畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 115-125.doi: 10.11843/j.issn.0366-6964.2025.01.011
收稿日期:
2024-02-26
出版日期:
2025-01-23
发布日期:
2025-01-18
通讯作者:
马保华,彭莎
E-mail:hhy1483457965@163.com;mabh@nwsuaf.edu.cn;pengshacxh@nwsuaf.edu.cn
作者简介:
贺海洋(2002-),男,河南南阳人,本科生,主要参与动物成体干细胞作用机理研究,E-mail:hhy1483457965@163.com
基金资助:
HE Haiyang(), MA Baohua*(
), PENG Sha*(
)
Received:
2024-02-26
Online:
2025-01-23
Published:
2025-01-18
Contact:
MA Baohua, PENG Sha
E-mail:hhy1483457965@163.com;mabh@nwsuaf.edu.cn;pengshacxh@nwsuaf.edu.cn
摘要:
急性肾损伤(acute kidney injury, AKI)是一种发病迅速、病因复杂且致死率较高的肾脏疾病,对动物生命健康构成严重威胁。近年来,间充质干细胞(mesenchymal stem cells, MSCs)作为治疗急性损伤的有效方法已被广泛认可。然而,由于细胞疗法存在局限性,一种备受关注的新型无细胞治疗方法即间充质干细胞源外泌体(mesenchymal stem cell-derived exosomes, MSC-exos)在急性肾损伤治疗方面引起了极大关注。MSC-exos通过多种机制(如抑制炎症反应、减少凋亡以及调节自噬等方式)发挥着治愈急性肾损伤的作用。本文将总结MSC-exos在动物AKI治疗方面取得的相关进展,并旨在为基于干细胞来源外泌体进行动物临床治理和应用提供理论参考。
中图分类号:
贺海洋, 马保华, 彭莎. 间充质干细胞源外泌体对动物急性肾损伤的治疗作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(1): 115-125.
HE Haiyang, MA Baohua, PENG Sha. Research Progress on the Role and Mechanism of Mesenchymal Stem Cell-derived Exosomes in Animal Acute Renal Injury[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 115-125.
1 |
KELLUM J A , ROMAGNANI P , ASHUNTANTANG G , et al. Acute kidney injury[J]. Nat Rev Dis Primers, 2021, 7 (1): 52.
doi: 10.1038/s41572-021-00284-z |
2 |
HUANG Y L , YANG L N . Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases[J]. Stem Cell Res Ther, 2021, 12 (1): 219.
doi: 10.1186/s13287-021-02289-7 |
3 |
XUNIAN Z , KALLURI R . Biology and therapeutic potential of mesenchymal stem cell-derived exosomes[J]. Cancer Sci, 2020, 111 (9): 3100- 3110.
doi: 10.1111/cas.14563 |
4 |
DAD H A , GU T W , ZHU A Q , et al. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms[J]. Mol Ther, 2021, 29 (1): 13- 31.
doi: 10.1016/j.ymthe.2020.11.030 |
5 |
ASKENASE P W . Exosomes provide unappreciated carrier effects that assist transfers of their miRNAs to targeted cells; I. They are 'The Elephant in the Room'[J]. RNA Biol, 2021, 18 (11): 2038- 2053.
doi: 10.1080/15476286.2021.1885189 |
6 | SPADA S . Study of microRNAs carried by exosomes[J]. Methods Cell Biol, 2021, 165, 187- 197. |
7 |
PEIRED A J , SISTI A , ROMAGNANI P . Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence[J]. Stem Cells Int, 2016, 2016, 4798639.
doi: 10.1155/2016/4798639 |
8 |
ELAHI F M , FARWELL D G , NOLTA J A , et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells[J]. Stem Cells, 2020, 38 (1): 15- 21.
doi: 10.1002/stem.3061 |
9 |
JOO H S , SUH J H , LEE H J , et al. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent[J]. Int J Mol Sci, 2020, 21 (3): 727.
doi: 10.3390/ijms21030727 |
10 |
ZHANG X Y , WANG J , ZHANG J , et al. Exosomes highlight future directions in the treatment of acute kidney injury[J]. Int J Mol Sci, 2023, 24 (21): 15568.
doi: 10.3390/ijms242115568 |
11 |
COLLINO F , BRUNO S , INCARNATO D , et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs[J]. J Am Soc Nephrol, 2015, 26 (10): 2349- 2360.
doi: 10.1681/ASN.2014070710 |
12 |
BONAVIA A , SINGBARTL K . A review of the role of immune cells in acute kidney injury[J]. Pediatr Nephrol, 2018, 33 (10): 1629- 1639.
doi: 10.1007/s00467-017-3774-5 |
13 |
TAMMARO A , KERS J , SCANTLEBERY A M L , et al. Metabolic flexibility and innate immunity in renal ischemia reperfusion injury: the fine balance between adaptive repair and tissue degeneration[J]. Front Immunol, 2020, 11, 1346.
doi: 10.3389/fimmu.2020.01346 |
14 |
LIU Z W , DONG Z . A cross talk between HIF and NF-κB in AKI[J]. Am J Physiol Renal Physiol, 2021, 321 (3): F255- F256.
doi: 10.1152/ajprenal.00256.2021 |
15 |
AMARAL PEDROSO L , NOBRE V , DIAS CARNEIRO DE ALMEIDA C , et al. Acute kidney injury biomarkers in the critically ill[J]. Clin Chim Acta, 2020, 508, 170- 178.
doi: 10.1016/j.cca.2020.05.024 |
16 |
VON VIETINGHOFF S , KURTS C . Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease[J]. Cell Tissue Res, 2021, 385 (2): 335- 344.
doi: 10.1007/s00441-021-03473-0 |
17 |
ZOU X Y , ZHANG G Y , CHENG Z L , et al. Microvesicles derived from human Wharton's Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1[J]. Stem Cell Res Ther, 2014, 5 (2): 40.
doi: 10.1186/scrt428 |
18 |
YOO K D , CHA R H , LEE S , et al. Chemokine receptor 5 blockade modulates macrophage trafficking in renal ischaemic-reperfusion injury[J]. J Cell Mol Med, 2020, 24 (10): 5515- 5527.
doi: 10.1111/jcmm.15207 |
19 |
SHEN B , LIU J , ZHANG F , et al. CCR2 positive exosome released by mesenchymal stem cells suppresses macrophage functions and alleviates ischemia/reperfusion-induced renal injury[J]. Stem Cells Int, 2016, 2016, 1240301.
doi: 10.1155/2016/1240301 |
20 | 金翠, 曹永梅, 尚嘉伟, 等. 骨髓间充质干细胞来源外泌体保护脓毒症相关急性肾损伤的体外研究[J]. 同济大学学报: 医学版, 2022, 43 (2): 157- 164. |
JIN C , CAO Y M , SHANG J W , et al. Protective effects of exosomes derived from bone mesenchymal stem cells in sepsis-induced acute kidney injury cell model in vitro[J]. Journal of Tongji University: Medical Science, 2022, 43 (2): 157- 164. | |
21 | 徐莹, 周茹, 张欣洲, 等. 间充质干细胞外泌体对CLP大鼠急性肾损伤作用研究[J]. 湖北医药学院学报, 2022, 41 (2): 116- 120. |
XU Y , ZHOU R , ZHANG X Z , et al. The effect of mesenchymal stem cell-derived exosomes on acute kidney injury in CLP rats[J]. Journal of Hubei University of Medicine, 2022, 41 (2): 116- 120. | |
22 |
KUNNUMAKKARA A B , SHABNAM B , GIRISA S , et al. Inflammation, NF-κB, and chronic diseases: how are they linked?[J]. Crit Rev Immunol, 2020, 40 (1): 1- 39.
doi: 10.1615/CritRevImmunol.2020033210 |
23 |
ZHANG R X , ZHU Y , LI Y , et al. Human umbilical cord mesenchymal stem cell exosomes alleviate sepsis-associated acute kidney injury via regulating microRNA-146b expression[J]. Biotechnol Lett, 2020, 42 (4): 669- 679.
doi: 10.1007/s10529-020-02831-2 |
24 | 高芳. 脂肪间充质干细胞外泌体对脓毒症急性肾损伤的保护作用及机制研究[D]. 苏州: 苏州大学, 2021. |
GAO F. Renoprotection and mechanisms of adipose-derived mesenchymal stem cell-derived exosome on sepsis-induced acute kidney injury[D]. Suzhou: Soochow University, 2021. | |
25 |
GAO F , ZUO B J , WANG Y P , et al. Protective function of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney injury through SIRT1 pathway[J]. Life Sci, 2020, 255, 117719.
doi: 10.1016/j.lfs.2020.117719 |
26 |
BERTHELOOT D , LATZ E , FRANKLIN B S . Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18 (5): 1106- 1121.
doi: 10.1038/s41423-020-00630-3 |
27 |
KETELUT-CARNEIRO N , FITZGERALD K A . Apoptosis, pyroptosis, and necroptosis-Oh My!The many ways a cell can die[J]. J Mol Biol, 2022, 434 (4): 167378.
doi: 10.1016/j.jmb.2021.167378 |
28 |
WAN Y H , YU Y H , YU C J , et al. Human umbilical cord mesenchymal stem cell exosomes alleviate acute kidney injury by inhibiting pyroptosis in rats and NRK-52E cells[J]. Ren Fail, 2023, 45 (1): 2221138.
doi: 10.1080/0886022X.2023.2221138 |
29 |
YU Y H , CHEN M L , GUO Q T , et al. Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage[J]. Cell Mol Biol Lett, 2023, 28 (1): 12.
doi: 10.1186/s11658-023-00425-0 |
30 |
BRUNO S , GRANGE C , COLLINO F , et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury[J]. PLoS One, 2012, 7 (3): e33115.
doi: 10.1371/journal.pone.0033115 |
31 |
王汝霖, 林淼, 黎力平, 等. 骨髓间充质干细胞来源exosome对大鼠肾缺血再灌注损伤的保护作用[J]. 中华医学杂志, 2014, 94 (42): 3298- 3303.
doi: 10.3760/cma.j.issn.0376-2491.2014.42.005 |
WANG R L , LIN M , LI L P , et al. Bone marrow mesenchymal stem cell-derived exosome protects kidney against ischemia reperfusion injury in rats[J]. Natl Med J China, 2014, 94 (42): 3298- 3303.
doi: 10.3760/cma.j.issn.0376-2491.2014.42.005 |
|
32 |
LINDOSO R S , COLLINO F , BRUNO S , et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury[J]. Stem Cells Dev, 2014, 23 (15): 1809- 1819.
doi: 10.1089/scd.2013.0618 |
33 |
YE K , CHEN Z M , XU Y F . The double-edged functions of necroptosis[J]. Cell Death Dis, 2023, 14 (2): 163.
doi: 10.1038/s41419-023-05691-6 |
34 |
FRANK D , VINCE J E . Pyroptosis versus necroptosis: similarities, differences, and crosstalk[J]. Cell Death Differ, 2019, 26 (1): 99- 114.
doi: 10.1038/s41418-018-0212-6 |
35 |
MORGAN M J , KIM Y S . Roles of RIPK3 in necroptosis, cell signaling, and disease[J]. Exp Mol Med, 2022, 54 (10): 1695- 1704.
doi: 10.1038/s12276-022-00868-z |
36 |
ZHANG Z H , LIU W H , SHEN M L , et al. Protective effect of GM1 attenuates hippocampus and cortex apoptosis after ketamine exposure in neonatal rat via PI3K/AKT/GSK3β pathway[J]. Mol Neurobiol, 2021, 58 (7): 3471- 3483.
doi: 10.1007/s12035-021-02346-5 |
37 |
MALIREDDI R K S , KESAVARDHANA S , KANNEGANTI T D . ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis)[J]. Front Cell Infect Microbiol, 2019, 9, 406.
doi: 10.3389/fcimb.2019.00406 |
38 |
HE Y , HARA H , NÚÑEZ G . Mechanism and regulation of NLRP3 inflammasome activation[J]. Trends Biochem Sci, 2016, 41 (12): 1012- 1021.
doi: 10.1016/j.tibs.2016.09.002 |
39 |
TANG C Y , MA Z W , ZHU J F , et al. P53 in kidney injury and repair: mechanism and therapeutic potentials[J]. Pharmacol Ther, 2019, 195, 5- 12.
doi: 10.1016/j.pharmthera.2018.10.013 |
40 | 曹婧媛. 人脐带间充质干细胞源外泌体对急性肾损伤的治疗作用及机制探讨[D]. 南京: 东南大学, 2021. |
CAO J Y. The therapeutic effect and mechanism of human umbilical cord mesenchymal stem cell-derived exosomes in acute kidney injury[D]. Nanjing: Southeast University, 2021. (in Chinese) | |
41 |
CAO J Y , WANG B , TANG T T , et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 2021, 11 (11): 5248- 5266.
doi: 10.7150/thno.54550 |
42 |
LI W , HE P C , HUANG Y G , et al. Selective autophagy of intracellular organelles: recent research advances[J]. Theranostics, 2021, 11 (1): 222- 256.
doi: 10.7150/thno.49860 |
43 |
WANG B Y , JIA H Y , ZHANG B , et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy[J]. Stem Cell Res Ther, 2017, 8 (1): 75.
doi: 10.1186/s13287-016-0463-4 |
44 |
WANG J J , JIA H Y , ZHANG B , et al. HucMSC exosome-transported 14-3-3ζ prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro[J]. Cytotherapy, 2018, 20 (1): 29- 44.
doi: 10.1016/j.jcyt.2017.08.002 |
45 |
SAKAI Y , OKU M . ATG and ESCRT control multiple modes of microautophagy[J]. FEBS Lett, 2024, 598 (1): 48- 58.
doi: 10.1002/1873-3468.14760 |
46 | JIA H Y , LIU W Z , ZHANG B , et al. HucMSC exosomes-delivered 14-3-3ζ enhanced autophagy via modulation of ATG16L in preventing cisplatin-induced acute kidney injury[J]. Am J Transl Res, 2018, 10 (1): 101- 113. |
47 |
LIU W , HU C H , ZHANG B Y , et al. Exosomal microRNA-342-5p secreted from adipose-derived mesenchymal stem cells mitigates acute kidney injury in sepsis mice by inhibiting TLR9[J]. Biol Proced Online, 2023, 25 (1): 10.
doi: 10.1186/s12575-023-00198-y |
48 |
ZHANG K Y , CHEN S , SUN H M , et al. In vivo two-photon microscopy reveals the contribution of Sox9+ cell to kidney regeneration in a mouse model with extracellular vesicle treatment[J]. J Biol Chem, 2020, 295 (34): 12203- 12213.
doi: 10.1074/jbc.RA120.012732 |
49 |
CHOI H Y , MOON S J , RATLIFF B B , et al. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury[J]. PLoS One, 2014, 9 (2): e87853.
doi: 10.1371/journal.pone.0087853 |
50 |
CHOI H Y , LEE H G , KIM B S , et al. Mesenchymal stem cell-derived microparticles ameliorate peritubular capillary rarefaction via inhibition of endothelial-mesenchymal transition and decrease tubulointerstitial fibrosis in unilateral ureteral obstruction[J]. Stem Cell Res Ther, 2015, 6 (1): 18.
doi: 10.1186/s13287-015-0012-6 |
51 |
JU G Q , CHENG J , ZHONG L , et al. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction[J]. PLoS One, 2015, 10 (3): e0121534.
doi: 10.1371/journal.pone.0121534 |
52 |
JAGANJAC M , MILKOVIC L , ZARKOVIC N , et al. Oxidative stress and regeneration[J]. Free Radic Biol Med, 2022, 181, 154- 165.
doi: 10.1016/j.freeradbiomed.2022.02.004 |
53 |
LI X Q , HAN Y , MENG Y , et al. Small RNA-big impact: exosomal miRNAs in mitochondrial dysfunction in various diseases[J]. RNA Biol, 2024, 21 (1): 1- 20.
doi: 10.1080/15476286.2023.2264666 |
54 |
ZHAO L M , HAO Y J , TANG S Q , et al. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury[J]. Front Cell Dev Biol, 2023, 11, 1276217.
doi: 10.3389/fcell.2023.1276217 |
55 |
ZHAO M , LIU S Y , WANG C S , et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA[J]. ACS Nano, 2021, 15 (1): 1519- 1538.
doi: 10.1021/acsnano.0c08947 |
56 |
WANG C , LI C C , PENG H , et al. Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes[J]. Cell Physiol Biochem, 2014, 34 (3): 891- 902.
doi: 10.1159/000366307 |
57 |
ZHANG G Y , ZOU X Y , HUANG Y Q , et al. Mesenchymal stromal cell-derived extracellular vesicles protect against acute kidney injury through anti-oxidation by enhancing Nrf2/ARE activation in rats[J]. Kidney Blood Press Res, 2016, 41 (2): 119- 128.
doi: 10.1159/000443413 |
58 |
CAO H M , CHENG Y Q , GAO H Q , et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury[J]. ACS Nano, 2020, 14 (4): 4014- 4026.
doi: 10.1021/acsnano.9b08207 |
59 |
ZHANG G Y , ZOU X Y , MIAO S , et al. The anti-oxidative role of micro-vesicles derived from human Wharton-Jelly mesenchymal stromal cells through NOX2/gp91(phox) suppression in alleviating renal ischemia-reperfusion injury in rats[J]. PLoS One, 2014, 9 (3): e92129.
doi: 10.1371/journal.pone.0092129 |
60 |
ZHOU Y , XU H T , XU W R , et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro[J]. Stem Cell Res Ther, 2013, 4 (2): 34.
doi: 10.1186/scrt194 |
61 | 张志远, 侯艳萍, 邹翔宇, 等. 人脐带间充质干细胞微囊减轻小鼠急性肾损伤的研究[J]. 中华细胞与干细胞杂志: 电子版, 2018, 8 (5): 264- 271. |
ZHANG Z Y , HOU Y P , ZOU X Y , et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells ameliorate acute kidney injury in mice[J]. Chinese Journal of Cell and Stem Cell: Electronic Edition, 2018, 8 (5): 264- 271. | |
62 |
TANG C Y , CAI J , YIN X M , et al. Mitochondrial quality control in kidney injury and repair[J]. Nat Rev Nephrol, 2021, 17 (5): 299- 318.
doi: 10.1038/s41581-020-00369-0 |
63 |
WANG S Y , XU Y , HONG Q , et al. Mesenchymal stem cells ameliorate cisplatin-induced acute kidney injury via let-7b-5p[J]. Cell Tissue Res, 2023, 392 (2): 517- 533.
doi: 10.1007/s00441-022-03729-3 |
64 |
KIM H , LEE S K , HONG S , et al. Pan PPAR agonist stimulation of induced MSCs produces extracellular vesicles with enhanced renoprotective effect for acute kidney injury[J]. Stem Cell Res Ther, 2024, 15 (1): 9.
doi: 10.1186/s13287-023-03577-0 |
65 |
HE W L , QIN D Z , LI B L , et al. Immortalized canine adipose-derived mesenchymal stem cells alleviate gentamicin-induced acute kidney injury by inhibiting endoplasmic reticulum stress in mice and dogs[J]. Res Vet Sci, 2021, 136, 39- 50.
doi: 10.1016/j.rvsc.2021.02.001 |
[1] | 吕英光, 焦广明, 桑金芳, 寇志鹏, 刘涛, 王月, 陆翔宇, 朴晨曦, 马亚军, 张建涛, 王洪斌. 脂肪间充质干细胞对巴马小型猪自体皮肤移植愈合过程的影响[J]. 畜牧兽医学报, 2024, 55(7): 3193-3204. |
[2] | 朱明德, 陈奕静, 戴鹏秀, 张翊华, 张欣珂. 重编程诱导犬脂肪间充质干细胞向胰岛素分泌细胞分化[J]. 畜牧兽医学报, 2024, 55(7): 3205-3212. |
[3] | 谭宁, 李巴仑, 韩苗, 李琛琛, 景远翔, 寇正, 李娜, 彭莎, 赵献军, 华进联. 米托蒽醌甲磺酸盐预处理脂肪间充质干细胞对犬糖尿病的治疗效果评价[J]. 畜牧兽医学报, 2024, 55(3): 1328-1344. |
[4] | 刘新新, 周恩友, 安智远, 蔡春霞, 张露洁, 李建增, 李转见, 闫峰宾, 康相涛, 高延玲, 韩瑞丽. 不同来源外泌体对骨骼发育及骨骼疾病的影响[J]. 畜牧兽医学报, 2024, 55(2): 419-426. |
[5] | 刘晏辰, 周世莹, 张洋, 高扬, 关伟军. 荷斯坦牛肺干细胞分离培养与生物学特性研究[J]. 畜牧兽医学报, 2024, 55(2): 540-551. |
[6] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[7] | 邱文粤, 苏依曼, 叶嘉莉, 章心婷, 庞晓玥, 王荣梅, 谢子茂, 张辉, 唐兆新, 苏荣胜. 积雪草酸通过调控细胞凋亡和自噬缓解脂多糖诱导肉鸡急性肾损伤的研究[J]. 畜牧兽医学报, 2024, 55(2): 809-821. |
[8] | 卿霆, 欧阳和昊, 潘其聪, 朱碧波, 叶静, 曹胜波, 王秀羽, 司有辉. 流式病毒检测法的应用进展[J]. 畜牧兽医学报, 2024, 55(11): 4840-4851. |
[9] | 王鑫鑫, 林树梅, 赵冬冬, 王学生. 肺泡上皮细胞分泌的外泌体调控巨噬细胞极化在急性肺损伤中的作用[J]. 畜牧兽医学报, 2024, 55(1): 71-78. |
[10] | 田启会, 张亮, 龙亚丽. 黄芪影响缺氧微环境中骨髓间充质干细胞增殖活性的PI3K-AKT信号通路分析[J]. 畜牧兽医学报, 2024, 55(1): 346-354. |
[11] | 马亚军, 焦智慧, 刘笑凝, 陆翔羽, 刘涛, 王月, 朴晨曦, 王洪斌. 脂肪间充质干细胞对小型猪肝缺血再灌注合并肝切除组织细胞焦亡的影响[J]. 畜牧兽医学报, 2024, 55(1): 355-364. |
[12] | 焦广明, 吕英光, 桑金芳, 寇志鹏, 刘涛, 王月, 陆翔宇, 朴晨曦, 马亚军, 张建涛, 王洪斌. 脂肪间充质干细胞与甲泼尼龙联合用药对小型猪异体皮肤移植的影响[J]. 畜牧兽医学报, 2023, 54(8): 3533-3545. |
[13] | 张嘉宾, 徐钊, 周光余, 张梦迪, 符杨, 刘佳琪, 周东海. 电针疗法对AKI犬的肾功能、钙磷代谢、抗氧化能力以及NRF2信号通路的影响[J]. 畜牧兽医学报, 2023, 54(2): 803-815. |
[14] | 郭心雨, 王昊天, 张雪梅, 王小龙, 李和平, 杨彦宾, 钟凯. 牛乳来源外泌体对巨噬细胞极化调控作用的研究[J]. 畜牧兽医学报, 2023, 54(11): 4754-4765. |
[15] | 陆江, 朱道仙, 刘莉, 郝福星, 吴植, 傅宏庆. 青蒿琥酯通过Keap1/Nrf2通路抑制氧化应激改善犬急性肾损伤的体内外分析[J]. 畜牧兽医学报, 2022, 53(7): 2343-2353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||