

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 4787-4795.doi: 10.11843/j.issn.0366-6964.2025.10.003
高志苗1,2(
), 倪海花3, 王彦平1, 赵雪艳1, 李菁璇1, 王继英1,*(
), 张勤2,*(
)
收稿日期:2025-02-17
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
王继英,张勤
E-mail:gzm230906@126.com;jnwangjiying@163.com;qzhang@sdau.edu.cn
作者简介:高志苗(1995-),女,蒙古族,河北张家口人,硕士生,主要从事猪遗传育种研究,E-mail: gzm230906@126.com
基金资助:
GAO Zhimiao1,2(
), NI Haihua3, WANG Yanping1, ZHAO Xueyan1, LI Jingxuan1, WANG Jiying1,*(
), ZHANG Qin2,*(
)
Received:2025-02-17
Online:2025-10-23
Published:2025-11-01
Contact:
WANG Jiying, ZHANG Qin
E-mail:gzm230906@126.com;jnwangjiying@163.com;qzhang@sdau.edu.cn
摘要:
随着组学技术的飞速发展,各层次组学的高通量检测技术不断涌现。代谢组学作为20世纪后期兴起的一个新近研究领域,不仅可以对生物体内的所有代谢物进行识别与检测,还可以借助先进的分析技术与数据处理平台对收集到的代谢物信息进行深入、全面的解析。它不仅可以全面、动态地监测猪生长发育过程中体内的代谢变化,而且还可结合多组学数据联合分析为经济性状的机理解析提供新方法。本文主要概述了代谢组学在猪生长、肉质、繁殖、抗病等重要经济性状研究中的最新进展,探讨其面临的挑战和应用前景,为未来代谢组学在猪重要经济性状研究中的应用提供参考。
中图分类号:
高志苗, 倪海花, 王彦平, 赵雪艳, 李菁璇, 王继英, 张勤. 代谢组学应用于猪重要经济性状遗传解析[J]. 畜牧兽医学报, 2025, 56(10): 4787-4795.
GAO Zhimiao, NI Haihua, WANG Yanping, ZHAO Xueyan, LI Jingxuan, WANG Jiying, ZHANG Qin. Application of Metabolomics in Genetic Analysis of Important Economic Traits in Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 4787-4795.
| 1 |
WEI J , SUN J , PAN Y , et al. Revealing genes related teat number traits via genetic variation in yorkshire pigs based on whole-genome sequencing[J]. BMC Genomics, 2024, 25, 1217.
doi: 10.1186/s12864-024-11109-0 |
| 2 |
MA G , TAN X , YAN Y , et al. A genome-wide association study identified candidate regions and genes for commercial traits in a landrace population[J]. Front Genet, 2025, 15, 1505197.
doi: 10.3389/fgene.2024.1505197 |
| 3 |
ZHAO X , JIA W , WANG J , et al. Identification of a candidate gene regulating intramuscular fat content in pigs through the integrative analysis of transcriptomics and proteomics data[J]. J Agric Food Chem, 2023, 71 (48): 19154- 19164.
doi: 10.1021/acs.jafc.3c05806 |
| 4 |
CORBETT R J , FORD L M , RANEY N E , et al. Pig fetal skeletal muscle development is associated with genome-wide DNA hypomethylation and corresponding alterations in transcript and microRNA expression[J]. Genome, 2023, 66 (4): 68- 79.
doi: 10.1139/gen-2022-0008 |
| 5 |
GOLDANSAZ S A , GUO A C , SAJED T , et al. Livestock metabolomics and the livestock metabolome: A systematic review[J]. PLoS One, 2017, 12 (5): e0177675.
doi: 10.1371/journal.pone.0177675 |
| 6 | 马春芳, 张金宝, 张慧宁, 等. 代谢组学技术及其在动物生产中的应用[J]. 动物医学进展, 2025, 46 (2): 120- 124. |
| MA C F , ZHANG J B , ZHANG H N , et al. Metabolomics technology and its application in animal production[J]. Progress in Veterinary Medicine, 2025, 46 (2): 120- 124. | |
| 7 | 刘瑞, 金龙, 李明洲. 代谢组学在农业动物中的研究与应用[J]. 中国畜牧杂志, 2018, 54 (6): 1- 5. |
| LIU R , JIN L , LI M Z . Research and application of metabolomics in agricultural animals[J]. Chinese Journal of Animal Husbandry, 2018, 54 (6): 1- 5. | |
| 8 |
NICHOLSON J K , WILSON I D . Understanding "global" systems biology: Metabonomics and the continuum of metabolism[J]. Nat Rev Drug Discov, 2003, 2 (8): 668- 676.
doi: 10.1038/nrd1157 |
| 9 | AN M , AT F , TS F , et al. Analytical platforms for mass spectrometry-based metabolomics of polar and ionizable metabolites[J]. Adv Exp Med Biol, 2021, 1336, 215- 242. |
| 10 | WILSON I D, WANT E. Untargeted metabolic phenotyping by LC-MS[M]//DEDA O, GIKA H G, WILSON I D. Metabolic Profiling: Vol 2891. New York, NY: Springer US, 2025: 109-129. |
| 11 |
WU S , LIU M , CHEN H , et al. Tryptophan regulates bile and nitrogen metabolism in two pig gut lactobacilli species in vitro based on metabolomics study[J]. Amino Acids, 2022, 54 (10): 1421- 1435.
doi: 10.1007/s00726-022-03179-9 |
| 12 |
CAO M , HAN Q , ZHANG J , et al. An untargeted and pseudotargeted metabolomic combination approach to identify differential markers to distinguish live from dead pork meat by liquid chromatography-mass spectrometry[J]. J Chromatogr A, 2020, 1610, 460553.
doi: 10.1016/j.chroma.2019.460553 |
| 13 | EMWAS A H M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research[M]//BJERRUM J T. Metabonomics: Vol 1277. New York, NY: Springer New York, 2015: 161-193. |
| 14 |
PEREZ DE SOUZA L , ALSEEKH S , SCOSSA F , et al. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research[J]. Nat Methods, 2021, 18 (7): 733- 746.
doi: 10.1038/s41592-021-01116-4 |
| 15 |
CIBOROWSKI M , LIPSKA A , GODZIEN J , et al. Combination of LC-MS- and GC-MS-based metabolomics to study the effect of ozonated autohemotherapy on human blood[J]. J Proteome Res, 2012, 11 (12): 6231- 6241.
doi: 10.1021/pr3008946 |
| 16 |
GONZÁLEZ-RIANO C , DUDZIK D , GARCIA A , et al. Recent developments along the analytical process for metabolomics workflows[J]. Anal Chem, 2020, 92 (1): 203- 226.
doi: 10.1021/acs.analchem.9b04553 |
| 17 | ZHANG A , SUN H , WANG P , et al. Modern analytical techniques in metabolomics analysis[J]. Analyst, 2011, 137 (2): 293- 300. |
| 18 |
PICONE G , ZAPPATERRA M , LUISE D , et al. Metabolomics characterization of colostrum in three sow breeds and its influences on piglets' survival and litter growth rates[J]. J Anim Sci Biotechnol, 2018, 9, 23.
doi: 10.1186/s40104-018-0237-1 |
| 19 |
XIE Z , GAN M , DU J , et al. Comparison of growth performance and plasma metabolomics between two sire-breeds of pigs in China[J]. Genes (Basel), 2023, 14 (9): 1706.
doi: 10.3390/genes14091706 |
| 20 |
BOVO S , BOLNER M , SCHIAVO G , et al. High-throughput untargeted metabolomics reveals metabolites and metabolic pathways that differentiate two divergent pig breeds[J]. Animal, 2025, 19 (1): 101393.
doi: 10.1016/j.animal.2024.101393 |
| 21 | CAI S , DUO T , WANG X , et al. A comparative analysis of metabolic profiles of embryonic skeletal muscle from lantang and landrace pigs[J]. Animals (Basel), 2022, 12 (4): 420. |
| 22 |
WANG S , CHEN D , JI X , et al. Multi-omics unveils tryptophan metabolic pathway as a key pathway influencing residual feed intake in duroc swine[J]. Front Vet Sci, 2024, 11, 1403493.
doi: 10.3389/fvets.2024.1403493 |
| 23 |
WANG Z , HE Y , WANG C , et al. Variations in microbial diversity and metabolite profiles of female landrace finishing pigs with distinct feed efficiency[J]. Front Vet Sci, 2021, 8, 702931.
doi: 10.3389/fvets.2021.702931 |
| 24 |
JUIGNÉ C , BECKER E , GONDRET F . Small networks of expressed genes in the whole blood and relationships to profiles in circulating metabolites provide insights in inter-individual variability of feed efficiency in growing pigs[J]. BMC Genomics, 2023, 24, 647.
doi: 10.1186/s12864-023-09751-1 |
| 25 |
WANG X , KADARMIDEEN H N . Metabolite genome-wide association study (mGWAS) and gene-metabolite interaction network analysis reveal potential biomarkers for feed efficiency in pigs[J]. Metabolites, 2020, 10 (5): 201.
doi: 10.3390/metabo10050201 |
| 26 |
SONG B , CHENG Y , AZAD M A K , et al. Muscle characteristics comparison and targeted metabolome analysis reveal differences in carcass traits and meat quality of three pig breeds[J]. Food Funct, 2023, 14 (16): 7603- 7614.
doi: 10.1039/D2FO03709B |
| 27 |
DENG L , LI W , LIU W , et al. Integrative metabolomic and transcriptomic analysis reveals difference in glucose and lipid metabolism in the longissimus muscle of luchuan and duroc pigs[J]. Front Genet, 2023, 14, 1128033.
doi: 10.3389/fgene.2023.1128033 |
| 28 |
DAN H , LIU C , ZHANG H , et al. Integrated transcriptomic and metabolomic analyses reveal heterosis for meat quality of neijiang pigs[J]. Front Vet Sci, 2024, 11, 1493284.
doi: 10.3389/fvets.2024.1493284 |
| 29 | 周浩迪. 血浆代谢组学与猪肉pH及肉色品质的关系研究[D]. 雅安: 四川农业大学, 2022. |
| ZHOU H D. Study on the relationship between plasma metabolomics and pork pH and meat color quality[D]. Yaan: Sichuan Agricultural University, 2022. (in Chinese) | |
| 30 |
WELZENBACH J , NEUHOFF C , LOOFT C , et al. Different statistical approaches to investigate porcine muscle metabolome profiles to highlight new biomarkers for pork quality assessment[J]. PLoS One, 2016, 11 (2): e0149758.
doi: 10.1371/journal.pone.0149758 |
| 31 |
ZHAN H , XIONG Y , WANG Z , et al. Integrative analysis of transcriptomic and metabolomic profiles reveal the complex molecular regulatory network of meat quality in enshi black pigs[J]. Meat Sci, 2022, 183, 108642.
doi: 10.1016/j.meatsci.2021.108642 |
| 32 |
SHEN L , MA J , ZHOU H , et al. Plasma metabolomic profiling reveals preliminary biomarkers of pork quality based on pH value[J]. Foods, 2022, 11 (24): 4005.
doi: 10.3390/foods11244005 |
| 33 |
LIU H , HE J , YUAN Z , et al. Metabolomics analysis provides novel insights into the difference in meat quality between different pig breeds[J]. Foods, 2023, 12 (18): 3476.
doi: 10.3390/foods12183476 |
| 34 |
HUANG Y , ZHOU L , ZHANG J , et al. A large-scale comparison of meat quality and intramuscular fatty acid composition among three Chinese indigenous pig breeds[J]. Meat Sci, 2020, 168, 108182.
doi: 10.1016/j.meatsci.2020.108182 |
| 35 |
HOU X , ZHANG R , YANG M , et al. Metabolomics and lipidomics profiles related to intramuscular fat content and flavor precursors between laiwu and yorkshire pigs[J]. Food Chem, 2023, 404, 134699.
doi: 10.1016/j.foodchem.2022.134699 |
| 36 |
YU T , TIAN X , LI D , et al. Transcriptome, proteome and metabolome analysis provide insights on fat deposition and meat quality in pig[J]. Food Res Int, 2023, 166, 112550.
doi: 10.1016/j.foodres.2023.112550 |
| 37 | ZHANG R , YANG M , HOU X , et al. Characterization and difference of lipids and metabolites from jianhe white xiang and large white pork by high-performance liquid chromatography-tandem mass spectrometry[J]. Food Res Int, 2022, 162 (Pt A): 111946. |
| 38 |
ZHANG Y , DING N , CAO J , et al. Proteomics and metabolic characteristics of boar seminal plasma extracellular vesicles reveal biomarker candidates related to sperm motility[J]. J Proteome Res, 2024, 23 (9): 3764- 3779.
doi: 10.1021/acs.jproteome.4c00060 |
| 39 | ZHANG Y , LIANG H , LIU Y , et al. Metabolomic analysis and identification of sperm freezability-related metabolites in boar seminal plasma[J]. Animals (Basel), 2021, 11 (7): 1939. |
| 40 | CHENG J , HAO X , ZHANG W , et al. Proteomic and metabolomic profiling reveals alterations in boar X and Y sperm[J]. Animals (Basel), 2024, 14 (24): 3672. |
| 41 |
FLETCHER L , AKHTAR N , ZHAN X , et al. Identification of candidate salivary, urinary and serum metabolic biomarkers for high litter size potential in sows (sus scrofa)[J]. Metabolites, 2022, 12 (11): 1045.
doi: 10.3390/metabo12111045 |
| 42 |
PAN B , CHAI J , FEI K , et al. Dynamic changes in the transcriptome and metabolome of pig ovaries across developmental stages and gestation[J]. BMC Genomics, 2024, 25, 1193.
doi: 10.1186/s12864-024-11122-3 |
| 43 |
REN Y , ZHANG Q , HE F , et al. Metabolomics reveals early pregnancy biomarkers in sows: A non-invasive diagnostic approach[J]. Front Vet Sci, 2024, 11, 1396492.
doi: 10.3389/fvets.2024.1396492 |
| 44 |
ZHOU C , CAI G , MENG F , et al. Urinary metabolomics reveals the biological characteristics of early pregnancy in pigs[J]. Porcine Health Manag, 2022, 8 (1): 14.
doi: 10.1186/s40813-022-00256-z |
| 45 |
WANG S , WU P , WANG K , et al. Comparative metabolome profiling of serum and urine from sows with a high prevalence of piglet mummification and normal sows at different stages of pregnancy[J]. Theriogenology, 2022, 183, 10- 25.
doi: 10.1016/j.theriogenology.2022.02.012 |
| 46 |
MO J , SUN L , CHENG J , et al. Non-targeted metabolomics reveals metabolic characteristics of porcine atretic follicles[J]. Front Vet Sci, 2021, 8, 679947.
doi: 10.3389/fvets.2021.679947 |
| 47 |
YANG L , LIU X , HUANG X , et al. Metabolite and proteomic profiling of serum reveals the differences in molecular immunity between min and large white pig breeds[J]. Int J Mol Sci, 2023, 24 (6): 5924.
doi: 10.3390/ijms24065924 |
| 48 |
DERVISHI E , BAI X , CHENG J , et al. Exploration of plasma metabolite levels in healthy nursery pigs in response to environmental enrichment and disease resilience[J]. J Anim Sci, 2023, 101, skad033.
doi: 10.1093/jas/skad033 |
| 49 |
WU Q , HAN Y , WU X , et al. Integrated time-series transcriptomic and metabolomic analyses reveal different inflammatory and adaptive immune responses contributing to host resistance to PRRSV[J]. Front Immunol, 2022, 13, 960709.
doi: 10.3389/fimmu.2022.960709 |
| 50 |
PISCOPO N , COSTANZO M , GELZO M , et al. Effect of the sarcoptic mange upon metabolome profiling in wild boars[J]. Res Vet Sci, 2025, 183, 105505.
doi: 10.1016/j.rvsc.2024.105505 |
| 51 |
MA J , GAN M , CHEN S , et al. Metabolome and transcriptome profiling reveal tRNA-derived small RNAs regulated glutathione metabolism in intrauterine growth-restricted pigs[J]. Int J Biol Macromol, 2025, 293, 139167.
doi: 10.1016/j.ijbiomac.2024.139167 |
| 52 |
WEI B , ZHENG J , CHAI J , et al. Metabolomic and proteomic profiling of a burn-hemorrhagic shock swine model reveals a metabolomic signature associated with fatal outcomes[J]. Eur J Med Res, 2025, 30, 10.
doi: 10.1186/s40001-024-02245-0 |
| 53 |
LIU Y , ZHANG K , ZHENG H , et al. Proteomics analysis of porcine serum proteins by LC-MS/MS after foot-and-mouth disease virus (FMDV) infection[J]. J Vet Med Sci, 2011, 73 (12): 1569- 1572.
doi: 10.1292/jvms.11-0019 |
| 54 | 姚伦. 伪狂犬病毒感染猪肺泡巨噬细胞代谢组学研究及靶向树突状细胞的新型疫苗构建[D]. 武汉: 华中农业大学, 2023. |
| YAO L. Metabolomics study of porcine alveolar macrophages infected with pseudorabies virus and construction of new vaccines targeting dendritic cells[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese) | |
| 55 |
NOVOA-DEL-TORO E M , WITTING M . Navigating common pitfalls in metabolite identification and metabolomics bioinformatics[J]. Metabolomics, 2024, 20 (5): 103.
doi: 10.1007/s11306-024-02167-2 |
| 56 |
IZUMI Y , MATSUDA F , HIRAYAMA A , et al. Inter-laboratory comparison of metabolite measurements for metabolomics data integration[J]. Metabolites, 2019, 9 (11): 257.
doi: 10.3390/metabo9110257 |
| 57 |
HAN W , LI L . Evaluating and minimizing batch effects in metabolomics[J]. Mass Spectrom Rev, 2022, 41 (3): 421- 442.
doi: 10.1002/mas.21672 |
| 58 |
LIAO H W , CHENG Y W , TANG S C , et al. Bias caused by incomplete metabolite extraction and matrix effect: Evaluation of critical factors for plasma sample preparation prior to metabolomics[J]. J Pharm Biomed Anal, 2022, 219, 114930.
doi: 10.1016/j.jpba.2022.114930 |
| 59 |
YU T , TIAN X , LI D , et al. Transcriptome, proteome and metabolome analysis provide insights on fat deposition and meat quality in pig[J]. Food Res Int, 2023, 166, 112550.
doi: 10.1016/j.foodres.2023.112550 |
| 60 | GOH H H. Integrative multi-omics through bioinformatics[M]//AIZAT W M, GOH H H, BAHARUM S N. Omics Applications for Systems Biology. Cham: Springer International Publishing, 2018: 69-80. |
| 61 | 叶妱阳, 李玉凤, 彭聪, 等. 基于人工智能与组学技术探索糖尿病合并结核病生物标志物的研究进展[J]. 中国临床保健杂志, 2025, 28 (2): 279- 283. |
| YE Z Y , LI Y F , PENG C , et al. Research progress on biomarkers of diabetes mellitus complicated with tuberculosis based on artificial intelligence and omics technology[J]. Chinese Journal of Clinical Health, 2025, 28 (2): 279- 283. |
| [1] | 田姣, 龙菊烟, 陈霞, 岑晓丽, 牛熙, 黄世会, 王嘉福, 冉雪琴. 香猪ENTPD1基因3'UTR的SINE插入下调其基因表达[J]. 畜牧兽医学报, 2025, 56(9): 4303-4314. |
| [2] | 覃阳, 夏嗣廷, 何流琴, 王天丽, 刘宇炎, 姜肖翰, 刘智豪, 刘思危, 李铁军, 印遇龙. 慢性氧化应激对断奶仔猪器官组织微量元素含量的影响[J]. 畜牧兽医学报, 2025, 56(9): 4452-4460. |
| [3] | 茹敏, 蒋小丰, 罗国升, 武永厚. 饲粮添加枯草芽孢杆菌对大肠杆菌攻毒仔猪生长性能、血清免疫及抗氧化功能、肠道形态和微生物的影响[J]. 畜牧兽医学报, 2025, 56(9): 4461-4471. |
| [4] | 桂若虹, 曹洪战, 刘松瓒, 刘吉祥, 赵嘉龙, 芦春莲. 饲粮不同代谢能和SID赖氨酸水平对高产哺乳深县母猪相关性能的影响[J]. 畜牧兽医学报, 2025, 56(9): 4472-4490. |
| [5] | 邱话龙传, 金芊芊, 许潇涵, 周静, 蔡承志, 李龙. 基于纳米孔测序的十种猪病原检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4546-4558. |
| [6] | 刘君君, 郭东辉, 刘缓缓, 宋润泽, 赵赛娅, 杨钧尧, 魏战勇, 项玉强, 陈丽颖. 基于免疫磁珠的智能手机辅助比色传感平台用于PDCoV/TGEV IgG抗体的快速检测[J]. 畜牧兽医学报, 2025, 56(9): 4559-4571. |
| [7] | 李慧敏, 雷铭楷, 阮胜男, 李盼盼, 李文涛, 何启盖. 猪流行性腹泻病毒荧光微球免疫层析抗原检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4572-4580. |
| [8] | 国桂海, 马茹梦, 尹方洁, 刘芯孜, 王梓, 孟伟静, 李佳璇, 崔文, 姜艳平, 唐丽杰, 赵海渊, 王晓娜. 表达猪流行性腹泻病毒S1基因重组罗伊氏黏液乳杆菌诱导仔猪特异性免疫应答的研究[J]. 畜牧兽医学报, 2025, 56(9): 4581-4592. |
| [9] | 陶丽寒, 林翠, 吴诚诚, 康昭风, 黄建珍. 猪丁型冠状病毒编码蛋白结构与功能研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3678-3689. |
| [10] | 胡金玲, 钟奇祺, 黄程, 雷明刚. AKR1B1介导AMPK/mTOR/S6通路调控猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2025, 56(8): 3722-3733. |
| [11] | 迟顺顺, 吴丹, 王楠, 王婉洁, 聂雨欣, 牟玉莲, 刘志国, 朱振东, 李奎. 基于RPA-CRISPR/Cas12a的MSTN基因编辑猪检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(8): 3734-3748. |
| [12] | 刘莎, 杨彩春, 张晓雨, 陈琼, 刘雄, 陈洪波, 周焕焕, 史良玉. 基于80K SNP芯片的梅花星猪群体遗传结构解析及全基因组连续纯合片段特征研究[J]. 畜牧兽医学报, 2025, 56(8): 3749-3760. |
| [13] | 李伉, 陈思颍, 孙雅雯, 冷璇, 王栋, 崔凯, 庞云渭. 甜菜碱对猪孤雌激活胚胎体外发育的影响[J]. 畜牧兽医学报, 2025, 56(8): 3826-3836. |
| [14] | 曹宁, 张虎, 王俊丽, 萨仁娜, 赵峰, 解竞静, 高理想, 赵江涛, 董莹, 王钰明. 干燥方式对仿生法测定猪饲料氨基酸消化率的影响[J]. 畜牧兽医学报, 2025, 56(8): 3893-3907. |
| [15] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氨基葡萄糖对断奶仔猪血清抗氧化、炎症指标以及肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(8): 3908-3921. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||