畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2334-2344.doi: 10.11843/j.issn.0366-6964.2024.06.006
褚婷婷(), 张晓宇, 孙磊, 童嘉顺, 张磊, 宋宇轩*(
)
收稿日期:
2023-10-19
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
宋宇轩
E-mail:ttiingchu@nwafu.edu.cn;syx98728@163.com
作者简介:
褚婷婷(1994-),女,河南南阳人,博士,主要从事动物生殖生理调控研究,E-mail: ttiingchu@nwafu.edu.cn
基金资助:
Tingting CHU(), Xiaoyu ZHANG, Lei SUN, Jiashun TONG, Lei ZHANG, Yuxuan SONG*(
)
Received:
2023-10-19
Online:
2024-06-23
Published:
2024-06-28
Contact:
Yuxuan SONG
E-mail:ttiingchu@nwafu.edu.cn;syx98728@163.com
摘要:
子宫内膜纤维化是子宫内膜受到持续损伤刺激导致其修复障碍引发的,以细胞外基质过度沉积为特征,可能导致子宫内膜结构破坏和功能障碍甚至衰竭,影响家畜繁殖力和生殖质量。因此,解析子宫内膜纤维化的形成机制对提高家畜繁殖力具有一定意义。本文阐述了纤维化发生的触发因素,形成的细胞分子机制及细胞代谢调节与细胞外基质之间的关系,并探讨了纤维化的治疗策略和未来研究方向,旨在为家畜子宫内膜纤维化的研究提供参考。
中图分类号:
褚婷婷, 张晓宇, 孙磊, 童嘉顺, 张磊, 宋宇轩. 家畜子宫内膜纤维化的细胞分子机制研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2334-2344.
Tingting CHU, Xiaoyu ZHANG, Lei SUN, Jiashun TONG, Lei ZHANG, Yuxuan SONG. Advances in Cellular and Molecular Mechanisms of Endometrial Fibrosis in Domestic Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2334-2344.
表 1
参与调控纤维化的信号通路"
信号通路 Signaling pathway | 靶向细胞 Targeted cells | 调控因子 Regulators | 参与纤维化的调控作用 Involved in the regulation of fibrosis | 参考文献 Reference |
TGF-β | 上皮细胞、成纤维细胞 | IL-17A、SMAD、RhoA、Ras、TAK1、P13K、mTOR | 促进EMT,促进胶原蛋白和纤连蛋白的合成,促进谷氨酰胺分解 | [ |
Hippo | 成纤维细胞、肌成纤维细胞、 | TAZ、YAP、Wnt、Smad | 促进α-SMA和CTGF表达,调节干细胞的生长和分化,诱导COL1A1上调,调控成纤维细胞分化和ECM合成 | [ |
Hedgehog | 基质细胞 | CTGF、Gli1、Ptch1 | 促进肌成纤维细胞活化,诱导COL1A1、α-SMA表达 | [ |
PI3K/AKT | 基质细胞 | mTOR | 促进基质细胞增殖分化、促进胶原沉积 | [ |
Wnt/β-Catenin | 基质细胞 | mTOR | 促进αSMA、Col-I、FN和CTGF表达 | [ |
1 |
ZHANG S H , ZHANG R Y , YIN X Y , et al. MenSCs transplantation improve the viability of injured endometrial cells through activating PI3K/Akt pathway[J]. Reprod Sci, 2023, 30 (11): 3325- 3338.
doi: 10.1007/s43032-023-01282-0 |
2 |
HENDERSON N C , RIEDER F , WYNN T A . Fibrosis: from mechanisms to medicines[J]. Nature, 2020, 587 (7835): 555- 566.
doi: 10.1038/s41586-020-2938-9 |
3 |
HINZ B , LAGARES D . Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases[J]. Nat Rev Rheumatol, 2020, 16 (1): 11- 31.
doi: 10.1038/s41584-019-0324-5 |
4 |
ZULLO A , MANCINI F P , SCHLEIP R , et al. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity[J]. Wound Repair Regen, 2021, 29 (4): 650- 666.
doi: 10.1111/wrr.12943 |
5 |
ZHAO M Y , WANG L Q , WANG M Z , et al. Targeting fibrosis: mechanisms and clinical trials[J]. Signal Transduct Target Ther, 2022, 7 (1): 206.
doi: 10.1038/s41392-022-01070-3 |
6 |
GOMES G M , CRESPILHO A M , LEÃO K M , et al. Can sperm selection, inseminating dose, and artificial insemination technique influence endometrial inflammatory response in mares[J]. J Equine Vet Sci, 2019, 73, 43- 47.
doi: 10.1016/j.jevs.2018.09.010 |
7 |
LI H Q , YUAN C N , WANG H , et al. The effect of selenium on endometrial repair in goats with endometritis at high cortisol levels[J]. Biol Trace Elem Res, 2023,
doi: 10.1007/s12011-023-03866-y |
8 |
RUA M A S , QUIRINO C R , RIBEIRO R B , et al. Diagnostic methods to detect uterus illnesses in mares[J]. Theriogenology, 2018, 114, 285- 292.
doi: 10.1016/j.theriogenology.2018.03.042 |
9 |
SKARZYNSKI D J , SZÓSTEK-MIODUCHOWSKA A Z , REBORDÃO M R , et al. Neutrophils, monocytes and other immune components in the equine endometrium: friends or foes[J]. Theriogenology, 2020, 150, 150- 157.
doi: 10.1016/j.theriogenology.2020.01.018 |
10 |
罗芳, 张萌, 李亚超, 等. 影响奶牛早期胚胎丢失的因素[J]. 畜牧兽医学报, 2020, 51 (5): 907- 913.
doi: 10.11843/j.issn.0366-6964.2020.05.002 |
LUO F , ZHANG M , LI Y C , et al. Factors associated with early embryo loss in dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (5): 907- 913.
doi: 10.11843/j.issn.0366-6964.2020.05.002 |
|
11 |
王瑞玲, 王雪妍, 王菲菲, 等. 奶牛产后急性子宫内膜炎血液氧化脂质组变化特征[J]. 畜牧兽医学报, 2024, 55 (1): 373- 387.
doi: 10.11843/j.issn.0366-6964.2024.01.035 |
WANG R L , WANG X Y , WANG F F , et al. Study on the changes of blood oxidized lipid group in postpartum dairy cows with acute endometritis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (1): 373- 387.
doi: 10.11843/j.issn.0366-6964.2024.01.035 |
|
12 |
PLIKUS M V , WANG X J , SINHA S , et al. Fibroblasts: origins, definitions, and functions in health and disease[J]. Cell, 2021, 184 (15): 3852- 3872.
doi: 10.1016/j.cell.2021.06.024 |
13 |
MUHL L , GENOVÉ G , LEPTIDIS S , et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination[J]. Nat Commun, 2020, 11 (1): 3953.
doi: 10.1038/s41467-020-17740-1 |
14 |
TALBOTT H E , MASCHARAK S , GRIFFIN M , et al. Wound healing, fibroblast heterogeneity, and fibrosis[J]. Cell Stem Cell, 2022, 29 (8): 1161- 1180.
doi: 10.1016/j.stem.2022.07.006 |
15 |
LEMOS D R , DUFFIELD J S . Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies[J]. Sci Transl Med, 2018, 10 (426): eaan5174.
doi: 10.1126/scitranslmed.aan5174 |
16 |
LEBLEU V S , NEILSON E G . Origin and functional heterogeneity of fibroblasts[J]. FASEB J, 2020, 34 (3): 3519- 3536.
doi: 10.1096/fj.201903188R |
17 |
LI L , LU M Z , PENG Y L , et al. Oxidatively stressed extracellular microenvironment drives fibroblast activation and kidney fibrosis[J]. Redox Biol, 2023, 67, 102868.
doi: 10.1016/j.redox.2023.102868 |
18 |
PAKSHIR P , ALIZADEHGIASHI M , WONG B , et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix[J]. Nat Commun, 2019, 10 (1): 1850.
doi: 10.1038/s41467-019-09709-6 |
19 |
SCHUSTER R , YOUNESI F , EZZO M , et al. The role of myofibroblasts in physiological and pathological tissue repair[J]. Cold Spring Harb Perspect Biol, 2023, 15 (1): a041231.
doi: 10.1101/cshperspect.a041231 |
20 |
LURJE I , GAISA N T , WEISKIRCHEN R , et al. Mechanisms of organ fibrosis: emerging concepts and implications for novel treatment strategies[J]. Mol Aspects Med, 2023, 92, 101191.
doi: 10.1016/j.mam.2023.101191 |
21 |
KATO K , LOGSDON N J , SHIN Y J , et al. Impaired myofibroblast dedifferentiation contributes to nonresolving fibrosis in aging[J]. Am J Respir Cell Mol Biol, 2020, 62 (5): 633- 644.
doi: 10.1165/rcmb.2019-0092OC |
22 | WALTER I , HANDLER J , MILLER I , et al. Matrix metalloproteinase 2 (MMP-2) and tissue transglutaminase (TG 2) are expressed in periglandular fibrosis in horse mares with endometrosis[J]. Histol Histopathol, 2005, 20 (4): 1105- 1113. |
23 |
AMACK J D . Cellular dynamics of EMT: lessons from live in vivo imaging of embryonic development[J]. Cell Commun Signal, 2021, 19 (1): 79.
doi: 10.1186/s12964-021-00761-8 |
24 |
TAKI M , ABIKO K , UKITA M , et al. Tumor immune microenvironment during epithelial-mesenchymal transition[J]. Clin Cancer Res, 2021, 27 (17): 4669- 4679.
doi: 10.1158/1078-0432.CCR-20-4459 |
25 |
MARCONI G D , FONTICOLI L , RAJAN T S , et al. Epithelial-Mesenchymal Transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis[J]. Cells, 2021, 10 (7): 1587.
doi: 10.3390/cells10071587 |
26 |
MANFIOLETTI G , FEDELE M . Epithelial-Mesenchymal Transition (EMT) 2021[J]. Int J Mol Sci, 2022, 23 (10): 5848.
doi: 10.3390/ijms23105848 |
27 |
ZEISBERG M , NEILSON E G . Biomarkers for epithelial-mesenchymal transitions[J]. J Clin Invest, 2009, 119 (6): 1429- 1437.
doi: 10.1172/JCI36183 |
28 |
XU J , LAMOUILLE S , DERYNCK R . TGF-β-induced epithelial to mesenchymal transition[J]. Cell Res, 2009, 19 (2): 156- 172.
doi: 10.1038/cr.2009.5 |
29 |
FRANGOGIANNIS N G . Transforming growth factor-β in tissue fibrosis[J]. J Exp Med, 2020, 217 (3): e20190103.
doi: 10.1084/jem.20190103 |
30 |
LOVISA S . Epithelial-to-mesenchymal transition in fibrosis: concepts and targeting strategies[J]. Front Pharmacol, 2021, 12, 737570.
doi: 10.3389/fphar.2021.737570 |
31 |
WANG X C , SONG K , TU B , et al. New aspects of the epigenetic regulation of EMT related to pulmonary fibrosis[J]. Eur J Pharmacol, 2023, 956, 175959.
doi: 10.1016/j.ejphar.2023.175959 |
32 |
YAO L D , CONFORTI F , HILL C , et al. Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis[J]. Cell Death Differ, 2019, 26 (5): 943- 957.
doi: 10.1038/s41418-018-0175-7 |
33 |
MINKWITZ C , SCHOON H A , ZHANG Q , et al. Plasticity of endometrial epithelial and stromal cells-a new approach towards the pathogenesis of equine endometrosis[J]. Reprod Domest Anim, 2019, 54 (6): 835- 845.
doi: 10.1111/rda.13431 |
34 | BORDON Y . CXCL8 blockade reduces fibrosis in endometriosis[J]. Nat Rev Immunol, 2023, 23 (4): 203. |
35 |
XU X X , CAO L B , WANG Z , et al. Creation of a rabbit model for intrauterine adhesions using electrothermal injury[J]. J Zhejiang Univ Sci B, 2018, 19 (5): 383- 389.
doi: 10.1631/jzus.B1700086 |
36 |
VU R , DRAGAN M , SUN P , et al. Epithelial-mesenchymal plasticity and endothelial-mesenchymal transition in cutaneous wound healing[J]. Cold Spring Harb Perspect Biol, 2023, 15 (8): a041237.
doi: 10.1101/cshperspect.a041237 |
37 |
MAN S , SANCHEZ DUFFHUES G , TEN DIJKE P , et al. The therapeutic potential of targeting the endothelial-to-mesenchymal transition[J]. Angiogenesis, 2019, 22 (1): 3- 13.
doi: 10.1007/s10456-018-9639-0 |
38 |
LU D K , JIANG H , ZOU T , et al. Endothelial-to-mesenchymal transition: new insights into vascular calcification[J]. Biochem Pharmacol, 2023, 213, 115579.
doi: 10.1016/j.bcp.2023.115579 |
39 |
YAN D M , LIU X S , XU H , et al. Platelets induce endothelial-mesenchymal transition and subsequent fibrogenesis in endometriosis[J]. Reprod BioMed Online, 2020, 41 (3): 500- 517.
doi: 10.1016/j.rbmo.2020.03.020 |
40 |
LEUNG R K K , LIN Y X , LIU Y H . Recent advances in understandings towards pathogenesis and treatment for intrauterine adhesion and disruptive insights from single-cell analysis[J]. Reprod Sci, 2021, 28 (7): 1812- 1826.
doi: 10.1007/s43032-020-00343-y |
41 |
HUANG E Y , PENG N , XIAO F , et al. The roles of immune cells in the pathogenesis of fibrosis[J]. Int J Mol Sci, 2020, 21 (15): 5203.
doi: 10.3390/ijms21155203 |
42 |
SMIGIEL K S , PARKS W C . Macrophages, wound healing, and fibrosis: recent insights[J]. Curr Rheumatol Rep, 2018, 20 (4): 17.
doi: 10.1007/s11926-018-0725-5 |
43 |
SHEN B , LIU X H , FAN Y , et al. Macrophages regulate renal fibrosis through modulating TGFβ superfamily signaling[J]. Inflammation, 2014, 37 (6): 2076- 2084.
doi: 10.1007/s10753-014-9941-y |
44 |
LV H N , SUN H X , WANG L M , et al. Targeting CD301+ macrophages inhibits endometrial fibrosis and improves pregnancy outcome[J]. EMBO Mol Med, 2023, 15 (9): e17601.
doi: 10.15252/emmm.202317601 |
45 |
BORTHWICK L A , WYNN T A , FISHER A J . Cytokine mediated tissue fibrosis[J]. Biochim Biophys Acta Mol Basis Dis, 2013, 1832 (7): 1049- 1060.
doi: 10.1016/j.bbadis.2012.09.014 |
46 |
YANAGIHARA T , TSUBOUCHI K , GHOLIOF M , et al. Connective-tissue growth factor contributes to TGF-β1-induced lung fibrosis[J]. Am J Respir Cell Mol Biol, 2022, 66 (3): 260- 270.
doi: 10.1165/rcmb.2020-0504OC |
47 |
MILLS K H G . IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023, 23 (1): 38- 54.
doi: 10.1038/s41577-022-00746-9 |
48 |
ATAMAS S P . Complex cytokine regulation of tissue fibrosis[J]. Life Sci, 2002, 72 (6): 631- 643.
doi: 10.1016/S0024-3205(02)02299-3 |
49 |
XIAO F Y , LIU X S , GUO S W . Interleukin-33 derived from endometriotic lesions promotes fibrogenesis through inducing the production of profibrotic cytokines by regulatory T cells[J]. Biomedicines, 2022, 10 (11): 2893.
doi: 10.3390/biomedicines10112893 |
50 |
MACK M . Inflammation and fibrosis[J]. Matrix Biol, 2018, 68-69, 106- 121.
doi: 10.1016/j.matbio.2017.11.010 |
51 |
SHI N , WANG Z H , ZHU H C , et al. Research progress on drugs targeting the TGF-β signaling pathway in fibrotic diseases[J]. Immunol Res, 2022, 70 (3): 276- 288.
doi: 10.1007/s12026-022-09267-y |
52 |
XU J , TAN Y L , LIU Q Y , et al. Quercetin regulates fibrogenic responses of endometrial stromal cell by upregulating miR-145 and inhibiting the TGF-β1/Smad2/Smad3 pathway[J]. Acta Histochem, 2020, 122 (7): 151600.
doi: 10.1016/j.acthis.2020.151600 |
53 |
ZHU Z Y , SONG Y , CHEN X M , et al. Hyperoside inhibits endometrial fibrosis and inflammation by targeting TGF-β/Smad3 signaling in intrauterine adhesion rats[J]. Rev Bras Farmacogn, 2022, 33 (1): 89- 94.
doi: 10.1007/s43450-022-00283-5 |
54 |
ZHU H Y , GE T X , PAN Y B , et al. Advanced role of hippo signaling in endometrial fibrosis: implications for intrauterine adhesion[J]. Chin Med J (Engl), 2017, 130 (22): 2732- 2737.
doi: 10.4103/0366-6999.218013 |
55 |
WEI C , PAN Y B , ZHANG Y L , et al. Overactivated sonic hedgehog signaling aggravates intrauterine adhesion via inhibiting autophagy in endometrial stromal cells[J]. Cell Death Dis, 2020, 11 (9): 755.
doi: 10.1038/s41419-020-02956-2 |
56 |
XUE X , LI X L , YAO J M , et al. Transient and prolonged activation of Wnt signaling contribute oppositely to the pathogenesis of Asherman's syndrome[J]. Int J Mol Sci, 2022, 23 (15): 8808.
doi: 10.3390/ijms23158808 |
57 |
MATSUZAKI S , DARCHA C . Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis[J]. PLoS One, 2013, 8 (10): e76808.
doi: 10.1371/journal.pone.0076808 |
58 |
AL-HENDY A , DIAMOND M P , BOYER T G , et al. Vitamin D3 inhibits Wnt/β-catenin and mTOR signaling pathways in human uterine fibroid cells[J]. J Clin Endocrinol Metab, 2016, 101 (4): 1542- 1551.
doi: 10.1210/jc.2015-3555 |
59 |
GUO Z Z , WANG Y Q , WEN X Y , et al. β-klotho promotes the development of intrauterine adhesions via the PI3K/AKT signaling pathway[J]. Int J Mol Sci, 2022, 23 (19): 11294.
doi: 10.3390/ijms231911294 |
60 |
MIA M M , SINGH M K . New insights into hippo/YAP signaling in fibrotic diseases[J]. Cells, 2022, 11 (13): 2065.
doi: 10.3390/cells11132065 |
61 |
ZHOU Y Y , PENG Y Y , XIA Q Q , et al. Decreased Indian hedgehog signaling activates autophagy in endometriosis and adenomyosis[J]. Reproduction, 2021, 161 (2): 99- 109.
doi: 10.1530/REP-20-0172 |
62 | CAVALCANTE M B , SACCON T D , NUNES A D C , et al. Dasatinib plus quercetin prevents uterine age-related dysfunction and fibrosis in mice[J]. Aging (Albany NY), 2020, 12 (3): 2711- 2722. |
63 |
YE C S , CHEN P , XU B N , et al. Abnormal expression of fission and fusion genes and the morphology of mitochondria in eutopic and ectopic endometrium[J]. Eur J Med Res, 2023, 28 (1): 209.
doi: 10.1186/s40001-023-01180-w |
64 |
NIGDELIOGLU R , HAMANAKA R B , MELITON A Y , et al. Transforming Growth Factor (TGF)-β promotes De Novo serine synthesis for collagen production[J]. J Biol Chem, 2016, 291 (53): 27239- 27251.
doi: 10.1074/jbc.M116.756247 |
65 |
HAMANAKA R B , MUTLU G M . Metabolic requirements of pulmonary fibrosis: role of fibroblast metabolism[J]. FEBS J, 2021, 288 (22): 6331- 6352.
doi: 10.1111/febs.15693 |
66 |
PHANG J M . The regulatory mechanisms of proline and hydroxyproline metabolism: recent advances in perspective[J]. Front Oncol, 2023, 12, 1118675.
doi: 10.3389/fonc.2022.1118675 |
67 |
ZHAO X , KWAN J Y Y , YIP K , et al. Targeting metabolic dysregulation for fibrosis therapy[J]. Nat Rev Drug Discov, 2020, 19 (1): 57- 75.
doi: 10.1038/s41573-019-0040-5 |
68 | HWANG S , CHUNG K W . Targeting fatty acid metabolism for fibrotic disorders[J]. Arch Pharm Res, 2021, 44 (9/10): 839- 856. |
69 |
GRANDE G , VINCENZONI F , MILARDI D , et al. Cervical mucus proteome in endometriosis[J]. Clin Proteomics, 2017, 14, 7.
doi: 10.1186/s12014-017-9142-4 |
70 |
ONG G , LOGUE S E . Unfolding the interactions between endoplasmic reticulum stress and oxidative stress[J]. Antioxidants (Basel), 2023, 12 (5): 981.
doi: 10.3390/antiox12050981 |
71 |
ESTORNUT C , MILARA J , BAYARRI M A , et al. Targeting oxidative stress as a therapeutic approach for idiopathic pulmonary fibrosis[J]. Front Pharmacol, 2022, 12, 794997.
doi: 10.3389/fphar.2021.794997 |
72 |
GONZÁLEZ-FORURIA I , SANTULLI P , CHOUZENOUX S , et al. Dysregulation of the ADAM17/Notch signalling pathways in endometriosis: from oxidative stress to fibrosis[J]. Mol Hum Reprod, 2017, 23 (7): 488- 499.
doi: 10.1093/molehr/gax028 |
73 | WU H , XU T , CHEN T , et al. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice[J]. Sci Total Environ, 2022, 838 (Pt 2): 155825. |
74 |
ARANGIA A , MARINO Y , FUSCO R , et al. Fisetin, a natural polyphenol, ameliorates endometriosis modulating mast cells derived NLRP-3 inflammasome pathway and oxidative stress[J]. Int J Mol Sci, 2023, 24 (6): 5076.
doi: 10.3390/ijms24065076 |
75 |
BURMAN A , TANJORE H , BLACKWELL T S . Endoplasmic reticulum stress in pulmonary fibrosis[J]. Matrix Biol, 2018, 68-69, 355- 365.
doi: 10.1016/j.matbio.2018.03.015 |
76 |
WISEMAN R L , MESGARZADEH J S , HENDERSHOT L M . Reshaping endoplasmic reticulum quality control through the unfolded protein response[J]. Mol Cell, 2022, 82 (8): 1477- 1491.
doi: 10.1016/j.molcel.2022.03.025 |
77 |
ZHONG Q , ZHOU B Y , ANN D K , et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein[J]. Am J Respir Cell Mol Biol, 2011, 45 (3): 498- 509.
doi: 10.1165/rcmb.2010-0347OC |
78 |
BAEK H A , KIM D S , PARK H S , et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts[J]. Am J Respir Cell Mol Biol, 2012, 46 (6): 731- 739.
doi: 10.1165/rcmb.2011-0121OC |
79 |
TANG Y , ZHOU X P , CAO T , et al. Endoplasmic reticulum stress and oxidative stress in inflammatory diseases[J]. DNA Cell Biol, 2022, 41 (11): 924- 934.
doi: 10.1089/dna.2022.0353 |
80 |
KROPSKI J A , BLACKWELL T S . Endoplasmic reticulum stress in the pathogenesis of fibrotic disease[J]. J Clin Invest, 2018, 128 (1): 64- 73.
doi: 10.1172/JCI93560 |
81 |
MOHAMED A A A , YANG D Q , LIU S Q , et al. Endoplasmic reticulum stress is involved in lipopolysaccharide-induced inflammatory response and apoptosis in goat endometrial stromal cells[J]. Mol Reprod Dev, 2019, 86 (7): 908- 921.
doi: 10.1002/mrd.23152 |
82 |
BAO M , FENG Q W , ZOU L P , et al. Endoplasmic reticulum stress promotes endometrial fibrosis through the TGF-β/SMAD pathway[J]. Reproduction, 2023, 165 (2): 171- 182.
doi: 10.1530/REP-22-0294 |
83 |
AL-HETTY H R A K , JABBAR A D , EREMIN V F , et al. The role of endoplasmic reticulum stress in endometriosis[J]. Cell Stress Chaperones, 2023, 28 (2): 145- 150.
doi: 10.1007/s12192-023-01323-2 |
84 |
BORCHERDING N , BRESTOFF J R . The power and potential of mitochondria transfer[J]. Nature, 2023, 623 (7986): 283- 291.
doi: 10.1038/s41586-023-06537-z |
85 | LI X Y , ZHANG W , CAO Q T , et al. Mitochondrial dysfunction in fibrotic diseases[J]. Cell Death Discov, 2020, 6, 80. |
86 |
ASSAF L , EID A A , NASSIF J . Role of AMPK/mTOR, mitochondria, and ROS in the pathogenesis of endometriosis[J]. Life Sci, 2022, 306, 120805.
doi: 10.1016/j.lfs.2022.120805 |
87 | SUN J , LIU C , LIU Y Y , et al. Mitophagy in renal interstitial fibrosis[J]. Int Urol Nephrol, 2024, 56 (1): 167- 179. |
88 |
KURITA Y , ARAYA J , MINAGAWA S , et al. Pirfenidone inhibits myofibroblast differentiation and lung fibrosis development during insufficient mitophagy[J]. Respir Res, 2017, 18 (1): 114.
doi: 10.1186/s12931-017-0600-3 |
[1] | 冯肖艺, 张培培, 张航, 郝海生, 杜卫华, 朱化彬, 崔凯, 赵学明. 热应激对牛卵子及其胚胎表观遗传修饰与发育能力的影响[J]. 畜牧兽医学报, 2024, 55(6): 2460-2473. |
[2] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[3] | 周琦璐, 刘金松, 吴超, 杨彩梅, 刘玉兰, 张瑞强. 单宁酸对脂多糖应激仔猪肝组织的功能、抗氧化能力和炎症应答的影响[J]. 畜牧兽医学报, 2024, 55(6): 2519-2529. |
[4] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[5] | 章心婷, 邱文粤, 庞晓玥, 苏依曼, 叶嘉莉, 黄健佳, 周水莲, 唐兆新, 王荣梅, 苏荣胜. 积雪草酸通过抑制氧化应激和铁死亡减轻脂多糖诱导的肉鸡心肌损伤的研究[J]. 畜牧兽医学报, 2024, 55(4): 1787-1799. |
[6] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[7] | 姜丽君, 宗云鹤, 李云雷, 陈继兰, 耿照玉, 孙研研, 金四华. 抗氧化剂在家禽精液储存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(3): 913-923. |
[8] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[9] | 霍元楠, 邱美佳, 张姣姣, 杨炜蓉, 王鲜忠. 精氨酸及其代谢物抑制热应激诱导仔猪支持细胞凋亡的机制[J]. 畜牧兽医学报, 2024, 55(2): 587-597. |
[10] | 肖艺梅, 王胜男, 许悦雯, 何晓琳, 尹福泉. 热应激对雄性哺乳动物生殖机能影响的研究[J]. 畜牧兽医学报, 2024, 55(1): 11-21. |
[11] | 陈鸿, 阮红日, 马天文, 李亚楠, 苗雪, 杨雯越, 高利, 魏成威. 葛根素干预软骨氧化应激和Nrf2/HO-1通路改善PTOA大鼠软骨退变的机制[J]. 畜牧兽医学报, 2023, 54(9): 3951-3963. |
[12] | 郜康康, 扆妍妍, 赵一腾, 林鹏飞, 陈华涛, 靳亚平. 内质网应激预适应对LPS诱导的山羊子宫内膜上皮细胞炎性反应的保护作用[J]. 畜牧兽医学报, 2023, 54(8): 3546-3556. |
[13] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[14] | 毛鹏, 王志浩, 李建基, 崔璐莹, 朱国强, 孟霞, 董俊升, 王亨. 铁死亡在细菌性感染中的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2280-2287. |
[15] | 王子渲, 王巧, 张锦, Astrid Lissette Barreto Sánchez, 郑麦青, 李庆贺, 崔焕先, 安炳星, 赵桂苹, 文杰, 李和刚. 基于脾脏转录组筛选北京油鸡和广明白鸡抗热应激相关功能基因[J]. 畜牧兽医学报, 2023, 54(5): 1905-1914. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||