

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 107-114.doi: 10.11843/j.issn.0366-6964.2025.01.010
张蕾(
), 陈亮, 冯万宇, 兰世捷, 苗艳, 田秋丰, 白长胜, 张备, 董佳强, 江波涛, 王洪宝, 史同瑞, 黄宣凯*(
)
收稿日期:2024-03-06
出版日期:2025-01-23
发布日期:2025-01-18
通讯作者:
黄宣凯
E-mail:parsleyican@163.com;11661890@qq.com
作者简介:张蕾(1990-),女,河北故城人,助理研究员,硕士生,主要从事预防兽医学研究,E-mail: parsleyican@163.com
基金资助:
ZHANG Lei(
), CHEN Liang, FENG Wanyu, LAN Shijie, MIAO Yan, TIAN Qiufeng, BAI Changsheng, ZHANG Bei, DONG Jiaqiang, JIANG Botao, WANG Hongbao, SHI Tongrui, HUANG Xuankai*(
)
Received:2024-03-06
Online:2025-01-23
Published:2025-01-18
Contact:
HUANG Xuankai
E-mail:parsleyican@163.com;11661890@qq.com
摘要:
细菌的生物被膜是指菌体嵌入自身产生的保护性基质中所形成的细菌聚集体。基于生物被膜的生存方式有助于微生物抵御机体的免疫反应和药物作用等外部威胁,因此,细菌的生物被膜会加重感染,并导致严重的动物疾病。生物被膜在动物病原菌的致病机理中发挥着诱导、调节局部炎症反应和促进细胞内侵袭等作用,其物理屏障作用可为病原体提供保护,影响治疗效果,并增加慢性感染和亚临床感染的风险。饲养动物、野生动物和伴侣动物等均可被细菌及其生物被膜感染,文章综述了细菌生物被膜在动物心血管、中枢神经、消化、生殖、呼吸、泌尿和皮肤等系统感染致病机理中的作用,以期为细菌生物被膜感染的准确检测和有效治疗提供参考。
中图分类号:
张蕾, 陈亮, 冯万宇, 兰世捷, 苗艳, 田秋丰, 白长胜, 张备, 董佳强, 江波涛, 王洪宝, 史同瑞, 黄宣凯. 生物被膜在动物细菌感染致病机理中的作用[J]. 畜牧兽医学报, 2025, 56(1): 107-114.
ZHANG Lei, CHEN Liang, FENG Wanyu, LAN Shijie, MIAO Yan, TIAN Qiufeng, BAI Changsheng, ZHANG Bei, DONG Jiaqiang, JIANG Botao, WANG Hongbao, SHI Tongrui, HUANG Xuankai. The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 107-114.
| 1 |
HØIBY N . A short history of microbial biofilms and biofilm infections[J]. Apmis, 2017, 125 (4): 272- 275.
doi: 10.1111/apm.12686 |
| 2 |
VESTBY L K , GRØNSETH T , SIMM R , et al. Bacterial biofilm and its role in the pathogenesis of disease[J]. Antibiotics (Basel), 2020, 9 (2): 59.
doi: 10.3390/antibiotics9020059 |
| 3 |
ANJU V T , BUSI S , IMCHEN M , et al. Polymicrobial infections and biofilms: clinical significance and eradication strategies[J]. Antibiotics (Basel), 2022, 11 (12): 1731.
doi: 10.3390/antibiotics11121731 |
| 4 | TOLKER-NIELSEN T. Biofilm development[M] //GHANNOUM M, PARSEK M, WHITELEY M, et al. Microbial Biofilms. 2nd ed. Washington: ASM Press, 2015: 51-66. |
| 5 |
SOLANO C , ECHEVERZ M , LASA I . Biofilm dispersion and quorum sensing[J]. Curr Opin Microbiol, 2014, 18, 96- 104.
doi: 10.1016/j.mib.2014.02.008 |
| 6 |
RYBTKE M , HULTQVIST L D , GIVSKOV M , et al. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response[J]. J Mol Biol, 2015, 427 (23): 3628- 3645.
doi: 10.1016/j.jmb.2015.08.016 |
| 7 |
YANG S S , LI X F , CANG W H , et al. Biofilm tolerance, resistance and infections increasing threat of public health[J]. Microb Cell, 2023, 10 (11): 233- 247.
doi: 10.15698/mic2023.11.807 |
| 8 |
ZHAO A L , SUN J Z , LIU Y P . Understanding bacterial biofilms: from definition to treatment strategies[J]. Front Cell Infect Microbiol, 2023, 13, 1137947.
doi: 10.3389/fcimb.2023.1137947 |
| 9 |
O'TOOLE D , ALLEN T , HUNTER R , et al. Diagnostic exercise: myocarditis due to Histophilus somni in feedlot and backgrounded cattle[J]. Vet Pathol, 2009, 46 (5): 1015- 1017.
doi: 10.1354/vp.08-VP-0332-O-DEX |
| 10 |
DE YANIZ M G , FIORENTINO M A , GARCÍA J P , et al. Clinical-pathological findings induced by Histophilus somni isolated in subacute cardiac death in feedlot cattle[J]. Vet Res Commun, 2023, 47 (2): 683- 691.
doi: 10.1007/s11259-022-10028-3 |
| 11 |
SANDAL I , SHAO J Q , ANNADATA S , et al. Histophilus somni biofilm formation in cardiopulmonary tissue of the bovine host following respiratory challenge[J]. Microbes Infect, 2009, 11 (2): 254- 263.
doi: 10.1016/j.micinf.2008.11.011 |
| 12 |
ELSWAIFI S F , SCARRATT W K , INZANA T J . The role of lipooligosaccharide phosphorylcholine in colonization and pathogenesis of Histophilus somni in cattle[J]. Vet Res, 2012, 43 (1): 49.
doi: 10.1186/1297-9716-43-49 |
| 13 | RAABE V N, SHANE A L. Group B Streptococcus (Streptococcus agalactiae)[J/OL]. Microbiol Spectr, 2019, 7(2): 10.1128/microbiolspec.gpp3-0007-2018. [2023-03-21]. https://journals.asm.org/doi/epub/10.1128/microbiolspec.gpp3-0007-2018. |
| 14 |
PHUOC N N , LINH N T H , CRESTANI C , et al. Effect of strain and enviromental conditions on the virulence of Streptococcus agalactiae (Group B Streptococcus; GBS) in red tilapia (Oreochromis sp.)[J]. Aquaculture, 2021, 534, 736256.
doi: 10.1016/j.aquaculture.2020.736256 |
| 15 |
ISIAKU A I , SABRI M Y , INA-SALWANY M Y , et al. Biofilm is associated with chronic streptococcal meningoencephalitis in fish[J]. Microb Pathog, 2017, 102, 59- 68.
doi: 10.1016/j.micpath.2016.10.029 |
| 16 |
PATRAS K A , DERIEUX J , AL-BASSAM M M , et al. Group B Streptococcus biofilm regulatory protein A contributes to bacterial physiology and innate immune resistance[J]. J Infect Dis, 2018, 218 (10): 1641- 1652.
doi: 10.1093/infdis/jiy341 |
| 17 |
MOTTA J P , WALLACE J L , BURET A G , et al. Gastrointestinal biofilms in health and disease[J]. Nat Rev Gastroenterol Hepatol, 2021, 18 (5): 314- 334.
doi: 10.1038/s41575-020-00397-y |
| 18 | HATHROUBI S , SERVETAS S L , WINDHAM I , et al. Helicobacter pylori biofilm formation and its potential role in pathogenesis[J]. Microbiol Mol Biol Rev, 2018, 82 (2): e00001- 18. |
| 19 |
MILLER A L , PASTERNAK J A , MEDEIROS N J , et al. In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. Typhimurium infection[J]. PLoS Pathog, 2020, 16 (7): e1008591.
doi: 10.1371/journal.ppat.1008591 |
| 20 | PETRUZZI B L. Pasteurella multocida biofilm formation, and the interrelationship of P. multocida with Histophilus somni in a polymicrobial biofilm during bovine respiratory disease[D]. Blacksburg: Virginia Tech, 2018. |
| 21 |
TAJIMA M , YAGIHASHI T . Interaction of Mycoplasma hyopneumoniae with the porcine respiratory epithelium as observed by electron microscopy[J]. Infect Immun, 1982, 37 (3): 1162- 1169.
doi: 10.1128/iai.37.3.1162-1169.1982 |
| 22 |
TONNI M , FORMENTI N , BONIOTTI M B , et al. The role of co-infections in M. hyopneumoniae outbreaks among heavy fattening pigs: a field study[J]. Vet Res, 2022, 53 (1): 41.
doi: 10.1186/s13567-022-01061-w |
| 23 |
RAYMOND B B A , JENKINS C , TURNBULL L , et al. Extracellular DNA release from the genome-reduced pathogen Mycoplasma hyopneumoniae is essential for biofilm formation on abiotic surfaces[J]. Sci Rep, 2018, 8 (1): 10373.
doi: 10.1038/s41598-018-28678-2 |
| 24 |
WU Y Z , YU Y F , HUA L Z , et al. Genotyping and biofilm formation of Mycoplasma hyopneumoniae and their association with virulence[J]. Vet Res, 2022, 53 (1): 95.
doi: 10.1186/s13567-022-01109-x |
| 25 |
TREMBLAY Y D N , LABRIE J , CHÉNIER S , et al. Actinobacillus pleuropneumoniae grows as aggregates in the lung of pigs: is it time to refine our in vitro biofilm assays?[J]. Microb Biotechnol, 2017, 10 (4): 756- 760.
doi: 10.1111/1751-7915.12432 |
| 26 |
HATHROUBI S , LOERA-MURO A , GUERRERO-BARRERA A L , et al. Actinobacillus pleuropneumoniae biofilms: role in pathogenicity and potential impact for vaccination development[J]. Anim Health Res Rev, 2018, 19 (1): 17- 30.
doi: 10.1017/S146625231700010X |
| 27 |
SLOAN G P , LOVE C F , SUKUMAR N , et al. The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract[J]. J Bacteriol, 2007, 189 (22): 8270- 8276.
doi: 10.1128/JB.00785-07 |
| 28 |
FULLEN A R , GUTIERREZ-FERMAN J L , RAYNER R E , et al. Architecture and matrix assembly determinants of Bordetella pertussis biofilms on primary human airway epithelium[J]. PLoS Pathog, 2023, 19 (2): e1011193.
doi: 10.1371/journal.ppat.1011193 |
| 29 |
WANG M L , LIU M C , XU J , et al. Uterine microbiota of dairy cows with clinical and subclinical endometritis[J]. Front Microbiol, 2018, 9, 2691.
doi: 10.3389/fmicb.2018.02691 |
| 30 |
AHMADI M R , DERAKHSHANDEH A , SHIRIAN S , et al. Detection of bacterial biofilm in uterine of repeat breeder dairy cows[J]. Asian Pac J Reprod, 2017, 6 (3): 136- 139.
doi: 10.12980/apjr.6.20170308 |
| 31 |
RZEWUSKA M , KWIECIEŃ E , CHROBAK-CHMIEL D , et al. Pathogenicity and virulence of Trueperella pyogenes: a review[J]. Int J Mol Sci, 2019, 20 (11): 2737.
doi: 10.3390/ijms20112737 |
| 32 |
LIU M C , WANG B , LIANG H M , et al. Determination of the expression of three fimbrial subunit proteins in cultured Trueperella pyogenes[J]. Acta Vet Scand, 2018, 60 (1): 53.
doi: 10.1186/s13028-018-0407-3 |
| 33 | FERRIS R A , MCCUE P M , BORLEE G I , et al. Model of chronic equine endometritis involving a Pseudomonas aeruginosa biofilm[J]. Infect Immun, 2017, 85 (12): e00332- 17. |
| 34 | 李琴, 周静茹, 张旭华, 等. 铜绿假单胞菌鞭毛基因fliI的敲除对其鞭毛形成及生物膜生成的影响[J]. 中国人兽共患病学报, 2023, 39 (9): 837- 842. |
| LI Q , ZHOU J R , ZHANG X H , et al. Influence of Pseudomonas aeruginosa fliI gene deletion on flagellar and biofilm formation[J]. Chinese Journal of Zoonoses, 2023, 39 (9): 837- 842. | |
| 35 |
TUON F F , DANTAS L R , SUSS P H , et al. Pathogenesis of the Pseudomonas aeruginosa biofilm: a review[J]. Pathogens, 2022, 11 (3): 300.
doi: 10.3390/pathogens11030300 |
| 36 |
HENSEN S M , PAVIČIĆ M , LOHUIS J , et al. Location of Staphylococcus aureus within the experimentally infected bovine udder and the expression of capsular polysaccharide type 5 in situ[J]. J Dairy Sci, 2000, 83 (9): 1966- 1975.
doi: 10.3168/jds.S0022-0302(00)75073-9 |
| 37 |
SCHÖNBORN S , KRÖMKER V . Detection of the biofilm component polysaccharide intercellular adhesin in Staphylococcus aureus infected cow udders[J]. Vet Microbiol, 2016, 196, 126- 128.
doi: 10.1016/j.vetmic.2016.10.023 |
| 38 |
CHEUNG G Y C , BAE J S , OTTO M . Pathogenicity and virulence of Staphylococcus aureus[J]. Virulence, 2021, 12 (1): 547- 569.
doi: 10.1080/21505594.2021.1878688 |
| 39 |
PÉREZ M M , PRENAFETA A , VALLE J , et al. Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl β-1, 6 glucosamine specific antibody production using biofilm-embedded bacteria[J]. Vaccine, 2009, 27 (17): 2379- 2386.
doi: 10.1016/j.vaccine.2009.02.005 |
| 40 |
SALINA A , GUIMARÃES F F , PEREIRA V B R , et al. Detection of icaA, icaD, and bap genes and biofilm production in Staphylococcus aureus and non-aureus staphylococci isolated from subclinical and clinical bovine mastitis[J]. Arq Bras Med Vet Zootec, 2020, 72 (3): 1034- 1038.
doi: 10.1590/1678-4162-11284 |
| 41 |
ZUNIGA E , MELVILLE P A , SAIDENBERG A B S , et al. Occurrence of genes coding for MSCRAMM and biofilm-associated protein Bap in Staphylococcus spp. isolated from bovine subclinical mastitis and relationship with somatic cell counts[J]. Microb Pathog, 2015, 89, 1- 6.
doi: 10.1016/j.micpath.2015.08.014 |
| 42 | 朱妍, 刘慧燕, 闫丹丽, 等. 益生菌缓解金黄色葡萄球菌感染牛乳腺炎的研究与应用进展[J]. 中国乳品工业, 2024, 52 (1): 33- 39. |
| ZHU Y , LIU H Y , YAN D L , et al. Research status of probiotics in alleviating bovine mastitis caused by Staphylococcus aureus[J]. China Dairy Industry, 2024, 52 (1): 33- 39. | |
| 43 |
GRUNERT T , STESSL B , WOLF F , et al. Distinct phenotypic traits of Staphylococcus aureus are associated with persistent, contagious bovine intramammary infections[J]. Sci Rep, 2018, 8 (1): 15968.
doi: 10.1038/s41598-018-34371-1 |
| 44 |
BORTOLAMI A , ZENDRI F , MACIUCA E I , et al. Diversity, virulence, and clinical significance of extended-spectrum β-lactamase-and pAmpC-producing Escherichia coli from companion animals[J]. Front Microbiol, 2019, 10, 1260.
doi: 10.3389/fmicb.2019.01260 |
| 45 | CLARK H , LASAREV M , WOOD M . Risk factors of enterococcal bacteriuria in cats: a retrospective study[J]. Can Vet J, 2023, 64 (1): 40- 44. |
| 46 |
BALLASH G A , MOLLENKOPF D F , DIAZ-CAMPOS D , et al. Pathogenomics and clinical recurrence influence biofilm capacity of Escherichia coli isolated from canine urinary tract infections[J]. PLoS One, 2022, 17 (8): e0270461.
doi: 10.1371/journal.pone.0270461 |
| 47 |
DORSCH R , TEICHMANN-KNORRN S , SJETNE LUND H . Urinary tract infection and subclinical bacteriuria in cats: a clinical update[J]. J Feline Med Surg, 2019, 21 (11): 1023- 1038.
doi: 10.1177/1098612X19880435 |
| 48 |
BALDIRIS-AVILA R , MONTES-ROBLEDO A , BUELVAS-MONTES Y . Phylogenetic classification, biofilm-forming capacity, virulence factors, and antimicrobial resistance in uropathogenic Escherichia coli (UPEC)[J]. Curr Microbiol, 2020, 77 (11): 3361- 3370.
doi: 10.1007/s00284-020-02173-2 |
| 49 |
杨阳, 吴建国, 肖天兵, 等. 尿路感染的持续复发与多菌感染的研究进展[J]. 国外医药(抗生素分册), 2023, 44 (6): 373- 378.
doi: 10.3969/j.issn.1001-8751.2023.06.003 |
|
YANG Y , WU J G , XIAO T B , et al. Advances in the study of persistent recurrence of urinary tract infection with polymicrobial infection[J]. World Notes on Antibiotics, 2023, 44 (6): 373- 378.
doi: 10.3969/j.issn.1001-8751.2023.06.003 |
|
| 50 | JØRGENSEN E , BJARNSHOLT T , JACOBSEN S . Biofilm and equine limb wounds[J]. Animals (Basel), 2021, 11 (10): 2825. |
| 51 |
WESTGATE S J , PERCIVAL S L , KNOTTENBELT D C , et al. Microbiology of equine wounds and evidence of bacterial biofilms[J]. Vet Microbiol, 2011, 150 (1-2): 152- 159.
doi: 10.1016/j.vetmic.2011.01.003 |
| 52 |
JØRGENSEN E , BAY L , BJARNSHOLT T , et al. The occurrence of biofilm in an equine experimental wound model of healing by secondary intention[J]. Vet Microbiol, 2017, 204, 90- 95.
doi: 10.1016/j.vetmic.2017.03.011 |
| 53 | KÖNIG L M , KLOPFLEISCH R , HÖPER D , et al. Next generation sequencing analysis of biofilms from three dogs with postoperative surgical site infection[J]. Int Sch Res Notices, 2014, 2014, 282971. |
| 54 |
THAARUP I C , IVERSEN A K S , LICHTENBERG M , et al. Biofilm survival strategies in chronic wounds[J]. Microorganisms, 2022, 10 (4): 775.
doi: 10.3390/microorganisms10040775 |
| 55 |
WATTERS C , DELEON K , TRIVEDI U , et al. Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice[J]. Med Microbiol Immunol, 2013, 202 (2): 131- 141.
doi: 10.1007/s00430-012-0277-7 |
| 56 |
METCALF D G , BOWLER P G . Biofilm delays wound healing: a review of the evidence[J]. Burns Trauma, 2013, 1 (1): 5- 12.
doi: 10.4103/2321-3868.113329 |
| 57 |
PASTAR I , NUSBAUM A G , GIL J , et al. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection[J]. PLoS One, 2013, 8 (2): e56846.
doi: 10.1371/journal.pone.0056846 |
| [1] | 温馨, 李永帅, 汪陆宇, 赵研, 孙静文, 史慧君, 付强, 杨莉. 基于网络药理学和试验验证分析小檗碱抗金黄色葡萄球菌感染的分子机制[J]. 畜牧兽医学报, 2026, 57(1): 513-525. |
| [2] | 林晓, 李瑞杰, 刘龙, 耿拓宇, 龚道清. 动物的性别决定基因及其甲基化调控的研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4129-4142. |
| [3] | 严文岚, 冯宇, 薛天骐, 张子豪, 那仁毕力格, 蒋卉. 野生动物布鲁氏菌病流行现状与分析[J]. 畜牧兽医学报, 2025, 56(9): 4253-4266. |
| [4] | 余时隆, 岳潇雨, 栾悦, 王勤. 动物皮肤伤口愈合的分子机制与创新治疗策略[J]. 畜牧兽医学报, 2025, 56(9): 4267-4278. |
| [5] | 郑永杰, 孙同玉, 胡凤明, 魏曼琳, 马涛. 白藜芦醇调控反刍动物生产性能、产品品质与健康状态的研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3631-3639. |
| [6] | 李茜, 高欢, 符爽, 锁卓, 代悦, 陈晨, 李荣天, 冷静. 消化道厌氧真菌及与其他微生物的互作关系[J]. 畜牧兽医学报, 2025, 56(7): 3096-3106. |
| [7] | 李文超, 李维俏, 李欣, 王家庆, 张雅为, 李俊平. 动物源细菌耐药性及中药消减耐药性的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2555-2576. |
| [8] | 国德洋, 胡慧, 郑雪莉, 姜艳芬. 猪防御素-1的原核表达及抑菌效应分析[J]. 畜牧兽医学报, 2025, 56(6): 2836-2846. |
| [9] | 陈云, 陈丽圆, 宋文静, 张新科, 徐菡, 吴嘉仪, 赵翠燕, 张守全. T-2毒素对雄性动物生殖系统毒害机制的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2038-2046. |
| [10] | 郭妍岩, 张羽欣, 陆瑞, 李玉鹏, 陈龙宾, 张金龙, 姚大为, 阮维斌, 张效生, 郭晓飞. 哺乳动物卵泡发育阶段颗粒细胞增殖与分化的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1484-1493. |
| [11] | 陈婷, 崔亚东, 兰伟, 孔祥峰. 氨基葡萄糖的功能及其在动物生产中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1518-1526. |
| [12] | 邢静怡, 郭晓萌, 王蒙, 管鑫, 邱亮, 李安琪, 张庆利, 黄倢. 十足目虹彩病毒病诊断方法的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1549-1560. |
| [13] | 李晓晗, 李桂萍, 霍彩云, 张启龙, 孙英健, 孙惠玲. Ⅱ类CRISPR/Cas系统及其在细菌合成生物学中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1608-1620. |
| [14] | 李真亚, 刘洁, 李允, 王飞, 孔嫄嫄, 李泳, 贾荣玲. 猪肺炎支原体强弱毒株的生物学特性及比较基因组学分析[J]. 畜牧兽医学报, 2025, 56(2): 851-859. |
| [15] | 赵雨薇, 王卓, 张城瑞, 屠焰, 刁其玉, 崔凯. 儿茶素类物质调控动物肠道屏障功能的机制研究及应用进展[J]. 畜牧兽医学报, 2025, 56(12): 6013-6024. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||