1 |
KHAN M I , JO C , TARIQ M R . Meat flavor precursors and factors influencing flavor precursors—A systematic review[J]. Meat Sci, 2015, 110, 278- 284.
doi: 10.1016/j.meatsci.2015.08.002
|
2 |
CAMERON N D , ENSER M , NUTE G R , et al. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat[J]. Meat Sci, 2000, 55 (2): 187- 195.
doi: 10.1016/S0309-1740(99)00142-4
|
3 |
MATEESCU R G , GARRICK D J , GARMYN A J , et al. Genetic parameters for sensory traits in longissimus muscle and their associations with tenderness, marbling score, and intramuscular fat in Angus cattle[J]. J Anim Sci, 2015, 93 (1): 21- 27.
doi: 10.2527/jas.2014-8405
|
4 |
OKEUDO N J , MOSS B W . Interrelationships amongst carcass and meat quality characteristics of sheep[J]. Meat Sci, 2005, 69 (1): 1- 8.
doi: 10.1016/j.meatsci.2004.04.011
|
5 |
BLASCO A , NAGY I , HERNÁNDEZ P . Genetics of growth, carcass and meat quality in rabbits[J]. Meat Sci, 2018, 145, 178- 185.
doi: 10.1016/j.meatsci.2018.06.030
|
6 |
HU T T , LI Z B , GONG C S , et al. FOS inhibits the differentiation of intramuscular adipocytes in goats[J]. Genes (Basel), 2023, 14 (11): 2088.
doi: 10.3390/genes14112088
|
7 |
ZHANG Y Y , WANG Y N , WANG H B , et al. MicroRNA-224 impairs adipogenic differentiation of bovine preadipocytes by targeting LPL[J]. Mol Cell Probes, 2019, 44, 29- 36.
doi: 10.1016/j.mcp.2019.01.005
|
8 |
PEWAN S B , OTTO J R , HUERLIMANN R , et al. Genetics of omega-3 long-chain polyunsaturated fatty acid metabolism and meat eating quality in Tattykeel Australian white lambs[J]. Genes (Basel), 2020, 11 (5): 587.
doi: 10.3390/genes11050587
|
9 |
LI Y F , CHEN Y , JIN W J , et al. Analyses of MicroRNA and mRNA expression profiles reveal the crucial interaction networks and pathways for regulation of chicken breast muscle development[J]. Front Genet, 2019, 10, 197.
doi: 10.3389/fgene.2019.00197
|
10 |
赵峰, 康相涛, 白晓辉, 等. 父母代固始鸡空肠的发育形态学研究[J]. 家畜生态学报, 2007, 28 (5): 48- 51.
|
|
ZHAO F , KANG X T , BAI X H , et al. Study on the developmental morphology of the jejunum in the parental line of Gushi chickens[J]. Acta Ecologae Animalis Domastici, 2007, 28 (5): 48- 51.
|
11 |
LI H, LI S, ZHANG H, et al. Integrated GWAS and transcriptome analysis reveals key genes associated with muscle fibre and fat traits in Gushi chicken[J/OL]. British Poultry Science, 2024, doi: 10.1080/00071668.2024.2400685.
|
12 |
FAN S X , YUAN P T , LI S H , et al. Genetic architecture and key regulatory genes of fatty acid composition in Gushi chicken breast muscle determined by GWAS and WGCNA[J]. BMC Genomics, 2023, 24 (1): 434.
doi: 10.1186/s12864-023-09503-1
|
13 |
PARKER F , MAURIER F , DELUMEAU I , et al. A Ras-GTPase-activating protein SH3-domain-binding protein[J]. Mol Cell Biol, 1996, 16 (6): 2561- 2569.
doi: 10.1128/MCB.16.6.2561
|
14 |
TOCQUE B , DELUMEAU I , PARKER F , et al. Ras-GTPase activating protein (GAP): A putative effector for Ras[J]. Cell Signal, 1997, 9 (2): 153- 158.
doi: 10.1016/S0898-6568(96)00135-0
|
15 |
MATSUKI H , TAKAHASHI M , HIGUCHI M , et al. Both G3BP1 and G3BP2 contribute to stress granule formation[J]. Genes Cells, 2013, 18 (2): 135- 146.
doi: 10.1111/gtc.12023
|
16 |
TSAI W C , GAYATRI S , REINEKE L C , et al. Arginine demethylation of G3BP1 promotes stress granule assembly[J]. J Biol Chem, 2016, 291 (43): 22671- 22685.
doi: 10.1074/jbc.M116.739573
|
17 |
WINSLOW S , LEANDERSSON K , LARSSON C . Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast cancer cells[J]. Mol Cancer, 2013, 12 (1): 156.
doi: 10.1186/1476-4598-12-156
|
18 |
ZHENG X C , CHEN J W , DENG M H , et al. G3BP1 and SLU7 jointly promote immune evasion by downregulating MHC-Ⅰ via PI3K/Akt activation in bladder cancer[J]. Adv Sci (Weinh), 2024, 11 (7): e2305922.
doi: 10.1002/advs.202305922
|
19 |
GE Y D , JIN J B , CHEN G , et al. Endometrial cancer (EC) derived G3BP1 overexpression and mutant promote EC tumorigenesis and metastasis via SPOP/ERα axis[J]. Cell Commun Signal, 2023, 21 (1): 303.
doi: 10.1186/s12964-023-01342-7
|
20 |
邵琪, 屈阳, 朱子晨, 等. 应用G3BP1稳转细胞系监测应激状态下的应激颗粒形成[J]. 畜牧兽医学报, 2020, 51 (9): 2275- 2283.
doi: 10.11843/j.issn.0366-6964.2020.09.025
|
|
SHAO Q , QU Y , ZHU Z C , et al. Monitoring of stress granule formation under stress by G3BP1 stable expressing cell line[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (9): 2275- 2283.
doi: 10.11843/j.issn.0366-6964.2020.09.025
|
21 |
张频, 孙英杰, 郑航, 等. 鸡G3BP1在新城疫病毒感染诱导应激颗粒形成过程中的作用[J]. 畜牧兽医学报, 2017, 48 (3): 515- 521.
doi: 10.11843/j.issn.0366-6964.2017.03.015
|
|
ZHANG P , SUN Y J , ZHENG H , et al. The role of chicken G3BP1 in the formation of stress granules induced by newcastle disease virus infection[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (3): 515- 521.
doi: 10.11843/j.issn.0366-6964.2017.03.015
|
22 |
LV S , MA M L , SUN Y M , et al. MicroRNA-129-5p inhibits 3T3-L1 preadipocyte proliferation by targeting G3BP1[J]. Anim Cells Syst (Seoul), 2017, 21 (4): 269- 277.
doi: 10.1080/19768354.2017.1337046
|
23 |
HAN R L , WEI Y , KANG X T , et al. Novel SNPs in the PRDM16 gene and their associations with performance traits in chickens[J]. Mol Biol Rep, 2012, 39 (3): 3153- 3160.
doi: 10.1007/s11033-011-1081-y
|
24 |
BALLESTER M , CASTELLÓ A , IBÁÑEZ E , et al. Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals[J]. Biotechniques, 2004, 37 (4): 610- 613.
doi: 10.2144/04374ST06
|
25 |
马凤英, 张景萍, 付绍印, 等. 影响绵羊肉质因素的研究进展[J]. 饲料研究, 2023, 46 (10): 134- 138.
|
|
MA F Y , ZHANG J P , FU S Y , et al. Research progress on factors affecting sheep meat quality[J]. Feed Research, 2023, 46 (10): 134- 138.
|
26 |
PIAO M Y , YONG H I , LEE H J , et al. Comparison of fatty acid profiles and volatile compounds among quality grades and their association with carcass characteristics in longissimus dorsi and semimembranosus muscles of Korean cattle steer[J]. Livest Sci, 2017, 198, 147- 156.
doi: 10.1016/j.livsci.2017.02.021
|
27 |
祝仁铸. 野莱F1猪肉品质及肌内脂肪沉积机理的研究[D]. 泰安: 山东农业大学, 2013.
|
|
ZHU R Z. Study on the meat qualities and the sedimentary mechanism of intramuscular fat in YL F1 pigs[D]. Taian: Shandong Agricultural University, 2013. (in Chinese)
|
28 |
LU T , ABDALLA GIBRIL B A , XU J G , et al. Unraveling the genetic foundations of broiler meat quality: Advancements in research and their impact[J]. Genes (Basel), 2024, 15 (6): 746.
doi: 10.3390/genes15060746
|
29 |
CAO Y Z , XING Y X , GUAN H B , et al. Genomic insights into molecular regulation mechanisms of intramuscular fat deposition in chicken[J]. Genes (Basel), 2023, 14 (12): 2197.
doi: 10.3390/genes14122197
|
30 |
NOTHNAGEL M , FÜRST R , ROHDE K . Entropy as a measure for linkage disequilibrium over multilocus haplotype blocks[J]. Hum Hered, 2002, 54 (4): 186- 198.
doi: 10.1159/000070664
|
31 |
AKEY J , JIN L , XIONG M M . Haplotypes vs single marker linkage disequilibrium tests: what do we gain?[J]. Eur J Hum Genet, 2001, 9 (4): 291- 300.
doi: 10.1038/sj.ejhg.5200619
|
32 |
ZHANG W Z , WANG L , RAZA S H A , et al. MiR-33a plays a crucial role in the proliferation of bovine preadipocytes[J]. Adipocyte, 2021, 10 (1): 189- 200.
doi: 10.1080/21623945.2021.1908655
|
33 |
ZHAO C Z , WU H G , CHEN P R , et al. MAT2A/2B promote porcine intramuscular preadipocyte proliferation through ERK signaling pathway[J]. Anim Sci J, 2019, 90 (9): 1278- 1286.
doi: 10.1111/asj.13264
|
34 |
CRISTANCHO A G , LAZAR M A . Forming functional fat: a growing understanding of adipocyte differentiation[J]. Nat Rev Mol Cell Biol, 2011, 12 (11): 722- 734.
doi: 10.1038/nrm3198
|
35 |
ZHANG W Z , RAZA S H A , LI B Z , et al. miR-33a inhibits the differentiation of bovine preadipocytes through the IRS2-Akt pathway[J]. Genes (Basel), 2023, 14 (2): 529.
doi: 10.3390/genes14020529
|
36 |
AMBELE M A , DHANRAJ P , GILES R , et al. Adipogenesis: A complex interplay of multiple molecular determinants and pathways[J]. Int J Mol Sci, 2020, 21 (12): 4283.
doi: 10.3390/ijms21124283
|
37 |
LIU S S , FANG X , WEN X , et al. How mesenchymal stem cells transform into adipocytes: Overview of the current understanding of adipogenic differentiation[J]. World J Stem Cells, 2024, 16 (3): 245- 256.
|
38 |
WU M Y , MI J W , QU G X , et al. Role of hedgehog signaling pathways in multipotent mesenchymal stem cells differentiation[J]. Cell Transplant, 2024, 33, 9636897241244943.
|
39 |
ENGIN A B . MicroRNA and Adipogenesis[J]. Adv Exp Med Biol, 2017, 960, 489- 509.
|
40 |
MELNIK B C , WEISKIRCHEN R , STREMMEL W , et al. Risk of fat mass- and obesity-associated gene-dependent obesogenic programming by formula feeding compared to breastfeeding[J]. Nutrients, 2024, 16 (15): 2451.
|