

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 147-158.doi: 10.11843/j.issn.0366-6964.2025.01.014
吴平先1,2(
), 王俊戈1, 刁淑琪1,2, 柴捷1,2, 查琳4, 郭宗义1,2, 陈红跃3, 龙熙1,2,*(
)
收稿日期:2024-08-09
出版日期:2025-01-23
发布日期:2025-01-18
通讯作者:
龙熙
E-mail:wupingxianxian@163.com;981568078@qq.com
作者简介:吴平先(1993-),男,四川雅安人,副研究员,博士,主要从事猪遗传育种研究,E-mail: wupingxianxian@163.com
基金资助:
WU Pingxian1,2(
), WANG Junge1, DIAO Shuqi1,2, CHAI Jie1,2, ZHA Lin4, GUO Zongyi1,2, CHEN Hongyue3, LONG Xi1,2,*(
)
Received:2024-08-09
Online:2025-01-23
Published:2025-01-18
Contact:
LONG Xi
E-mail:wupingxianxian@163.com;981568078@qq.com
摘要:
旨在基于填充序列数据,通过选择信号分析挖掘荣昌猪重要经济性状相关的候选基因,探究其在人工和自然选择过程中的受选择情况。本研究选取591头荣昌猪进行猪50K基因分型,随机选取其中120头进行全基因组测序,以全基因组重测序数据为填充参考模板对50K基因数据进行填充,基于填充序列数据开展遗传结构、Tajima’D和CLR分析。基因型填充后,基因型填充正确率为0.942,质控后保留了8 823 367个高质量SNPs(填充正确率为1.00)。遗传结构分析显示,荣昌猪群体不存在明显的群体分层,且绝大部分个体间遗传距离>0.1,分子亲缘系数 < 0.1。CLR检验筛选到226个潜在受选择区域,基因注释发现与繁殖、生长、胴体等性状相关的候选基因(CDK9、SLC2A8、IGF1R、GSK3B等基因)。利用Tajima’D检验检测到225个潜在受选择区域,基因注释发现与毛长度(CFAP299)、毛色或耳聋(MITF、ZNF532)、脂肪沉积(GSK3B)、繁殖(FOXP1)等性状相关的基因。进一步整合不同方法分析结果,发现11个相同的潜在受选择区域和123个候选基因,包括MITF、ZNF532、GSK3B等与耳聋和白化病、繁殖等经济性状相关的基因,并且发现1条显著的GO条目和KEGG通路(P < 0.05)与黑色素生成、视觉发育等通路相关。本研究根据富集分析结果和基因分子生物学功能,筛选出MITF、ZNF532、GSK3B、FOXP1、SLC2A8、CDK9、IGF1R、TBC1D4等8个重要候选基因可能参与调控荣昌猪毛色、耳聋、脂肪沉积、繁殖性能、生长性能等经济性状相关。该结果从全基因组水平探究了荣昌猪的遗传结构和选择信号特征,筛选出的重要候选基因为后续荣昌猪保种育种和特色性状的遗传机制解析提供了重要的理论参考。
中图分类号:
吴平先, 王俊戈, 刁淑琪, 柴捷, 查琳, 郭宗义, 陈红跃, 龙熙. 基于填充测序数据的荣昌猪群体遗传结构和选择信号分析[J]. 畜牧兽医学报, 2025, 56(1): 147-158.
WU Pingxian, WANG Junge, DIAO Shuqi, CHAI Jie, ZHA Lin, GUO Zongyi, CHEN Hongyue, LONG Xi. Analysis of Genetic Architecture Characteristics and Selection Signature by Imputed Whole Genome Sequencing Data in Rongchang Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 147-158.
表 1
共享候选区域和基因"
| 染色体 Chromosome | 候选区域/Mb Region | 基因 Gene |
| 1 | 107.68~108.42 | CSNK1G1、PPIB、SNX22、SNX1、CIAO2A、DAPK2、HERC1、FBXL22、USP3 |
| 1 | 159.7~162.25 | CDH20、MC4R、PMAIP1、CCBE1、LMAN1、CPLX4、RAX、GRP、SEC11C、ZNF532、MALT1、ALPK2 |
| 4 | 80.05~80.31 | SPIDR |
| 6 | 37.25~40.23 | NETO2、DNAJA2、GPT2、C16orf87、MYLK3、ORC6、VPS35、SHCBP1、UQCRFS1、VSTM2B、POP4、PLEKHF1、C19orf12、URI1 |
| 11 | 46.28~48.45 | TBC1D4、UCHL3、LMO7 |
| 11 | 49.03~49.85 | KCTD12、ACOD1、CLN5、FBXL3、MYCBP2、SCEL、SLAIN1 |
| 13 | 34.25~34.97 | TWF2、PPM1M、WDR82、MIRLET7G、GLYCTK、MIR135A1、DNAH1、BAP1、PHF7等 |
| 13 | 46.11~54.30 | MITF、GSK3B、FOXP1、ADAMTS9、MAGI1、SLC25A26、LRIG1、KBTBD8、SUCLG2、ARL6IP5、LMOD3、FRMD4B等 |
| 13 | 139.98~141.27 | GPR156、NR1I2、CFAP91、COX17、POPDC2、PLA1A、ADPRH、CD80等 |
| 15 | 51.75~51.96 | — |
| 15 | 89.48~90.07 | ZNF804A |
| 1 |
TAJIMA F . Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123 (3): 585- 595.
doi: 10.1093/genetics/123.3.585 |
| 2 |
NIELSEN R , WILLIAMSON S , KIM Y , et al. Genomic scans for selective sweeps using SNP data[J]. Genome Res, 2005, 15 (11): 1566- 1575.
doi: 10.1101/gr.4252305 |
| 3 |
VOIGHT B F , KUDARAVALLI S , WEN X Q , et al. A map of recent positive selection in the human genome[J]. PLoS Biol, 2006, 4 (3): e72.
doi: 10.1371/journal.pbio.0040072 |
| 4 |
HUDSON R R , SLATKIN M , MADDISON W P . Estimation of levels of gene flow from DNA sequence data[J]. Genetics, 1992, 132 (2): 583- 589.
doi: 10.1093/genetics/132.2.583 |
| 5 |
CHEN H , PATTERSON N , REICH D . Population differentiation as a test for selective sweeps[J]. Genome Res, 2010, 20 (3): 393- 402.
doi: 10.1101/gr.100545.109 |
| 6 |
SABETI P C , REICH D E , HIGGINS J M , et al. Detecting recent positive selection in the human genome from haplotype structure[J]. Nature, 2002, 419 (6909): 832- 837.
doi: 10.1038/nature01140 |
| 7 |
陶伟, 侯黎明, 王彬彬, 等. 利用全基因组选择信号方法鉴别影响猪肉滴水损失的候选基因[J]. 畜牧兽医学报, 2022, 53 (5): 1373- 1383.
doi: 10.11843/j.issn.0366-6964.2022.05.006 |
|
TAO W , HOU L M , WANG B B , et al. Identification of candidate genes affecting drip loss in pork by genome-wide selection signal method[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (5): 1373- 1383.
doi: 10.11843/j.issn.0366-6964.2022.05.006 |
|
| 8 |
ZHAO P J , YU Y , FENG W , et al. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization[J]. GigaScience, 2018, 7 (5): giy058.
doi: 10.1093/gigascience/giy058 |
| 9 |
CHEN L , TIAN S L , JIN L , et al. Genome-wide analysis reveals selection for Chinese Rongchang pigs[J]. Front Agr Sci Eng, 2017, 4 (3): 319- 326.
doi: 10.15302/J-FASE-2017161 |
| 10 |
LI M Z , CHEN L , TIAN S L , et al. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies[J]. Genome Res, 2017, 27 (5): 865- 874.
doi: 10.1101/gr.207456.116 |
| 11 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
| 12 |
LI H , DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25 (14): 1754- 1760.
doi: 10.1093/bioinformatics/btp324 |
| 13 |
LI H , HANDSAKER B , WYSOKER A , et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25 (16): 2078- 2079.
doi: 10.1093/bioinformatics/btp352 |
| 14 |
DEPRISTO M A , BANKS E , POPLIN R , et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data[J]. Nat Genet, 2011, 43 (5): 491- 498.
doi: 10.1038/ng.806 |
| 15 |
BROWNING B L , TIAN X W , ZHOU Y , et al. Fast two-stage phasing of large-scale sequence data[J]. Am J Hum Genet, 2021, 108 (10): 1880- 1890.
doi: 10.1016/j.ajhg.2021.08.005 |
| 16 |
YANG J , LEE S H , GODDARD M E , et al. GCTA: a tool for genome-wide complex trait analysis[J]. Am J Hum Genet, 2011, 88 (1): 76- 82.
doi: 10.1016/j.ajhg.2010.11.011 |
| 17 |
BU D C , LUO H T , HUO P P , et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J]. Nucleic Acids Res, 2021, 49 (W1): W317- W325.
doi: 10.1093/nar/gkab447 |
| 18 |
BAO Q , MA X M , JIA C J , et al. Resequencing and signatures of selective scans point to candidate genetic variants for hair length traits in long-haired and normal-haired Tianzhu white yak[J]. Front Genet, 2022, 13, 798076.
doi: 10.3389/fgene.2022.798076 |
| 19 |
BROWNING B L , BROWNING S R . A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals[J]. Am J Hum Genet, 2009, 84 (2): 210- 223.
doi: 10.1016/j.ajhg.2009.01.005 |
| 20 |
WU P X , WANG K , ZHOU J , et al. A combined GWAS approach reveals key loci for socially-affected traits in Yorkshire pigs[J]. Commun Biol, 2021, 4 (1): 891.
doi: 10.1038/s42003-021-02416-3 |
| 21 |
DASSONNEVILLE R , BRØNDUM R F , DRUET T , et al. Effect of imputing markers from a low-density chip on the reliability of genomic breeding values in Holstein populations[J]. J Dairy Sci, 2011, 94 (7): 3679- 3686.
doi: 10.3168/jds.2011-4299 |
| 22 |
NI G Y , STROM T M , PAUSCH H , et al. Comparison among three variant callers and assessment of the accuracy of imputation from SNP array data to whole-genome sequence level in chicken[J]. BMC Genomics, 2015, 16, 824.
doi: 10.1186/s12864-015-2059-2 |
| 23 |
吴平先, 陈力, 龙熙, 等. 荣昌猪初产繁殖性状的全基因组关联研究[J]. 畜牧兽医学报, 2023, 54 (1): 103- 112.
doi: 10.11843/j.issn.0366-6964.2023.01.010 |
|
WU P X , CHEN L , LONG X , et al. Genome-wide association studies for reproductive traits at first farrowing in Rongchang pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (1): 103- 112.
doi: 10.11843/j.issn.0366-6964.2023.01.010 |
|
| 24 |
HODGKINSON C A , MOORE K J , NAKAYAMA A , et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein[J]. Cell, 1993, 74 (2): 395- 404.
doi: 10.1016/0092-8674(93)90429-T |
| 25 |
LEVY C , KHALED M , FISHER D E . MITF: master regulator of melanocyte development and melanoma oncogene[J]. Trends Mol Med, 2006, 12 (9): 406- 414.
doi: 10.1016/j.molmed.2006.07.008 |
| 26 |
ALEHABIB E , ALINAGHI S , POURFATEMI F , et al. Incomplete penetrance of MITF gene c.943C>T mutation in an extended family with Waardenburg syndrome type Ⅱ[J]. Int J Pediatr Otorhinolaryngol, 2020, 135, 110014.
doi: 10.1016/j.ijporl.2020.110014 |
| 27 |
LIN R Y , ZHAO F L , XIONG T M , et al. Genetic mapping identifies SNP mutations in MITF-M promoter associated with melanin formation in Putian black duck[J]. Poult Sci, 2024, 103 (1): 103191.
doi: 10.1016/j.psj.2023.103191 |
| 28 |
CHEN L , GUO W W , REN L L , et al. A de novo silencer causes elimination of MITF-M expression and profound hearing loss in pigs[J]. BMC Biol, 2016, 14, 52.
doi: 10.1186/s12915-016-0273-2 |
| 29 |
XU Z H , RAI V , ZUO J . TUB and ZNF532 promote the atoh1-mediated hair cell regeneration in mouse cochleae[J]. Front Cell Neurosci, 2021, 15, 759223.
doi: 10.3389/fncel.2021.759223 |
| 30 |
OCARANZA P , LAMMOGLIA J J , ÍÑIGUEZ G , et al. Effects of thyroid hormone on the GH signal transduction pathway[J]. Growth Horm IGF Res, 2014, 24 (1): 42- 46.
doi: 10.1016/j.ghir.2014.01.001 |
| 31 |
YAN Z , CAO X J , SUN S X , et al. Inhibition of GSK3B phosphorylation improves glucose and lipid metabolism disorder[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869 (6): 166726.
doi: 10.1016/j.bbadis.2023.166726 |
| 32 |
LEE S , YANG W K , SONG J H , et al. Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3[J]. Biochem Pharmacol, 2013, 85 (7): 965- 976.
doi: 10.1016/j.bcp.2012.12.023 |
| 33 |
ZHANG Y B , LIU X , ZHANG L C , et al. Preliminary identification and analysis of differential RNA editing between higher and lower backfat thickness pigs using DNA-seq and RNA-seq data[J]. Anim Genet, 2022, 53 (3): 327- 339.
doi: 10.1111/age.13193 |
| 34 |
KJØBSTED R , KRISTENSEN J M , ESKESEN N O , et al. TBC1D4-S711 controls skeletal muscle insulin sensitization after exercise and contraction[J]. Diabetes, 2023, 72 (7): 857- 871.
doi: 10.2337/db22-0666 |
| 35 |
KRISTENSEN T , FREDHOLM M , CIRERA S . Expression study of GLUT4 translocation-related genes in a porcine pre-diabetic model[J]. Mamm Genome, 2015, 26 (11-12): 650- 657.
doi: 10.1007/s00335-015-9601-z |
| 36 |
LIU P , HUANG S X , LING S F , et al. Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization[J]. Nat Commun, 2019, 10 (1): 5070.
doi: 10.1038/s41467-019-12988-8 |
| 37 |
BOLORMAA S , HAYES B J , VAN DER WERF J H J , et al. Detailed phenotyping identifies genes with pleiotropic effects on body composition[J]. BMC Genomics, 2016, 17, 224.
doi: 10.1186/s12864-016-2538-0 |
| 38 |
LAN Q , DENG Q C , QI S J , et al. Genome-wide association analysis identified variants associated with body measurement and reproduction traits in Shaziling pigs[J]. Genes (Basel), 2023, 14 (2): 522.
doi: 10.3390/genes14020522 |
| 39 |
OQANI R K , LIN T , LEE J E , et al. Effects of CDK inhibitors on the maturation, transcription, and MPF activity of porcine oocytes[J]. Reprod Biol, 2017, 17 (4): 320- 326.
doi: 10.1016/j.repbio.2017.09.003 |
| 40 |
WANG M D , YANG L , MENG J J , et al. Functionally active cyclin-dependent kinase 9 is essential for porcine reproductive and respiratory syndrome virus subgenomic RNA synthesis[J]. Mol Immunol, 2021, 135, 351- 364.
doi: 10.1016/j.molimm.2021.05.004 |
| 41 | ADASTRA K L , FROLOVA A I , CHI M M , et al. Slc2a8 deficiency in mice results in reproductive and growth impairments[J]. Biol Reprod, 2012, 87 (2): 49. |
| 42 |
STEINHAUSER C B , LANDERS M , MYATT L , et al. Fructose synthesis and transport at the uterine-placental interface of pigs: cell-specific localization of SLC2A5, SLC2A8, and components of the polyol pathway[J]. Biol Reprod, 2016, 95 (5): 108.
doi: 10.1095/biolreprod.116.142174 |
| 43 |
ZHANG Z , XIAO Q , ZHANG Q Q , et al. Genomic analysis reveals genes affecting distinct phenotypes among different Chinese and western pig breeds[J]. Sci Rep, 2018, 8 (1): 13352.
doi: 10.1038/s41598-018-31802-x |
| 44 |
YANG Y L , ZHOU R , MU Y L , et al. Genome-wide analysis of DNA methylation in obese, lean and miniature pig breeds[J]. Sci Rep, 2016, 6, 30160.
doi: 10.1038/srep30160 |
| [1] | 杨凯, 李东锋, 邵勇钢, 翟曼君, 白现广, 张立凡. 新疆地方鸡遗传关系和基因组差异研究[J]. 畜牧兽医学报, 2026, 57(1): 155-166. |
| [2] | 张晶, 王亚平, 樊曦雯, 王真. 一株牛源福氏志贺菌的分离鉴定及全基因组测序分析[J]. 畜牧兽医学报, 2026, 57(1): 378-391. |
| [3] | 余秋蓉, 蔡旭航, 何艺, 李基棕, 毛立, 许信刚, 李彬. 一株羊冠状病毒的分离鉴定及全基因组序列分析[J]. 畜牧兽医学报, 2025, 56(9): 4604-4614. |
| [4] | 刘莎, 杨彩春, 张晓雨, 陈琼, 刘雄, 陈洪波, 周焕焕, 史良玉. 基于80K SNP芯片的梅花星猪群体遗传结构解析及全基因组连续纯合片段特征研究[J]. 畜牧兽医学报, 2025, 56(8): 3749-3760. |
| [5] | 张嘉良, 黄畅, 杨永林, 杨华, 白文林, 马月辉, 赵倩君. 基于50K液相芯片的中国绵羊群体遗传结构与羊毛性状选择信号分析[J]. 畜牧兽医学报, 2025, 56(7): 3164-3176. |
| [6] | 武建亮, 苏洋, 毛瑞涵, 周磊, 闫田田, 李智, 刘剑锋. 猪全基因组低密度SNP芯片的设计与效果评价[J]. 畜牧兽医学报, 2025, 56(6): 2733-2740. |
| [7] | 王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037. |
| [8] | 孙国欣, 李蕴华, 赛音, 郭文华, 赵艳红, 张满新, 刘佳森. 湖羊群体结构分析与经济性状相关选择信号检测[J]. 畜牧兽医学报, 2025, 56(5): 2168-2181. |
| [9] | 王锦祥, 苏进博, 付环茹, 孙世坤, 高承芳, 陈冬金, 桑雷, 谢喜平. 兔源A型多杀性巴氏杆菌Pm3和Pm6的致病性和基因组特征分析[J]. 畜牧兽医学报, 2025, 56(5): 2340-2352. |
| [10] | 石金川, 孙淼, 孟令浩, 王永强, 耿超, 齐朝鲁蒙, 陈亨利, 王梓, 刘锴. 赛鸽源大肠杆菌耐药性检测及多重耐药菌株的全基因组测序分析[J]. 畜牧兽医学报, 2025, 56(5): 2372-2382. |
| [11] | 王浩宇, 马克岩, 李讨讨, 栗登攀, 赵箐, 马友记. 基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1170-1179. |
| [12] | 胡鑫, 游伟, 姜富贵, 成海建, 孙志刚, 宋恩亮. 基于全基因组重测序分析西门塔尔牛遗传多样性与群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1189-1202. |
| [13] | 万伟粲, 何旭, 刘洋, 马玉勇, 蒋玉章, 戴求仲, 燕海峰, 蒋桂韬, 李闯. 基于全基因组重测序分析道州灰鹅保种效果[J]. 畜牧兽医学报, 2025, 56(2): 633-642. |
| [14] | 孔令锋, 朱丽君, 厉彦浩, 彭玉薇, 寇富民, 李亮, 刘书东. 南疆地方绵羊品种群体遗传结构解析与选择信号挖掘[J]. 畜牧兽医学报, 2025, 56(12): 6116-6129. |
| [15] | 张亮, 徐皆欢, 张凤鸣, 涂志, 王清, 张力丹, 张克勤, 黄聪, 戴建军, 潘红梅. 荣昌猪体内胚胎玻璃化冷冻程序优化研究[J]. 畜牧兽医学报, 2025, 56(12): 6180-6190. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||