畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (8): 2417-2434.doi: 10.11843/j.issn.0366-6964.2022.08.002
李亭亭1, 刘秋月2, 李向臣1*, 王海涛2*
收稿日期:
2021-12-22
出版日期:
2022-08-23
发布日期:
2022-08-23
通讯作者:
王海涛,主要从事肉羊遗传育种研究,E-mail:wanght@genetics.ac.cn;李向臣,主要从事畜禽遗传资源保存与应用,E-mail:xcli863@zafu.edu.cn
作者简介:
李亭亭(1996-),女,河南周口人,硕士生,主要从事肉羊遗传育种研究,E-mail:2644114273@qq.com
基金资助:
LI Tingting1, LIU Qiuyue2, LI Xiangchen1*, WANG Haitao2*
Received:
2021-12-22
Online:
2022-08-23
Published:
2022-08-23
摘要: 绵羊是重要的农业经济动物之一,不同绵羊品种具有各自独特的性状。利用性状存在变异的绵羊个体,对其进行基因组水平的分析,可以定位获得影响某种性状的基因区段或主效突变位点,鉴定得到的这些重要基因可为绵羊遗传育种提供分子标记,加快遗传选育进程。文章综述了在绵羊中鉴定得到的影响繁殖、生长、抗病及抗逆性状的主效基因发现过程及相应的调控机理,同时还综述了这些基因在绵羊分子育种方面的研究进展,有助于后续探索这些重要基因的具体分子机制,并为绵羊分子育种提供新思路。
中图分类号:
李亭亭, 刘秋月, 李向臣, 王海涛. 绵羊经济性状相关基因研究进展及其应用[J]. 畜牧兽医学报, 2022, 53(8): 2417-2434.
LI Tingting, LIU Qiuyue, LI Xiangchen, WANG Haitao. Research Progress and Applications of Genes Associated with Economic Traits in Sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2417-2434.
[1] | ZEDER M A.Domestication and early agriculture in the Mediterranean Basin:origins, diffusion, and impact[J].Proc Natl Acad Sci USA, 2008, 105(33):11597-11604. |
[2] | WANG H H, ZHANG L, CAO J X, et al.Genome-wide specific selection in three domestic sheep breeds[J].PLos One, 2015, 10(6):e0128688. |
[3] | ZHANG X M, LI W R, LIU C X, et al.Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9[J].Sci Rep, 2017, 7(1):8149. |
[4] | NIU Y, JIN M, LI Y, et al.Biallelic β-carotene oxygenase 2 knockout results in yellow fat in sheep via CRISPR/Cas9[J].Anim Genet, 2017, 48(2):242-244. |
[5] | CHANG Y Y, SHAO J J, GAO Y, et al.Reporter gene knock-in into Marc-145 cells using CRISPR/Cas9-mediated homologous recombination[J].Biotechnol Lett, 2020, 42(8):1317-1325. |
[6] | MENCHACA A, DOS SANTOS-NETO P C, SOUZA-NEVES M, et al.Otoferlin gene editing in sheep via CRISPR-assisted ssODN-mediated homology directed repair[J].Sci Rep, 2020, 10(1):5995. |
[7] | KOMOR A C, KIM Y B, PACKER M S, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature, 2016, 533(7603):420-424. |
[8] | GAUDELLI N M, KOMOR A C, REES H A, et al.Publisher correction:programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature, 2018, 559(7714):E8. |
[9] | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature, 2019, 576(7785):149-157. |
[10] | WALDRON D F, THOMAS D L.Increased litter size in Rambouillet sheep:I.Estimation of genetic parameters[J].J Anim Sci, 1992, 70(11):3333-3344. |
[11] | BODIN L, SANCRISTOBAL M, LECERF F, et al.Segregation of a major gene influencing ovulation in progeny of Lacaune meat sheep[J].Genet Sel Evol, 2002, 34(4):447-464. |
[12] | MONTGOMERY G W, LORD E A, PENTY J M, et al.The booroola fecundity (FecB) gene maps to sheep chromosome 6[J].Genomics, 1994, 22(1):148-153. |
[13] | CHEN S, GUO X F, HE X Y, et al.Transcriptome analysis reveals differentially expressed genes and long non-coding RNAs associated with fecundity in sheep hypothalamus with different FecB genotypes[J].Front Cell Dev Biol, 2021, 9:633747. |
[14] | KUMAR S, RAJPUT P K, BAHIRE S V, et al.Differential expression of BMP/SMAD signaling and ovarian-associated genes in the granulosa cells of FecB introgressed GMM sheep[J].Syst Biol Reprod Med, 2020, 66(3):185-201. |
[15] | MOTTERSHEAD D G, SUGIMURA S, AL-MUSAWI S L, et al.Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality[J].J Biol Chem, 2015, 290(39):24007-24020. |
[16] | CHANTEPIE L, BODIN L, SARRY J, et al.Genome-wide identification of a regulatory mutation in BMP15 controlling prolificacy in sheep[J].Front Genet, 2020, 11:585. |
[17] | BRAVO S, LARAMA G, PAZ E, et al.Polymorphism of the GDF9 gene associated with litter size in Araucana creole sheep[J].Anim Genet, 2016, 47(3):390-391. |
[18] | ZHOU S W, DING Y G, LIU J, et al.Highly efficient generation of sheep with a defined FecBB mutation via adenine base editing[J].Genet Sel Evol, 2020, 52(1):35. |
[19] | ZHOU S W, YU H H, ZHAO X E, et al.Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9[J].Reprod Fertil Dev, 2018, 30(12):1616-1621. |
[20] | 吴艳芳.MSTN基因敲除和FecB基因突变滩羊扩繁试验[D].杨凌:西北农林科技大学, 2021.WU Y F.Breeding experiment of MSTN gene knockout tan sheep and FecB gene mutation tan sheep[D].Yangling:Northwest A&F University, 2021.(in Chinese) |
[21] | FLOSSMANN G, WURMSER C, PAUSCH H, et al.A nonsense mutation of bone morphogenetic protein-15 (BMP15) causes both infertility and increased litter size in pigs[J].Bmc Genomics, 2021, 22(1):38. |
[22] | ÇELIKELOǦLU K, TEKERLI M, ERDOǦAN M, et al.An investigation of the effects of BMPR1B, BMP15, and GDF9 genes on litter size in Ramlιç and Daǧlιç sheep[J].Arch Anim Breed, 2021, 64(1):223-230. |
[23] | NAJAFABADI H A, KHANSEFID M, MAHMOUD G G, et al.Identification of sequence variation in the oocyte-derived bone morphogenetic protein 15 (BMP15) gene (BMP15) associated with litter size in New Zealand sheep (Ovisaries) breeds[J].Mol Biol Rep, 2021, 48(9):6335-6342. |
[24] | NAJAFABADI H A, KHANSEFID M, MAHMOUD G G, et al.Identification of polymorphisms in the oocyte-derived growth differentiation growth factor 9 (GDF9) gene associated with litter size in New Zealand sheep (Ovisaries) breeds[J].Reprod Domest Anim, 2020, 55(11):1585-1591. |
[25] | WANG F Y, CHU M X, PAN L X, et al.Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovisaries)[J].Animals (Basel), 2021, 11(2):571. |
[26] | WEN Y L, GUO X F, MA L, et al.The expression and mutation of BMPR1B and its association with litter size in small-tail Han sheep (Ovisaries)[J].Arch Anim Breed, 2021, 64(1):211-221. |
[27] | LI H X, XU H W, AKHATAYEVA Z, et al.Novel indel variations of the sheep FecB gene and their effects on litter size[J].Gene, 2021, 767:145176. |
[28] | LI Z F, HE X Y, ZHANG X S, et al.Analysis of expression profiles of circRNA and miRNA in oviduct during the follicular and luteal phases of sheep with two fecundity (FecB gene) genotypes[J].Animals (Basel), 2021, 11(10):2826. |
[29] | JIA J L, JIN J P, CHEN Q, et al.Eukaryotic expression, Co-IP and MS identify BMPR-1B protein-protein interaction network[J].Biol Res, 2020, 53(1):24. |
[30] | GUO X F, WANG X Y, DI R, et al.Metabolic effects of FecB gene on follicular fluid and ovarian vein serum in sheep (Ovis aries)[J].Int J Mol Sci, 2018, 19(2):539. |
[31] | DROUILHET L, TARAGNAT C, FONTAINE J, et al.Endocrine characterization of the reproductive axis in highly prolific Lacaune sheep homozygous for the FecLLmutation[J]. Biol Reprod, 2010, 82(5):815-824. |
[32] | DROUILHET L, MANSANET C, SARRY J, et al.The highly prolific phenotype of lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary[J].PLoS Genet, 2013, 9(9):e1003809. |
[33] | GOOTWINE E.Invited review:opportunities for genetic improvement toward higher prolificacy in sheep[J].Small Ruminant Res, 2020, 186:106090. |
[34] | WANG W M, LIU S J, LI F D, et al.Polymorphisms of the ovine BMPR-IB, BMP-15 and FSHR and their associations with litter size in two Chinese indigenous sheep breeds[J].Int J Mol Sci, 2015, 16(5):11385-11397. |
[35] | JUENGEL J L, FRENCH M C, O'CONNELL A R, et al.Mutations in the leptin receptor gene associated with delayed onset of puberty are also associated with decreased ovulation and lambing rates in prolific Davisdale sheep[J].Reprod Fertil Dev, 2016, 28(9):1318-1325. |
[36] | ZHOU M, PAN Z Y, CAO X H, et al.Single nucleotide polymorphisms in the HIRA gene affect litter size in small tail han sheep[J].Animals (Basel), 2018, 8(5):71. |
[37] | MA H Y, FANG C, LIU L L, et al.Identification of novel genes associated with litter size of indigenous sheep population in Xinjiang, China using specific-locus amplified fragment sequencing technology[J].Peer J, 2019, 7:e8079. |
[38] | LI C Y, HE X Y, ZHANG Z J, et al.Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes[J].BMC Genomic Data, 2021, 22(1):9. |
[39] | ZHANG Z B, TANG J S, DI R, et al.Integrated hypothalamic transcriptome profiling reveals the reproductive roles of mRNAs and miRNAs in sheep[J].Front Genet, 2020, 10:1296. |
[40] | XU S S, GAO L, SHEN M, et al.Whole-genome selective scans detect genes associated with important phenotypic traits in sheep (Ovis aries)[J].Front Genet, 2021, 12:738879. |
[41] | CHEN S, TAO L, HE X Y, et al.Single-nucleotide polymorphisms in FLT3, NLRP5, and TGIF1 are associated with litter size in Small-tailed Han sheep[J].Arch Anim Breed, 2021, 64(2):475-486. |
[42] | EBLING F J P.Photoperiodic regulation of puberty in seasonal species[J].Mol Cell Endocrinol, 2010, 324(1-2):95-101. |
[43] | RUBIN C J, ZODY M C, ERIKSSON J, et al.Whole-genome resequencing reveals loci under selection during chicken domestication[J].Nature, 2010, 464(7288):587-591. |
[44] | FARIELLO M I, SERVIN B, TOSSER-KLOPP G, et al.Selection signatures in worldwide sheep populations[J].PLoS One, 2014, 9(8):e103813. |
[45] | DARDENTE H, WYSE C A, BIRNIE M J, et al.A molecular switch for photoperiod responsiveness in mammals[J].Curr Biol, 2010, 20(24):2193-2198. |
[46] | KARLSSON AC, FALLAHSHAHROUDI A, JOHNSEN H, et al.A domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens[J].Gen Comp Endocrinol, 2016, 228:69-78. |
[47] | HANON E A, LINCOLN G A, FUSTIN J M, et al.Ancestral TSH mechanism signals summer in a photoperiodic mammal[J].Curr Biol, 2008, 18(15):1147-1152. |
[48] | 窦立静, 赵 赓, 高 磊, 等.TSHR基因T315A位点在不同繁殖特性绵羊群体中的多态性研究[J].家畜生态学报, 2016, 37(4):9-15.DOU L J, ZHAO G, GAO L, et al.Study on distribution of T315A locus of TSHR gene in sheep populations with different reproductive characteristics[J].Acta Ecologae Animalis Domastici, 2016, 37(4):9-15.(in Chinese) |
[49] | 夏 青, 狄 冉, 刘艳琴, 等.绵羊TSHR基因表达及其多态性与季节性发情之间的关系[J].家畜生态学报, 2020, 41(3):15-20.XIA Q, DI R, LIU Y Q, et al.Expression and polymorphism of TSHR gene and its association with seasonal estrus in sheep[J].Acta Ecologae Animalis Domastici, 2020, 41(3):15-20.(in Chinese) |
[50] | 轩俊丽, 马晓萌, 王慧华, 等.绵羊季节性繁殖相关基因TSHR外显子多态性研究[J].畜牧兽医学报, 2016, 47(7):1342-1353.XUAN J L, MA X M, WANG H H, et al.Study on exon polymorphism of seasonal breeding related gene TSHR in sheep[J].Acta Veterinaria et Zootechnica Sinica, 2016, 47(7):1342-1353.(in Chinese) |
[51] | WEAVERD R, LIU C, REPPERTS M.Nature's knockout:the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters[J].Mol Endocrinol, 1996, 10(11):1478-1487. |
[52] | HE X Y, ZHANG Z B, LIU Q Y, et al.Polymorphisms of the melatonin receptor 1A gene that affects the reproductive seasonality and litter size in Small Tail Han sheep[J].Reprod Domest Anim, 2019, 54(10):1400-1410. |
[53] | LURIDIANA S, COSSO G, PULINAS L, et al.New polymorphisms at MTNR1A gene and their association with reproductive resumption in sarda breed sheep[J]. Theriogenology, 2020, 158:438-444. |
[54] | MURA M C, LURIDIANA S, PULINAS L, et al.Reproductive response to male joining with ewes with different allelic variants of the MTNR1A gene[J].Anim Reprod Sci, 2019, 200:67-74. |
[55] | CALVO J H, SERRANO M, MARTINEZ-ROYO A, et al.SNP rs403212791 in exon 2 of the MTNR1A gene is associated with reproductive seasonality in the Rasa aragonesa sheep breed[J].Theriogenology, 2018, 113:63-72. |
[56] | ABECIA J A, MURA M C, CARVAJAL-SERNA M, et al.Polymorphisms of the melatonin receptor 1A (MTNR1A) gene influence the age at first mating in autumn-born ram-lambs and sexual activity of adult rams in spring[J].Theriogenology, 2020, 157:42-47. |
[57] | KABLAR B, ASAKURA A, KRASTEL K, et al.MyoD and Myf-5 define the specification of musculature of distinct embryonic origin[J].Biochem Cell Biol, 1998, 76(6):1079-1091. |
[58] | HASTY P, BRADLEY A, MORRIS J H, et al.Muscle deficiency and neonatal death in mice with a targeted mutation in the myogeningene[J].Nature, 1993, 364(6437):501-506. |
[59] | KOBAYASHI T, KRONENBERG H M.Overview of skeletal development[M]//HILTON M J.Skeletal Development and Repair.New York:Humana, 2021:3-16. |
[60] | KAWAMOTO T, KAWAMOTO K.Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using kawamot's film method (2012)[M]//HILTON M J.Skeletal Development and Repair:Methods and Protocols.Totowa:Humana Press, 2014. |
[61] | LONG F X, CHUNG U I, OHBA S, et al.Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton[J].Development, 2004, 131(6):1309-1318. |
[62] | HAMMER RE, PURSEL V G, REXROADC E Jr, et al.Production of transgenic rabbits, sheep and pigs by microinjection[J].Nature, 1985, 315(6021):680-683. |
[63] | MURRAYJ D, NANCARROWC D, MARSHALLJ T, et al.Production of transgenic merino sheep by microinjection of ovine metallothionein-ovine growth hormone fusion genes[J]. Reprod Fertil Dev, 1989, 1(2):147-155. |
[64] | ADAMS N R, BRIEGEL J R, WARD K A.The impact of a transgene for ovine growth hormone on the performance of two breeds of sheep[J].J Anim Sci, 2002, 80(9):2325-2333. |
[65] | MCPHERRON AC, GUO T, WANG Q, et al.Soluble activin receptor type IIB treatment does not cause fat loss in mice with diet-induced obesity[J].Diabet Obes Metab, 2012, 14(3):279-282. |
[66] | HAN D S, HUANG H P, WANG T G, et al.Transcription activation of myostatin by trichostatin A in differentiated C2C12myocytes via ASK1-MKK3/4/6-JNK and p38 mitogen-activated protein kinase pathways[J].J Cell Biochem, 2010, 111(3):564-573. |
[67] | LANGLEY B, THOMAS M, BISHOP A, et al.Myostatin inhibits myoblast differentiation by down-regulating MyoD expression[J].J Biol Chem, 2002, 277(51):49831-49840. |
[68] | CHEN M M, ZHAO Y P, ZHAO Y, et al.Regulation of myostatin on the growth and development of skeletal muscle[J].Front Cell Dev Biol, 2021, 9:785712. |
[69] | GROCHOWSKA E, BORYS B, LISIAK D, et al.Genotypic and allelic effects of the myostatin gene (MSTN) on carcass, meat quality, and biometric traits in Colored Polish Merino sheep[J].Meat Sci, 2019, 151:4-17. |
[70] | GROCHOWSKA E, BORYS B, MROCZKOWSKI S.Effects of intronic SNPs in the myostatin gene on growth and carcass traits in colored polish merino sheep[J].Genes (Basel), 2019, 11(1):2. |
[71] | OSMAN N M, SHAFEY H I, ABDELHAFEZ M A, et al.Genetic variations in the Myostatin gene affecting growth traits in sheep[J].Vet World, 2021, 14(2):475-482. |
[72] | KIJAS J W, MCCULLOCH R, EDWARDS J E H, et al.Evidence for multiple alleles effecting muscling and fatness at the OvineGDF8 locus[J].BMC Genet, 2007, 8:80. |
[73] | LI H H, WANG G, HAO Z Q, et al.Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer[J].Sci Rep, 2016, 6:33675. |
[74] | CRISPO M, MULET A P, TESSON L, et al.Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J].PLoS One, 2015, 10(8):e0136690. |
[75] | DOBIE R, MACRAE V E, HUESA C, et al.Direct stimulation of bone mass by increased GH signalling in the osteoblasts of Socs2-/- mice[J].J Endocrinol, 2014, 223(1):93-106. |
[76] | GREENHALGH C J, BERTOLINO P, ASA S L, et al.Growth enhancement in suppressor of cytokine signaling 2 (SOCS-2)-deficient mice is dependent on signal transducer and activator of transcription 5b (STAT5b)[J].Mol Endocrinol, 2002, 16(6):1394-1406. |
[77] | METCALF D, GREENHALGH C J, VINEY E, et al.Gigantism in mice lacking suppressor of cytokine signalling-2[J].Nature, 2000, 405(6790):1069-1073. |
[78] | PASS C, MACRAE V E, HUESA C, et al.SOCS2 is the critical regulator of GH action in murine growth plate chondrogenesis[J].J Bone Miner Res, 2012, 27(5):1055-1066. |
[79] | RUPP R, SENIN P, SARRY J, et al.A point mutation in suppressor of cytokine signaling 2 (Socs2) increases the susceptibility to inflammation of the mammary gland while associated with higher body weight and size and higher milk production in a sheep model[J].PLoS Genet, 2015, 11(12):e1005629. |
[80] | ZHOU S W, CAI B, HE C, et al.Programmable base editing of the sheep genome revealed no genome-wide off-target mutations[J].Front Genet, 2019, 10:215. |
[81] | MA D Y, YU Q Q, HEDRICK V E, et al.Proteomic and metabolomic profiling reveals the involvement of apoptosis in meat quality characteristics of ovine M.longissimus from different callipyge genotypes[J].Meat Sci, 2020, 166:108140. |
[82] | LI C Y, LI M, LI X Y, et al.Whole-genome resequencing reveals loci associated with thoracic vertebrae number in sheep[J].Front Genet, 2019, 10:674. |
[83] | COCKETT N E, SMIT M A, BIDWELL C A, et al.The callipyge mutation and other genes that affect muscle hypertrophy in sheep[J].Genet Sel Evol, 2005, 37(Suppl 1):S65-S81. |
[84] | BAKHTIARIZADEH M R, SALAMI S A.Identification and expression analysis of long noncoding RNAs in fat-tail of sheep breeds[J].G3 (Bethesda), 2019, 9(4):1263-1276. |
[85] | MORADI M H, NEJATI-JAVAREMI A, MORADI-SHAHRBABAK M, et al.Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition[J].BMC Genet, 2012, 13:10. |
[86] | ROSEN E D, MACDOUGALD O A.Adipocyte differentiation from the inside out[J].Nat Rev Mol Cell Biol, 2006, 7(12):885-896. |
[87] | DAVIS G H, MONTGOMERY G W, ALLISON A J, et al.Segregation of a major gene influencing fecundity in progeny of Booroola sheep[J].New Zeal J Agr Res, 1982, 25(4):525-529. |
[88] | BAKHTIARIZADEH M R, SALEHI A, ALAMOUTI A A, et al.Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep[J].SciRep, 2019, 9(1):9203. |
[89] | HU G, WANG S Z, WANG Z P, et al.Genetic epistasis analysis of 10 peroxisome proliferator-activated receptorγ-correlated genes in broiler lines divergently selected for abdominal fat content[J].Poult Sci, 2010, 89(11):2341-2350. |
[90] | ZHANG W, XU M S, WANG J J, et al.Comparative transcriptome analysis of key genes and pathways activated in response to fat deposition in two sheep breeds with distinct tail phenotype[J].Front Genet, 2021, 12:639030. |
[91] | WEI C H, WANG H H, LIU G, et al.Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds[J].BMC Genomics, 2015, 16(1):194. |
[92] | MOIOLI B, PILLA F, CIANI E.Signatures of selection identify loci associated with fat tail in sheep[J].J Anim Sci, 2015, 93(10):4660-4669. |
[93] | YUAN Z, LIU E, LIU Z, et al.Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep[J].Anim Genet, 2017, 48(1):55-66. |
[94] | PAN Z Y, LI S D, LIU Q Y, et al.Rapid evolution of a retro-transposable hotspot of ovine genome underlies the alteration of BMP2 expression and development of fat tails[J].BMC Genomics, 2019, 20(1):261. |
[95] | ZHAO F P, DENG T Y, SHI L Y, et al.Genomic scan for selection signature reveals fat deposition in Chinese indigenous sheep with extreme tail types[J].Animals (Basel), 2020, 10(5):773. |
[96] | DONG K Z, YANG M, HAN J G, et al.Genomic analysis of worldwide sheep breeds reveals PDGFD as a major target of fat-tail selection in sheep[J].BMC Genomics, 2020, 21(1):800. |
[97] | LI X, YANG J, SHEN M, et al.Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits[J].Nat Commun, 2020, 11(1):2815. |
[98] | GUIU-JURADO E, UNTHAN M, BÖHLER N, et al.Bone morphogenetic protein 2 (BMP2) may contribute to partition of energy storage into visceral and subcutaneous fat depots[J].Obesity, 2016, 24(10):2092-2100. |
[99] | ZHU C Y, LI N, CHENG H P, et al.Genome wide association study for the identification of genes associated with tail fat deposition in Chinese sheep breeds[J].Biol Open, 2021, 10(5):bio054932. |
[100] | FAN H Y, HOU Y L, SAHANA G, et al.A transcriptomic study of the tail fat deposition in two types of Hulun Buir Sheep according to tail size and sex[J].Animals (Basel), 2019, 9(9):655. |
[101] | ZHU C Y, FAN H Y, YUAN Z H, et al.Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays[J].Sci Rep, 2016, 6:27822. |
[102] | LUO R S, ZHANG X R, WANG L K, et al.GLIS1, a potential candidate gene affect fat deposition in sheep tail[J].Mol Biol Rep, 2021, 48(5):4925-4931. |
[103] | LANE J, SHEPHARD R, WEBB-WARE J, et al.Priority list of endemic diseases for the red meat industries[R].Final Report, North Sydney:Meat &Livestock Australia Limited, 2015. |
[104] | TESFAYE T.Prevalence, species composition, and associated risk factors of small ruminant gastrointestinal nematodes in South Omo zone, South-western Ethiopia[J].J Adv Vet Anim Res, 2021, 8(4):597-605. |
[105] | ATLIJA M, ARRANZ J J, MARTINEZ-VALLADARES M, et al.Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array[J].Genet Sel Evol, 2016, 48:4. |
[106] | AL KALALDEH M, GIBSON J, LEE S H, et al.Detection of genomic regions underlying resistance to gastrointestinal parasites in Australian sheep[J].Genet Sel Evol, 2019, 51(1):37. |
[107] | SAYRE B L, HARRIS G C.Systems genetics approach reveals candidate genes for parasite resistance from quantitative trait loci studies in agricultural species[J].Anim Genet, 2012, 43(2):190-198. |
[108] | BECKER G M, DAVENPORT K M, BURKE J M, et al.Genome-wide association study to identify genetic loci associated with gastrointestinal nematode resistance in Katahdin sheep[J].Anim Genet, 2020, 51(2):330-335. |
[109] | RASCHIA M A, DONZELLI M V, MEDUS P D, et al.Single nucleotide polymorphisms from candidate genes associated with nematode resistance and resilience in Corriedale and Pampinta sheep in Argentina[J].Gene, 2021, 770:145345. |
[110] | LI G D, LV D Y, YAO Y J, et al.Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota[J].FASEB J, 2021, 35(9):e21783. |
[111] | LI X L, WU Q M, ZHANG X X, et al.Whole-genome resequencing to study brucellosis susceptibility in sheep[J].Front Genet, 2021, 12:653927. |
[112] | HARLAND D P, PLOWMAN J E.Development of hair fibres[M]//PLOWMAN J E, HARLAND D P, DEB-CHOUDHURY S.The Hair Fibre:Proteins, Structure and Development. Singapore:Springer, 2018:109-154. |
[113] | MATSUNAGA R, ABE R, ISHII D, et al.Bidirectional binding property of high glycine-tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair[J].J Struct Biol, 2013, 183(3):484-494. |
[114] | HE D Q, CHEN L Y, LUO F, et al.Differentially phosphorylated proteins in the crimped and straight wool of Chinese Tan sheep[J].J Proteomics, 2021, 235:104115. |
[115] | HÉBERT J M, ROSENQUIST T, GÖTZ J, et al.FGF5 as a regulator of the hairgrowth cycle:evidence from targeted and spontaneous mutations[J].Cell, 1994, 78(6):1017-1025. |
[116] | LI W R, LIU C X, ZHANG X M, et al.CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J].FEBS J, 2017, 284(17):2764-2773. |
[117] | ZHANG R, LI Y, JIA K, et al.Crosstalk between androgen and Wnt/β-catenin leads to changes of wool density in FGF5-knockout sheep[J].Cell Death Dis, 2020, 11(5):407. |
[118] | 胡馨予, 姚逸安, 胡情情, 等.羊毛角蛋白基因家族及其启动子调控作用研究进展[J].中国细胞生物学学报, 2021, 43(8):1705-1713.HU X Y, YAO Y A, HU Q Q, et al.Research progress of wool keratin gene family and its promoter regulation role[J].Chinese Journal of Cell Biology, 2021, 43(8):1705-1713.(in Chinese) |
[119] | ULLAH F, JAMAL S M, ZHOU H T, et al.Variation in the KRTAP6-3 gene and its association with wool characteristics in Pakistani sheep breeds and breed-crosses[J].Trop Anim Health Prod, 2020, 52(6):3035-3043. |
[120] | RAMIREZ J M, FOLKOW L P, BLIX A S.Hypoxia tolerance in mammals and birds:from the wilderness to the clinic[J].Annu Rev Physiol, 2007, 69:113-143. |
[121] | BIGHAM A W, LEE F S.Human high-altitude adaptation:forward genetics meets the HIF pathway[J].Genes Dev, 2014, 28(20):2189-2204. |
[122] | LIU X X, ZHANG Y L, LI Y F, et al.EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses[J].Mol Biol Evol, 2019, 36(11):2591-2603. |
[123] | MA Y F, HAN X M, HUANG C P, et al.Population genomics analysis revealed origin and high-altitude adaptation of Tibetan pigs[J].Sci Rep, 2019, 9(1):11463. |
[124] | XU X H, HUANG X W, QUN L, et al.Two functional loci in the promoter of EPAS1 gene involved in high-altitude adaptation of Tibetans[J].Sci Rep, 2014, 4:7465. |
[125] | LORENZO F R, HUFF C, MYLLYMÄKI M, et al.A genetic mechanism for Tibetan high-altitude adaptation[J].Nat Genet, 2014, 46(9):951-956. |
[126] | SONG S, YAO N, YANG M, et al.Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Caprahircus)[J].BMC Genomics, 2016, 17:122. |
[127] | SASAZAKI S, TOMITA K, NOMURA Y, et al.FGF5 and EPAS1 gene polymorphisms are associated with high-altitude adaptation in Nepalese goat breeds[J].Anim Sci J, 2021, 92(1):e13640. |
[128] | WEI C H, WANG H H, LIU G, et al.Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep[J].Sci Rep, 2016, 6:26770. |
[129] | LIU J B, YUAN C, GUO T T, et al.Genetic signatures of high-altitude adaptation and geographic distribution in Tibetan sheep[J].Sci Rep, 2020, 10(1):18332. |
[130] | GORKHALI N A, DONG K Z, YANG M, et al.Genomic analysis identified a potential novel molecular mechanism for high-altitude adaptation in sheep at the Himalayas[J].Sci Rep, 2016, 6:29963. |
[131] | WU P P, ZHANG B, HAN X Y, et al.HucMSC exosome-delivered 14-3-3ζ alleviates ultraviolet radiation-induced photodamage via SIRT1 pathway modulation[J]. Aging, 2021, 13(8):11542-11563. |
[132] | ZHANG Q, GOU W Y, WANG X T, et al.Genome resequencing identifies unique adaptations of Tibetan chickens to hypoxia and high-Dose ultraviolet radiation in high-altitude environments[J].Genome Biol Evol, 2016, 8(3):765-776. |
[133] | HU X J, YANG J, XIE X L, et al.The genome landscape of Tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the Qinghai-Tibetan plateau[J].Mol Biol Evol, 2019, 36(2):283-303. |
[134] | MWACHARO J M, KIM E S, ELBELTAGY A R, et al.Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and Western Asia cohorts[J].Sci Rep, 2017, 7(1):17647. |
[135] | EDEA Z, DADI H, DESSIE T, et al.Genomic signatures of high-altitude adaptation in Ethiopian sheep populations[J].Genes Genom, 2019, 41(8):973-981. |
[136] | NOWACK J, GIROUD S, ARNOLD W, et al.Muscle non-shivering thermogenesis and its role in the evolution of endothermy[J].Front Physiol, 2017, 8:889. |
[137] | GAUDRY M J, JASTROCH M.Comparative functional analyses of UCP1 to unravel evolution, ecophysiology and mechanisms of mammalian thermogenesis[J].Comp Biochem Physiol PartB:Biochem Mol Biol, 2021, 255:110613. |
[138] | SLEE J, STOTT A W.Genetic selection for cold resistance in Scottish Blackface lambs[J].Anim Sci, 1986, 43(3):397-404. |
[139] | WANG Z H, YU X F, CHEN Y.Recruitment of thermogenic fat:trigger of fat burning[J].Front Endocrinol, 2021, 12:696505. |
[140] | POHL E E, RUPPRECHT A, MACHER G, et al.Important trends in UCP3 investigation[J].Front Physiol, 2019, 10:470. |
[141] | CARON A, LABBÉ S M, CARTER S, et al.Loss of UCP2 impairs cold-induced non-shivering thermogenesis by promoting a shift toward glucose utilization in brown adipose tissue[J].Biochimie, 2017, 134:118-126. |
[142] | HENRY B A, ANDREWS Z B, RAO A, et al.Central leptin activates mitochondrial function and increases heat production in skeletal muscle[J].Endocrinology, 2011, 152(7):2609-2618. |
[143] | AHMAD S F, MEHROTRA A, CHARLES S, et al.Analysis of selection signatures reveals important insights into the adaptability of high-altitude Indian sheep breed Changthangi[J]. Gene, 2021, 799:145809. |
[144] | BAUMGARD L H, RHOADS R P Jr.Effects of heat stress on postabsorptive metabolism and energetics[J].Annu Rev Anim Biosci, 2013, 1:311-337. |
[145] | ABDELNOUR S A, EL-HACK M E A, KHAFAGA A F, et al.Stress biomarkers and proteomics alteration to thermal stress in ruminants:a review[J].J Therm Biol, 2019, 79:120-134. |
[146] | QUINN C M, DURAN R M, AUDET G N, et al.Cardiovascular and thermoregulatory biomarkers of heat stroke severity in a conscious rat model[J].J Appl Physiol, 2014, 117(9):971-978. |
[147] | ROMO-BARRON C B, DIAZ D, PORTILLO-LOERA J J, et al.Impact of heat stress on the reproductive performance and physiology of ewes:a systematic review and meta-analyses[J]. Int J Biometeorol, 2019, 63(7):949-962. |
[148] | PIRKKALA L, NYKÄNEN P, SISTONEN L.Roles of the heat shock transcription factors in regulation of the heat shock response and beyond[J].FASEB J, 2001, 15(7):1118-1131. |
[149] | SALCES-ORTIZ J, GONZÁLEZ C, BOLADO-CARRANCIO A, et al.Ovine HSP90AA1 gene promoter:functional study and epigenetic modifications[J].Cell Stress Chaperon, 2015, 20(6):1001-1012. |
[150] | AL-THUWAINI T M, AL-SHUHAIB M B S, HUSSEIN Z M.A novel T177P missense variant in the HSPA8 gene associated with the low tolerance of Awassi sheep to heat stress[J].Trop Anim Health Prod, 2020, 52(5):2405-2416. |
[151] | WANG W M, ZHANG X X, ZHOU X, et al.Deep genome resequencing reveals artificial and natural selection for visual deterioration, plateau adaptability and high prolificacy in Chinese domestic sheep[J].Front Genet, 2019, 10:300. |
[152] | LAMPIS A, CAROTENUTO P, VLACHOGIANNIS G, et al.MIR21 drives resistance to Heat Shock Protein 90 inhibition in cholangiocarcinoma[J]. Gastroenterology, 2018, 154(4):1066-1079.e5. |
[1] | 王亚鑫, 王璟, 田学凯, 杨公社, 于太永. 多组学技术在畜禽重要经济性状研究中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1842-1853. |
[2] | 牛佳佳, 徐丹, 刘洋, 赵小玲. 鸡芦花羽性状遗传调控机制研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1883-1892. |
[3] | 彭佩雅, 陈钰焓, 杨龙, 王铭, 赵芮葶, 何俊, 印遇龙, 刘梅. 家畜基因组拷贝数变异研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1356-1369. |
[4] | 曹玉珠, 邢雨欣, 马乘霖, 管宏波, 贾其辉, 康相涛, 田亚东, 李转见, 刘小军, 李红. 鸡FGF6基因生物学特性及其多态性与经济性状的关联分析[J]. 畜牧兽医学报, 2024, 55(4): 1536-1550. |
[5] | 杨杨, 余乾, 刘昱成, 杨华, 赵卓, 王立民, 周平, 杨庆勇, 代蓉. 绵羊MYL基因家族的鉴定与组织表达分析[J]. 畜牧兽医学报, 2024, 55(4): 1551-1564. |
[6] | 江锦秀, 张靖鹏, 林裕胜, 刘维巍, 胡奇林, 万春和. 基于Hsp70基因的绵羊肺炎支原体TaqMan检测方法的建立及其遗传演化分析[J]. 畜牧兽医学报, 2024, 55(4): 1684-1695. |
[7] | 杜改梅, 王月, 茅慧华, 雷卫强, 储岳峰, 刘茂军. 绵羊肺炎支原体小鼠感染模型的建立[J]. 畜牧兽医学报, 2024, 55(4): 1728-1737. |
[8] | 王海波, 占今舜, 谷志勇, 陈新锋, 潘月, 贾浩滨, 钟小军, 李开嵘, 赵生国, 霍俊宏. 湖羊与三元杂交绵羊夏杜湖、夏澳湖肉质特性比较研究[J]. 畜牧兽医学报, 2024, 55(1): 110-119. |
[9] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[10] | 贺名扬, 马钰静, 王泳, 杨若晨, 刘月琴, 张英杰, 段春辉. 褪黑激素对绵羊卵巢颗粒细胞增殖、凋亡、类固醇激素分泌的影响[J]. 畜牧兽医学报, 2023, 54(8): 3313-3324. |
[11] | 宋美君, 郝科兴, 海思妤, 陈岩, 王静, 胡广东. SRIF-14对绵羊子宫内膜上皮细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54(8): 3325-3334. |
[12] | 李悦欣, 刘爱菊, 马晓菲, 郑忠, 胡伯欣, 智云霞, 田树军. TGFβR1介导TGF-β/Smad信号通路对绵羊颗粒细胞功能的影响[J]. 畜牧兽医学报, 2023, 54(8): 3335-3347. |
[13] | 安宗麒, 占思远, 李利, 张红平. circRNA作为ceRNA调控畜禽重要经济性状的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2215-2222. |
[14] | 董亚洁, 郝晓静, 吴晋强, 王荣, 张鹏翔, 王海东, 赫晓燕. 基于绵羊角质形成细胞探究SHH通过Krox20调节IGFBP5的表达影响羊毛弯曲[J]. 畜牧兽医学报, 2023, 54(6): 2365-2375. |
[15] | 韩修远, 赵亮, 王闯, 亓美玉, 姚玉昌. 烟酸通过降低氧化应激水平提高绵羊精子低温保存效果[J]. 畜牧兽医学报, 2023, 54(5): 1979-1989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||