Biosci Rep, 2023, 43 (3): 1- 21. |
| 29 | 朱琪琪, 路宁宁, 王承业, 等. 黏菌素耐药基因mcr-1的研究进展[J]. 中国人兽共患病学报, 2023, 39 (12): 1211- 1217. |
| ZHU Q Q , LU N N , WANG C Y . Research progress in the colistin resistance gene mcr-1[J]. Chinese Journal of Zoonoses, 2023, 39 (12): 1211- 1217. | |
| 30 | 周巧丽. 猪源大肠杆菌mcr-1基因及其传播质粒的流行变化特征研究[D]. 广州: 华南农业大学, 2020. |
| ZHOU Q L. Prevalence Characteristics and molecular transmission mechanisms of colistin resistance mcr-1 gene in Escherichia coli and salmonella enterica[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) | |
| 31 |
胡俊, 丁帅帅, 魏述永. 可转移黏菌素耐药基因mcr: 控制革兰阴性菌感染"最后一道防线"的严峻挑战[J]. 畜牧兽医学报, 2023, 54 (2): 504- 519.
doi: 10.11843/j.issn.0366-6964.2023.02.009 |
|
HU J , DING S S , WEI S Y . Mobile colistin resistance gene (mcr): a severe challenge to the "last-line defense" of gram-negative bacterial infections[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 504- 519.
doi: 10.11843/j.issn.0366-6964.2023.02.009 |
|
| 32 |
ILBEIGI K , ASKARI BADOUEI M , VAEZI H , et al. Molecular survey of mcr1 and mcr2 plasmid mediated colistin resistance genes in Escherichia coli isolates of animal origin in Iran[J]. BMC Res Notes, 2021, 14 (1): 11- 14.
doi: 10.1186/s13104-020-05440-4 |
| 33 | 丰俊, 刘明香, 庄源, 等. 上海市污水处理厂携带mcr-1耐药基因肠道杆菌菌株的分离及拷贝数定量分析[J]. 上海预防医学, 2024, 36 (3): 217- 223. |
| FENG J , LIU M X , ZHUANG Y , et al. Isolation of enterobacteriaceae strains carrying mcr-1 resistance gene from Shanghai wastewater treatment plants and quantification of their copy number[J]. Shanghai Journal of Preventive Medicine, 2024, 36 (3): 217- 223. | |
| 34 |
GAO Y , LU C , SHEN D , et al. Elimination of the risks of colistin resistance gene (mcr-1) in livestock manure during composting[J]. Environ Int, 2019, 126, 61- 68.
doi: 10.1016/j.envint.2019.02.015 |
| 35 |
JAGANI R , PATEL H , CHOVATIYA J , et al. The rise and risks of fluorinated pesticides: a call for comprehensive research to address environmental and health concerns[J]. J Agric Food Chem, 2025, 73 (4): 2217- 2220.
doi: 10.1021/acs.jafc.4c12827 |
| 36 |
WANG Y , XU C , ZHANG R , et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study[J]. Lancet Infect Dis, 2020, 20 (10): 1161- 1171.
doi: 10.1016/S1473-3099(20)30149-3 |
| 37 |
FENG Y , WANG Y , ZHU B , et al. Metagenome-assembled genomes and gene catalog from the chicken gut microbiome aid in deciphering antibiotic resistomes[J]. Commun Biol, 2021, 4 (1): 1305.
doi: 10.1038/s42003-021-02827-2 |
| 38 |
LI Y , NIU H , HUANG L , et al. Research note: synergistic effect of isopropoxy benzene guanidine and colistin against mcr-1-positive Escherichia coli in vitro and in duck intestine infection models[J]. Poult Sci, 2024, 103 (9): 104018.
doi: 10.1016/j.psj.2024.104018 |
| 39 | 高芸, 轩慧勇, 姚晓慧, 等. MALDI-TOF质谱技术对猪肠道菌群中携带mcr-1细菌的鉴定与聚类分型[J]. 中国动物传染病学报, 2023, 31 (3): 127- 133. |
| GAO Y , XUAN H Y , YAO X H , et al. Identification and typing of mcr-1-carrying bacterial strains isolated from pig gut flora by maldi-tof mass spectrometry[J]. Chinese Journal of Animal Infectious Diseases, 2023, 31 (3): 127- 133. | |
| 40 | 崔云昊, 刘志诚, 张启迪, 等. 2022年青岛地区鸡源和鸭源多黏菌素耐药大肠杆菌流行情况[J]. 中国兽医杂志, 2024, 60 (5): 30- 38. |
| CUI Y H , LIU Z C , ZHANG Q D . Epidemiology of colistin-resistant Escherichia coli from chicken and duck sources in Qingdao in 2022[J]. Chinese Journal of Veterinary Medicine, 2024, 60 (5): 30- 38. | |
| 41 |
WANG Y , HU Y , CAO J , et al. Antibiotic resistance gene reservoir in live poultry markets[J]. J Infect, 2019, 78 (6): 445- 453.
doi: 10.1016/j.jinf.2019.03.012 |
| 42 |
VIÑES J , CUSCÓ A , NAPP S , et al. Transmission of similar mcr-1 carrying plasmids among different Escherichia coli lineages isolated from livestock and the farmer[J]. Antibiotics, 2021, 10 (3): 313.
doi: 10.3390/antibiotics10030313 |
| 43 |
CAO Y , LIN Q , HE W , et al. Co-selection may explain the unexpectedly high prevalence of plasmid-mediated colistin resistance gene mcr-1in a Chinese broiler farm[J]. Zool Res, 2020, 41 (5): 569- 575.
doi: 10.24272/j.issn.2095-8137.2020.131 |
| 44 |
SHEN Y , LV Z , YANG L , et al. Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain[J]. Environ Int, 2019, 130, 104708.
doi: 10.1016/j.envint.2019.03.056 |
| 45 |
SHI X , LI Y , YANG Y , et al. High prevalence and persistence of carbapenem and colistin resistance in livestock farm environments in China[J]. J Hazard Mater, 2021, 406, 124298.
doi: 10.1016/j.jhazmat.2020.124298 |
| 46 |
WANG Z , FU Y , SCHWARZ S , et al. Genetic environment of colistin resistance genes mcr-1 and mcr-3 in escherichia coli from one pig farm in China[J]. Vet Microbiol, 2019, 230, 56- 61.
doi: 10.1016/j.vetmic.2019.01.011 |
| 47 |
YUAN Q , ZHAI Y , MAO B , et al. Antibiotic resistance genes and intI1 prevalence in a swine wastewater treatment plant and correlation with metal resistance, bacterial community and wastewater parameters[J]. Ecotoxicol Environ Saf, 2018, 161, 251- 259.
doi: 10.1016/j.ecoenv.2018.05.049 |
| 48 |
HU X , CHEN Y , XU H , et al. Genomic epidemiology and transmission characteristics of mcr1-positive colistin-resistant Escherichia coli strains circulating at natural environment[J]. Sci Total Environ, 2023, 882, 163600.
doi: 10.1016/j.scitotenv.2023.163600 |
| 49 |
XING S , WU R , CHEN Y , et al. Elimination and analysis of mcr-1 and blaNDM-1 in different composting pile layers under semipermeable membrane composting with copper-contaminated poultry manure[J]. Bioresour Technol, 2021, 332, 125076.
doi: 10.1016/j.biortech.2021.125076 |
| 50 |
XIE W , WANG Y , YUAN J , et al. Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers[J]. Environ Int, 2022, 162, 107157.
doi: 10.1016/j.envint.2022.107157 |
| 51 | ZHENG B , HUANG C , XU H , et al. Occurrence and genomic characterization of esbl-producing, mcr-1-harboring Escherichia coli in farming soil[J]. Front Microbiol, 2017, 8, 8- 2510. |
| 52 |
OLIVEIRA C C , LOPES E S , BARBOSA D R , et al. Occurrence of the colistin resistance mcr-1 gene in soils from intensive vegetable production and native vegetation[J]. Eur J Soil Sci, 2019, 70 (4): 876- 881.
doi: 10.1111/ejss.12832 |
| 53 |
LIU B , LI X , ZHANG Q , et al. Colistin-resistant mcr-positive enterobacteriaceae in fresh vegetables, an increasing infectious threat in China[J]. Int J Antimicrob, 2019, 54 (1): 89- 94.
doi: 10.1016/j.ijantimicag.2019.04.013 |
| 54 |
YANG F , SHEN C , ZHENG X , et al. Plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli and Klebsiella pneumoniae isolated from market retail fruits in Guangzhou, China[J]. Infect Drug Resist, 2019, 12, 385- 389.
doi: 10.2147/IDR.S194635 |
| 55 |
OH S , SONG J , KIM J , et al. Increasing prevalence of multidrug-resistant mcr-1-positive Escherichia coli isolates from fresh vegetables and healthy food animals in South Korea[J]. Int J Infect Dis, 2020, 92, 53- 55.
doi: 10.1016/j.ijid.2019.12.025 |
| 56 |
LIU B , SONG F . Emergence of two Escherichia coli strains co-harboring mcr-1 and blaNDM in fresh vegetables from China[J]. Infect Drug Resist, 2019, 12, 2627- 2635.
doi: 10.2147/IDR.S211746 |
| 57 |
ZHU D , CHEN Q , JING D , et al. Antibiotic resistance genes in the soil ecosystem and planetary health: progress and prospect[J]. Sci Sin Vitae, 2019, 49 (12): 1652- 1663.
doi: 10.1360/SSV-2019-0267 |
| 58 |
XU H , CHEN Z , HUANG R , et al. Antibiotic resistance gene-carrying plasmid spreads into the plant endophytic bacteria using soil bacteria as carriers[J]. Environ Sci, 2021, 55 (15): 10462- 10470.
doi: 10.1021/acs.est.1c01615 |
| 59 |
SISMOVA P , SUKKAR I , KOLIDENTSEV N , et al. Plasmid-mediated colistin resistance from fresh meat and slaughtered animals in the czech republic: nation-wide surveillance 2020-2021[J]. Microbiol Spectrum, 2023, 11 (5): e0060923.
doi: 10.1128/spectrum.00609-23 |
| 60 | MIGURA-GARCIA L , GONZÁLEZ-LÓPEZ J J , MARTINEZ-URTAZA J , et al. mcr-colistin resistance genes mobilized by IncX4, IncHI2, and inci2 plasmids in escherichia coli of pigs and white stork in Spain[J]. Front Microbiol, 2019, 10, 3072. |
| 61 | GUENTHER S , FALGENHAUER L , SEMMLER T , et al. Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms[J]. J Antimicrob Chemother, 2017, 72 (5): 1289- 1292. |
| 62 | 易灵娴, 刘艺云, 吴仁杰, 等. 质粒介导的黏菌素耐药基因mcr-1研究进展[J]. 遗传, 2017, 39 (2): 17. |
| YI L X , LIU Y Y , WU R J , et al. Research progress on the plasmid-mediated colistin resistance gene mcr-1[J]. Yi Chuan, 2017, 39 (2): 17. | |
| 63 |
CHI F , SHEN S , CHENG H , et al. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology[J]. Appl Environ, 2005, 71 (11): 7271- 7278.
doi: 10.1128/AEM.71.11.7271-7278.2005 |
| 64 |
LI C , GUO C , YANG T , et al. Whole-genome analysis of blandm-bearing proteus mirabilis isolates and mcr-1-positive Escherichia coli isolates carrying blandm from the same fresh vegetables in China[J]. Foods, 2023, 12 (3): 492.
doi: 10.3390/foods12030492 |
| 65 |
SHEN C , ZHONG L , YANG Y , et al. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study[J]. The Lancet Microbe, 2020, 1 (1): e34- e43.
doi: 10.1016/S2666-5247(20)30005-7 |
| 66 |
USUI M , NOZAWA Y , FUKUDA A , et al. Decreased colistin resistance and mcr-1 prevalence in pig-derived Escherichia coli in Japan after banning colistin as a feed additive[J]. J Global Antimicrob Resist, 2021, 24, 383- 386.
doi: 10.1016/j.jgar.2021.01.016 |
| 67 |
SUN X , ZHANG L , MENG J , et al. The characteristics of mcr-bearing plasmids in clinical Salmonella enterica in Sichuan, China, 2014 to 2017[J]. Front Cell Infect Microbiol, 2023, 13, 1240580.
doi: 10.3389/fcimb.2023.1240580 |
| 68 |
WANG Q , WANG W , ZHU Q , et al. The prevalent dynamic and genetic characterization of mcr-1 encoding multidrug resistant Escherichia coli strains recovered from poultry in Hebei, China[J]. J Global Antimicrob Resist, 2024, 38, 354- 362.
doi: 10.1016/j.jgar.2024.04.001 |
| 69 | LU X , ZHANG P , DU P , et al. Prevalence and genomic characteristics of mcr-positive Escherichia coli strains isolated from humans, pigs, and foods in China[J]. Microbiol Spectrum, 2023, 11 (3): 4522- 4569. |
| 70 | YIN Y , QIU L , WANG G , et al. Emergence and transmission of plasmid-mediated mobile colistin resistance gene mcr-10 in humans and companion animals[J]. Microbiol Spectrum, 2022, 10 (5): 2022- 2097. |
| 71 |
BOTTERY M J , PITCHFORD J W , FRIMAN V P . Ecology and evolution of antimicrobial resistance in bacterial communities[J]. Isme J, 2021, 15 (4): 939- 948.
doi: 10.1038/s41396-020-00832-7 |
| 72 |
孙赫, 张亚超, 上官振坤, 等. 多黏菌素耐药基因的变异特征及传播规律的研究现状[J]. 畜牧兽医学报, 2018, 49 (10): 2102- 2111.
doi: 10.11843/j.issn.0366-6964.2018.10.006 |
|
SUN H , ZHANG Y C , SHANGGUAN Z K , et al. Research progress on the variation characteristic and dissemination of colistin resistance genes[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49 (10): 2102- 2111.
doi: 10.11843/j.issn.0366-6964.2018.10.006 |
|
| 73 |
AHMED Z S , ELSHAFIEE E A , KHALEFA H S , et al. Evidence of colistin resistance genes (mcr-1 and mcr-2) in wild birds and its public health implication in Egypt[J]. Antimicrob Resist Infect Control, 2019, 8 (1): 197- 2019.
doi: 10.1186/s13756-019-0657-5 |
| 74 | 宗劲, 徐凯进, 黄莹, 等. 质粒介导黏菌素耐药机制研究进展[J]. 中国微生态学杂志, 2021, 33 (1): 120- 124. |
| ZONG J , XU K J , HUANG Y , et al. Progress in research on plasmid-mediated colistin resistance[J]. Chinese Journal of Microecology, 2021, 33 (1): 120- 124. | |
| 75 |
LI L , ZHU D , YI X , et al. Combined pollution of arsenic and polymyxin B enhanced arsenic toxicity and enriched ARG abundance in soil and earthworm gut microbiotas[J]. J Environ Sci, 2021, 109, 171- 180.
doi: 10.1016/j.jes.2021.04.004 |
| 76 | 邹威, 金彩霞, 魏闪, 等. 华北地区不同规模畜禽养殖场粪便中抗生素抗性基因污染特征[J]. 农业环境科学学报, 2020, 39 (11): 2640- 2652. |
| ZOU W , JIN C X , WEI S , et al. Occurrence of antibiotic resistance genes in livestock farms of different scales in North China[J]. Journal of Agro-Environment Science, 2020, 39 (11): 2640- 2652. | |
| 77 |
FIGUEIREDO R , CARD R M , NUNEZ-GARCIA J , et al. Multidrug-resistant Salmonella enterica isolated from food animal and foodstuff may also be less susceptible to heavy metals[J]. Foodborne Pathog Dis, 2019, 16 (3): 166- 172.
doi: 10.1089/fpd.2017.2418 |
| 78 |
SHEN Y , ZHOU H , XU J , et al. Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China[J]. Nat Microbiol, 2018, 3 (9): 1054- 1062.
doi: 10.1038/s41564-018-0205-8 |
| 79 |
TRUNG N V , MATAMOROS S , CARRIQUE-MAS J J , et al. Zoonotic transmission of mcr-1 colistin resistance gene from small-scale poultry farms, Vietnam[J]. Emerg Infect Dis, 2017, 23 (3): 529- 532.
doi: 10.3201/eid2303.161553 |
| 80 | WANG Y , LIU Y , FU Y , et al. Microplastic diversity increases the abundance of antibiotic resistance genes in soil[J]. Nat Commun, 2024, 15 (1): 15, 2024- 9788. |
| 81 |
SHEN Y , ZHANG R , SCHWARZ S , et al. Farm animals and aquaculture: significant reservoirs of mobile colistin resistance genes[J]. Environ Microbiol, 2020, 22 (7): 2469- 2484.
doi: 10.1111/1462-2920.14961 |
| 82 |
JIANG B , TIAN J , CHEN H , et al. Heavy metals migration and antibiotics removal in anaerobic digestion of swine manure with biochar addition[J]. Environ Technol Innovation, 2022, 27, 102735.
doi: 10.1016/j.eti.2022.102735 |
| 83 | 尹天奇, 孙兴滨, 高浩泽, 等. 高温持续时间对鸡粪堆肥中多重耐药菌、接合型质粒及耐药基因消减特征的影响[J]. 农业环境科学学报, 2023, 42 (9): 2108- 2119. |
| YIN T Q , SUN X B , GAO H Z , et al. Impact of high-temperature duration on the reduction dynamics of multidrug-resistant bacteria, conjugative plasmids, and antibiotic resistance genes in chicken manure composting[J]. Journal of Agro-Environment Science, 2023, 42 (9): 2108- 2119. | |
| 84 |
RIBEIRO S , MOURAO J , NOVAIS A , et al. From farm to fork: colistin voluntary withdrawal in portuguese farms reflected in decreasing occurrence of mcr-1-carrying Enterobacteriaceae from chicken meat[J]. Environ Microbiol, 2021, 23 (12): 7563- 7577.
doi: 10.1111/1462-2920.15689 |
| 85 |
SUN X , LIDDICOAT C , TIUNOV A , et al. Harnessing soil biodiversity to promote human health in cities[J]. npj Urban Sustain, 2023, 3 (1): 5.
doi: 10.1038/s42949-023-00086-0 |
| [1] | 杨鑫, 王绍宇, 童畅, 彭志弢, 蔡圣煌, 黄俊雄, 胥娇娇, 温馨, 吴银宝. 畜禽粪污源抗生素抗性基因的水平转移研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4279-4293. |
| [2] | 吴素娟, 林昌成, 万鹏, 李杰, 陆毅兴, 胡健欣, 彭险峰, 曾振灵. 异丙氧苯胍联合黏菌素对肺炎克雷伯菌体外协同抗菌作用[J]. 畜牧兽医学报, 2024, 55(12): 5792-5801. |
| [3] | 冯笑艳, 胡明雪, 林雨萌, 高宏雷, 于海波, 刘长军, 祁小乐, 张伟, 张艳萍, 高玉龙. 鸡传染性贫血病毒对SPF鸡的致病特性及其排毒规律研究[J]. 畜牧兽医学报, 2024, 55(12): 5684-5691. |
| [4] | 黄康溦, 周鹏程, 田晨宇, 兰怡, 孙志良. 首次从湖南猪源大肠杆菌中检出mcr-1阳性IncI2(Delta)质粒[J]. 畜牧兽医学报, 2024, 55(11): 5278-5286. |
| [5] | 丰鑫, 汪铭书, 程安春. 甲型疱疹病毒亚科的疱疹病毒囊膜糖蛋白gC对病毒感染复制的影响[J]. 畜牧兽医学报, 2022, 53(9): 2867-2876. |
| [6] | 赵佳琦, 文勇立, 安雅静, 李子谦, 齐沛森, 李强, 候定超. 牦牛瘤胃微生物抗生素抗性基因对3种外源性刺激因子的响应[J]. 畜牧兽医学报, 2020, 51(5): 1126-1137. |
| [7] | 翟亚军, 梁军, 魏单单, 孙华润, 潘玉善, 吴华, 刘建华, 胡功政. CpxR对鼠伤寒沙门菌的黏菌素耐药相关基因pmrB和phoQ调控作用的研究[J]. 畜牧兽医学报, 2019, 50(6): 1284-1291. |
| [8] | 吴正常, 冯海悦, 黄焱杰, 吴丽思, 吴圣龙, 包文斌. F18大肠杆菌抗性型与敏感型苏太断奶仔猪十二指肠组织比较转录组分析[J]. 畜牧兽医学报, 2018, 49(10): 2112-2123. |
| [9] | 孙赫, 张亚超, 上官振坤, 张益, 范若兰, 李航, 关松磊, 张林波. 多黏菌素耐药基因的变异特征及传播规律的研究现状[J]. 畜牧兽医学报, 2018, 49(10): 2102-2111. |
| [10] | 王宏栋,徐国锋,矫薇薇,张秀英. 猪源氟喹诺酮耐药大肠杆菌通过接合水平传递耐药性的研究[J]. 畜牧兽医学报, 2016, 47(4): 805-811. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||