畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2293-2303.doi: 10.11843/j.issn.0366-6964.2024.06.002
陈倩玲(), 沙玉柱, 刘秀*(
), 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇
收稿日期:
2023-12-11
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
刘秀
E-mail:chenqianling223@163.com;liuxiu@gsau.edu.cn
作者简介:
陈倩玲(2001-),女,甘肃定西人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail: chenqianling223@163.com
基金资助:
Qianling CHEN(), Yuzhu SHA, Xiu LIU*(
), Pengyang SHAO, Fanxiong WANG, Xiaowei CHEN, Wenxin YANG, Zhuanhui XIE, Min GAO, Wei HUANG
Received:
2023-12-11
Online:
2024-06-23
Published:
2024-06-28
Contact:
Xiu LIU
E-mail:chenqianling223@163.com;liuxiu@gsau.edu.cn
摘要:
脂肪含量是影响家畜肉品质的主要因素之一。肌肉中的脂肪分布与肉的颜色、适口性、风味、嫩度和系水力等关系密切,肌内脂肪是评价肉品质的关键指标。肠道微生物和线粒体作为机体最庞大的微生态系统和细胞的“动力工厂”,在脂质代谢和细胞代谢间起到了重要的桥梁作用。目前,有关肠道微生物组及线粒体组的研究较为广泛,但两者的互作对脂肪沉积的影响尚不明确。本文通过综述肠道微生物及其代谢物功能与脂肪酸代谢,脂肪沉积与线粒体功能研究,以及肠道微生物及其代谢物与线粒体互作对脂肪沉积的调控机制,为通过肠道微生物及线粒体改善动物肉品质提供参考和思路。
中图分类号:
陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303.
Qianling CHEN, Yuzhu SHA, Xiu LIU, Pengyang SHAO, Fanxiong WANG, Xiaowei CHEN, Wenxin YANG, Zhuanhui XIE, Min GAO, Wei HUANG. Research Progress on the Interaction between Gut Microbiota and Mitochondria Regulating Animal Fat Deposition[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2293-2303.
1 |
陈林,赵伟杰,张枫琳,等.不同共轭亚油酸异构体对小鼠脂肪沉积、能量代谢和肠道微生物的影响[J].华南农业大学学报,2022,43(3):1-8.
doi: 10.7671/j.issn.1672-0202.2022.03.001 |
CHENL,ZHAOW J,ZHANGF L,et al.Effects of different conjugated linoleic acid isomers on fat deposition, energy metabolism and gut microbiota in mice[J].Journal of South China Agricultural University,2022,43(3):1-8.
doi: 10.7671/j.issn.1672-0202.2022.03.001 |
|
2 | 袁铜,黄靓,杨琳,等.肠道菌群及其代谢产物调节动物线粒体功能的研究进展[J].畜牧兽医学报,2023,54(1):48-57. |
YUANT,HUANGL,YANGL,et al.Regulation of mitochondrial function by gut microbiota and their metabolites in animal[J].Acta Veterinaria et Zootechnica Sinica,2023,54(1):48-57. | |
3 | 禹世雄,魏凌云,徐甜甜,等.幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J].畜牧兽医学报,2023,54(7):2701-2707. |
YUS X,WEIL Y,XUT T,et al.Research progress of intestinal microbial colonization pattern in young ruminants and its nutritional regulation[J].Acta Veterinaria et Zootechnica Sinica,2023,54(7):2701-2707. | |
4 | 王慧美,刘乐文,刘丽英,等.脂肪酸对动物肠道微生物菌群的影响[J].畜牧与兽医,2021,53(10):133-137. |
WANGH M,LIUL W,LIUL Y,et al.Effects of fatty acids on gut microbiome in animals[J].Animal Husbandry & Veterinary Medicine,2021,53(10):133-137. | |
5 |
ECKBURGP B,BIKE M,BERNSTEINC N,et al.Diversity of the human intestinal microbial flora[J].Science,2005,308(5728):1635-1638.
doi: 10.1126/science.1110591 |
6 |
PATILY,GOONERATNER,JUX H.Interactions between host and gut microbiota in domestic pigs: a review[J].Gut Microbes,2020,11(3):310-334.
doi: 10.1080/19490976.2019.1690363 |
7 | 李卓君,陈春香,钟小菊,等.猪肠道微生物组成、影响因素及其对重要经济性状的影响研究进展[J].中国畜牧兽医,2022,49(7):2557-2566. |
LIZ J,CHENC X,ZHONGX J,et al.Research progress on porcine gut microbiota composition, influencing factors and its effects on economically important traits[J].China Animal Husbandry & Veterinary Medicine,2022,49(7):2557-2566. | |
8 | 钟奇祺,张海波,幸清凤,等.肠道微生物及代谢产物对动物肠道免疫的研究进展[J].中国畜牧杂志,2021,57(2):28-33. |
ZHONGQ Q,ZHANGH B,XINGQ F,et al.Advances in the effects of intestinal microorganisms and metabolites on host intestinal mucosal innate immune system[J].Chinese Journal of Animal Science,2021,57(2):28-33. | |
9 |
JIAOA R,DIAOH,YUB,et al.Infusion of short chain fatty acids in the ileum improves the carcass traits, meat quality and lipid metabolism of growing pigs[J].Anim Nutr,2021,7(1):94-100.
doi: 10.1016/j.aninu.2020.05.009 |
10 |
ZAMBELLK L,FITCHM D,FLEMINGS E.Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells[J].J Nutr,2003,133(11):3509-3515.
doi: 10.1093/jn/133.11.3509 |
11 |
KINDTA,LIEBISCHG,CLAVELT,et al.The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice[J].Nat Commun,2018,9(1):3760.
doi: 10.1038/s41467-018-05767-4 |
12 |
HUJ M,LINS L,ZHENGB D,et al.Short-chain fatty acids in control of energy metabolism[J].Crit Rev Food Sci Nutr,2018,58(8):1243-1249.
doi: 10.1080/10408398.2016.1245650 |
13 |
HONGY H,NISHIMURAY,HISHIKAWAD,et al.Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43[J].Endocrinology,2005,146(12):5092-5099.
doi: 10.1210/en.2005-0545 |
14 | 何方,李金星,吴思谋.肠源性短链脂肪酸生成机制及其饮食调控[J].食品科学技术学报,2023,41(1):10-21. |
HEF,LIJ X,WUS M.Generation mechanism of gut-derived short chain fatty acids and its dietary regulation[J].Journal of Food Science and Technology,2023,41(1):10-21. | |
15 |
CHOI,YAMANISHIS,COXL,et al.Antibiotics in early life alter the murine colonic microbiome and adiposity[J].Nature,2012,488(7413):621-626.
doi: 10.1038/nature11400 |
16 | 李景上. 不同体脂率金华猪血清代谢组学与肠道微生物代谢特征的比较研究[D]. 贵阳: 贵州大学, 2022. |
LI J S. Comparative study on serum metabolomics and intestinal microbial metabolic characteristics of Jinhua pigs with different body fat rates[D]. Guiyang: Guizhou University, 2022. (in Chinese) | |
17 | 葛晓可,李璐,马晓娇,等.不同油脂水平日粮添加胆汁酸对肉鸡肝脏及其脂代谢的影响[J].江苏农业科学,2019,47(21):236-241. |
GEX K,LIL,MAX J,et al.Influences of adding bile acids to diets with different fat levels on liver and lipid metabolism of broilers[J].Jiangsu Agricultural Sciences,2019,47(21):236-241. | |
18 | 邵秀玲,厉艳,邓学农,等.植物病原生物现代检测技术及应用[M].北京:中国质检出版社,2015. |
SHAOX L,LIY,DENGX N,et al.Modern detection technology and application of plant pathogens[M].Beijing:China Quality Inspection Press,2015. | |
19 | 朱万森.生命中的化学元素[M].上海:复旦大学出版社,2014. |
ZHUW S.The chemical elements of life[M].Shanghai:Fudan University Press,2014. | |
20 | 李敬,杨媛媛,赵青余,等.肉风味前体物质与风味品质的关系研究进展[J].中国畜牧杂志,2019,55(11):1-7. |
LIJ,YANGY Y,ZHAOQ Y,et al.Research progress on the relationship between meat flavor precursors and flavor[J].Chinese Journal of Animal Science,2019,55(11):1-7. | |
21 |
RAGSDALES W,PIERCEE.Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J].Biochim Biophys Acta (BBA) Prot Proteom,2008,1784(12):1873-1898.
doi: 10.1016/j.bbapap.2008.08.012 |
22 | 王海波,占今舜,霍俊宏,等.短链脂肪酸的生理功能及其在动物生产中的应用研究进展[J].中国畜牧杂志,2023,59(11):30-36. |
WANGH B,ZHANJ S,HUOJ H,et al.Research progress on physiological functions of short-chain fatty acids and its applications in animal production[J].Chinese Journal of Animal Science,2023,59(11):30-36. | |
23 |
BOLTEL A,VILAA V,IMHANNF,et al.Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome[J].Gut,2021,70(7):1287-1298.
doi: 10.1136/gutjnl-2020-322670 |
24 |
娄毛闪,于海宁,沈生荣.膳食亚油酸与肠道菌群和慢性代谢性疾病的关系[J].现代医药卫生,2023,39(21):3611-3614, 3619.
doi: 10.3969/j.issn.1009-5519.2023.21.003 |
LOUM S,YUH N,SHENS R.Association of dietary linoleic acid with gut microbiome and chronic metabolic diseases[J].Journal of Modern Medicine & Health,2023,39(21):3611-3614, 3619.
doi: 10.3969/j.issn.1009-5519.2023.21.003 |
|
25 |
CAESARR,TREMAROLIV,KOVATCHEVA-DATCHARYP,et al.Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling[J].Cell Metab,2015,22(4):658-668.
doi: 10.1016/j.cmet.2015.07.026 |
26 |
DE WITN,DERRIENM,BOSCH-VERMEULENH,et al.Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine[J].Am J Physiol Gastrointest Liver Physiol,2012,303(5):G589-G599.
doi: 10.1152/ajpgi.00488.2011 |
27 | 张宛容. 乔松素对动物脂肪沉积的作用与机制研究[D]. 杨凌: 西北农林科技大学, 2022. |
ZHANG W R. The role and mechanism of pinocembrin on adipose tissue[D]. Yangling: Northwest A&F University, 2022. (in Chinese) | |
28 |
KIMH,SAKAMOTOK.(-)-Epigallocatechin gallate suppresses adipocyte differentiation through the MEK/ERK and PI3K/Akt pathways[J].Cell Biol Int,2012,36(2):147-153.
doi: 10.1042/CBI20110047 |
29 | 黄奎龙. FAM83A在脂肪沉积中的作用及机理研究[D]. 杨凌: 西北农林科技大学, 2021. |
HUANG K L. The function and mechanism of FAM83A in fat deposition[D]. Yangling: Northwest A&F University, 2021. (in Chinese) | |
30 |
CHRYSAFIP,PERAKAKISN,FARRO M,et al.Leptin alters energy intake and fat mass but not energy expenditure in lean subjects[J].Nat Commun,2020,11(1):5145.
doi: 10.1038/s41467-020-18885-9 |
31 | 朱文俊. 番鸭产蛋模型构建及AMPK通路调控脂质代谢影响产蛋机理研究[D]. 合肥: 安徽农业大学, 2021. |
ZHU W J. The construction of egg production model and the mechanism of lipid metabolism mediated by AMPK pathway affecting egg production in Muscovy Duck[D]. Hefei: Anhui Agricultural University, 2021. (in Chinese) | |
32 | LIUK Q,ZHANGX B,WEIW,et al.Myostatin/SMAD4 signaling-mediated regulation of miR-124-3p represses glucocorticoid receptor expression and inhibits adipocyte differentiation[J].Am J Physiol Endocrinol Metab,2019,316(4) |
33 |
YANGH S,LIF N,KONGX F,et al.Chemerin regulates proliferation and differentiation of myoblast cells via ERK1/2 and mTOR signaling pathways[J].Cytokine,2012,60(3):646-652.
doi: 10.1016/j.cyto.2012.07.033 |
34 | 谢红月,瞿秋红,潘鹏,等.影响肌内脂肪沉积的候选基因及分子机制研究进展[J].黑龙江畜牧兽医,2020,(11):30-34. |
XIEH Y,QUQ H,PANP,et al.Research progress on candidate genes and molecular mechanisms affecting intramuscular fat deposition[J].Heilongjiang Animal Science and Veterinary Medicine,2020,(11):30-34. | |
35 | 史寒婧,郭鎏,郭秋平,等.肌肉-脂肪组织互作调节肌内脂肪沉积的分子机制研究进展[J].动物营养学报,2023,35(8):4910-4919. |
SHIH J,GUOL,GUOQ P,et al.Research progress on molecular mechanism of muscle-adipose tissue interaction regulating intramuscular fat deposition[J].Chinese Journal of Animal Nutrition,2023,35(8):4910-4919. | |
36 |
WUW J,ZHANGJ,ZHAOC,et al.CTRP6 regulates porcine adipocyte proliferation and differentiation by the AdipoR1/MAPK signaling pathway[J].J Agric Food Chem,2017,65(27):5512-5522.
doi: 10.1021/acs.jafc.7b00594 |
37 | 孙文星. 二花脸猪皮下与肌内脂肪组织基因表达谱比较及脂肪差异沉积调控机制初探[D]. 南京: 南京农业大学, 2013. |
SUN W X. Comparison of Erhualian porcine gene expression profiles between subcutaneous and intramuscular fat tissues and preliminary exploration of the regulatory mechanisms underlying differential fat deposition between the tissues[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese) | |
38 |
HELFERG,WUQ F.Chemerin: a multifaceted adipokine involved in metabolic disorders[J].J Endocrinol,2018,238(2):R79-R94.
doi: 10.1530/JOE-18-0174 |
39 |
LIB J,WENGQ N,DONGC,et al.A key gene, PLIN1, can affect porcine intramuscular fat content based on transcriptome analysis[J].Genes (Basel),2018,9(4):194.
doi: 10.3390/genes9040194 |
40 |
KIMJ Y,VAN DE WALLE,LAPLANTEM,et al.Obesity-associated improvements in metabolic profile through expansion of adipose tissue[J].J Clin Invest,2007,117(9):2621-2637.
doi: 10.1172/JCI31021 |
41 | ZHONGY Z,SONGB,ZHENGC B,et al.α-Ketoisocaproate and β-hydroxy-β-methyl butyrate regulate fatty acid composition and lipid metabolism in skeletal muscle of growing pigs[J].J Anim Physiol Anim Nutr (Berl),2019,103(3):846-857. |
42 | LIUS G,SUNY M,ZHAOR,et al.Isoleucine increases muscle mass through promoting myogenesis and intramyocellular fat deposition[J].Food Funct,2021,12(1):144-153. |
43 | 黄国敏,王玉佩,孙超,等.线粒体超微结构及其调控机制的研究进展[J].生物化学与生物物理进展,2019,46(12):1141-1149. |
HUANGG M,WANGY P,SUNC,et al.Advances in mitochondrial ultrastructure and its regulatory mechanism[J].Progress in Biochemistry and Biophysics,2019,46(12):1141-1149. | |
44 | 杨敏敏. 通过影响线粒体功能调控鸡原代肝细胞和前脂肪细胞代谢的机理研究及有效遗传标记筛选[D]. 广州: 华南农业大学, 2020. |
YANG M M. Study on the mechanism of regulating the metabolism of chicken primary hepatocytes and preadipocytes by affecting mitochondrial function and screening of effective genetic markers[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) | |
45 | MISHRAP,CHAND C.Metabolic regulation of mitochondrial dynamics[J].J Cell Biol,2016,212(4):379-387. |
46 | ABUDULIM,OHMINAMIH,OTANIT,et al.Effects of dietary phosphate on glucose and lipid metabolism[J].Am J Physiol Endocrinol Metab,2016,310(7):E526-E538. |
47 | 尤海龙. 线粒体丝氨酸蛋白酶Omi/HTRA2基因变异鼠骨骼肌功能与肠道菌群相关性的研究[D]. 长春: 吉林大学, 2021. |
YOU H L. Study on the correlation between muscle function of gene variant mice on mitochondrial serine protease Omi/HTRA2 and intestinal flora[D]. Changchun: Jilin University, 2021. (in Chinese) | |
48 | 段晨,尹聪,李凡,等.2种共轭亚油酸异构体对小鼠肌内脂肪沉积和肌肉线粒体代谢的影响[J].中国畜牧杂志,2022,58(1):166-172. |
DUANC,YINC,LIF,et al.Effects of two different conjugated linoleic acid isomers on intramuscular fat deposition and muscle mitochondrial metabolism in mice[J].Chinese Journal of Animal Science,2022,58(1):166-172. | |
49 | RUETERJ,RIMBACHG,HUEBBEP.Functional diversity of apolipoprotein E: from subcellular localization to mitochondrial function[J].Cell Mol Life Sci,2022,79(9):499. |
50 | 张夏薇,慕春龙,朱伟云.肠道微生物与线粒体之间的互作[J].微生物学报,2018,58(11):1908-1915. |
ZHANGX W,MUC L,ZHUW Y.Advances in interactions between gut microbiota and mitochondria[J].Acta Microbiologica Sinica,2018,58(11):1908-1915. | |
51 | JACOUTONE,MACHN,CADIOUJ,et al.Lactobacillus rhamnosus CNCMI-4317 modulates Fiaf/Angptl4 in intestinal epithelial cells and circulating level in mice[J].PLoS One,2015,10(10):e0138880. |
52 | KONGB,TSUYOSHIH,ORISAKAM,et al.Mitochondrial dynamics regulating chemoresistance in gynecological cancers[J].Ann N Y Acad Sci,2015,1350(1):1-16. |
53 | LIUF,LUJ F,MANAENKOA,et al.Mitochondria in ischemic stroke: new insight and implications[J].Aging Dis,2018,9(5):924-937. |
54 | DONOHOED R,GARGEN,ZHANGX X,et al.The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J].Cell Metab,2011,13(5):517-526. |
55 | BLACHIERF,BEAUMONTM,ANDRIAMIHAJAM,et al.Changes in the luminal environment of the colonic epithelial cells and physiopathological consequences[J].Am J Pathol,2017,187(3):476-486. |
56 | CANFORAE E,JOCKENJ W,BLAAKE E.Short-chain fatty acids in control of body weight and insulin sensitivity[J].Nat Rev Endocrinol,2015,11(10):577-591. |
57 | KIMURAI,INOUED,HIRANOK,et al.The SCFA receptor GPR43 and energy metabolism[J].Front Endocrinol (Lausanne),2014,5,85. |
58 | HONGJ,JIAY M,PANS F,et al.Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice[J].Oncotarget,2016,7(35):56071-56082. |
59 | NIEY F,HUJ,YANX H.Cross-talk between bile acids and intestinal microbiota in host metabolism and health[J].J Zhejiang Univ Sci B,2015,16(6):436-446. |
60 | WAHLSTRÖMA,SAYINS I,MARSCHALLH U,et al.Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J].Cell Metab,2016,24(1):41-50. |
61 | KUIPERSF,BLOKSV W,GROENA K.Beyond intestinal soap-bile acids in metabolic control[J].Nat Rev Endocrinol,2014,10(8):488-498. |
62 | KAZGANN,METUKURIM R,PURUSHOTHAMA,et al.Intestine-specific deletion of SIRT1 in mice impairs DCoH2-HNF-1α-FXR signaling and alters systemic bile acid homeostasis[J].Gastroenterology,2014,146(4):1006-1016. |
63 | COLEMANR A,LEWINT M,MUOIOD M.Physiological and nutritional regulation of enzymes of triacylglycerol synthesis[J].Annu Rev Nutr,2000,20,77-103. |
64 | BROOKSG A.Lactate as a fulcrum of metabolism[J].Redox Biol,2020,35,101454. |
[1] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[2] | 吕世琪, 周荣艳, 田树军, 陈晓勇. 线粒体tRNA-Lys(T7719G)基因变异影响绵羊颗粒细胞凋亡生理机制研究[J]. 畜牧兽医学报, 2024, 55(5): 2011-2021. |
[3] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[4] | 梁淑怡, 李凡, 江青艳, 王松波. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(3): 867-873. |
[5] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[6] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[7] | 王瑞玲, 王雪妍, 王菲菲, 孔维怡, 毛永霞, 刘欣, 丁辉, 许立华, 郭延生. 奶牛产后急性子宫内膜炎血液氧化脂质组变化特征[J]. 畜牧兽医学报, 2024, 55(1): 373-387. |
[8] | 韩皓哲, 帖子航, 庞卫军, 蔡瑞. IGF2BP2介导的m6A修饰调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3605-3612. |
[9] | 郑先瑞, 卓明雪, 纪金丽, 蒋维虎, 邓在双, 张吉成, 田雅莉, 丁月云, 张晓东, 殷宗俊. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析[J]. 畜牧兽医学报, 2023, 54(9): 3770-3783. |
[10] | 张亚峰, 朱斌, 马畅, 张源淑. 二脒那秦激活ACE2对非酒精性脂肪肝病大鼠肝线粒体影响研究[J]. 畜牧兽医学报, 2023, 54(9): 3895-3904. |
[11] | 郭逸芯, 王之盛, 胡瑞, 王俊梅, 王森, 施丽媛, 张晓红, 邹华围, 左家学, 彭全辉, 薛白, 王立志. 亮氨酸对黄牛皮下脂肪细胞棕色化的影响[J]. 畜牧兽医学报, 2023, 54(8): 3286-3298. |
[12] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[13] | 纪鹏, 张斌, 张春勇, 邢笑锟, 杨佳, 刘韶娜, 方碟, 潘洪彬, 赵彦光, 安清聪. 日粮添加乳铁蛋白对断奶仔猪肠道微生物多样性的影响[J]. 畜牧兽医学报, 2023, 54(7): 2942-2955. |
[14] | 赵栋皓, 原梦, 马凯腾, 段卓, 祝一鑫, 唐芳, 韩克光, 霍乃蕊. 羊骨胶原肽对镉的螯合作用及对镉致鸡肝损伤的干预作用[J]. 畜牧兽医学报, 2023, 54(6): 2641-2652. |
[15] | 杜海东, 娜仁花. 反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报, 2023, 54(5): 1804-1814. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||