畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5379-5390.doi: 10.11843/j.issn.0366-6964.2024.12.005
刘彩凤1(), 王婧卓1, 王熙1, 刘自锐1, 姬普雨2,*(
), 刘深贺1,*(
)
收稿日期:
2024-05-31
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
姬普雨,刘深贺
E-mail:liucf2916389782@qq.com;jipuyu0576@163.com;liush2016@qq.com
作者简介:
刘彩凤(2003-), 女, 河南上蔡人, 本科生, 主要从事动物遗传育种与繁殖研究, E-mail: liucf2916389782@qq.com
基金资助:
LIU Caifeng1(), WANG Jingzhuo1, WANG Xi1, LIU Zirui1, JI Puyu2,*(
), LIU Shenhe1,*(
)
Received:
2024-05-31
Online:
2024-12-23
Published:
2024-12-27
Contact:
JI Puyu, LIU Shenhe
E-mail:liucf2916389782@qq.com;jipuyu0576@163.com;liush2016@qq.com
摘要:
母牛繁殖性能是养牛业发展的基础,褪黑素作为一种多功能激素,具有结合MT1和MT2受体,降低促炎细胞因子(IL-1β、TNF-α、IL-6)和升高抗炎细胞因子(IL-10、IL-1Ra)的水平,促进抗氧化酶基因(Sod、Cat、Gpx、Gpx4)的表达,以及调节细胞自噬和线粒体自噬相关基因的水平,改变瘤胃和阴道微生物组成等多种作用,从而调控母牛卵泡细胞、颗粒细胞、胚胎发育以及发情、排卵、妊娠等繁殖性能。因此,本文综述了外源褪黑素在体内(外)调控母牛生殖的应用现状及其作用机制,为合理应用褪黑素提高母牛繁殖性能提供理论参考。
中图分类号:
刘彩凤, 王婧卓, 王熙, 刘自锐, 姬普雨, 刘深贺. 外源褪黑素调控母牛繁殖性能的研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5379-5390.
LIU Caifeng, WANG Jingzhuo, WANG Xi, LIU Zirui, JI Puyu, LIU Shenhe. Research Progress on Regulation of Reproductive Performance by Exogenous Melatonin in Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5379-5390.
表 1
外源褪黑素在母牛体内调控繁殖性能的应用效果"
品种 Breed | 添加方式 Adding method | 添加水平 Supplemental doses | 应用效果 Application effect | 引用 Reference |
奶牛 Cow | 日粮 | 20 mg·d-1 | 子宫动脉血流量↑ 血清总抗氧化能力↑ 妊娠期长度和犊牛 出生体重保持不变 | Brockus等[ |
皮下埋植 | 160 mg | 可用胚胎数↑ 胚胎质量↑ 胚胎移植妊娠率↑ | 赵增元等[ | |
肌肉注射 | 18 mg/50 kg体重 | 大卵泡数量↑ 黄体数量↑ 恢复的卵子/胚胎↑受精卵↑ 可移植胚胎↑ | Ratchamak等[ | |
水牛 Buffalo | 皮下埋植 | 18 mg/50 kg体重 | 总妊娠率↑ 黄体活性↑ 优势卵泡直径↑ 血浆P4↑ | Ghuman等[ |
皮下埋植 | 18 mg/50 kg体重 | 发情↑ 排卵↑ | Ghuman等[ | |
皮下埋植 | 18 mg/50 kg体重 | 氧化应激↓ 卵巢活动↑ 发情表现↑ 排卵率↑ | Lochan等[ | |
肉牛 Beef | 皮下埋植 | 48 mg/30 d | 子宫动脉血流量↑ 犊牛出生重保持不变 | McCarty等[ |
皮下注射 | 0.24 mg·kg-1体重 | 抗氧化酶活性↑ 受孕率↑ P4保持不变 | Guo等[ | |
皮下埋植 | 48 mg/30 d | 血浆褪黑素↑ 乳脂率↓ 总产奶量↓ 犊牛出生重保持不变 | Reid等[ | |
日粮 | 20 mg·d-1 | 乳脂率↓ 产奶量↓ 出生犊牛重保持不变 | Swanson等[ |
表 2
外源褪黑素调控体外母牛卵母细胞的应用效果"
添加水平 Supplemental doses | 应用效果 Application effect | 引用 Reference |
10-7、10-9、10-11 mol·L-1 | 谷胱甘肽(GSH)水平↑ ATP水平↑ 内源性抗氧化基因水平↑ 卵母细胞质成熟↑ | Zhao等[ |
10-9 mol·L-1 | 卵母细胞核成熟↑ 卵母细胞质成熟↑ 第一极体挤压↑ 皮质颗粒↑ 线粒体正态分布↑ 线粒体膜电位↑ | Pang等[ |
10-9 mol·L-1、2×10-9 mol·L-1 | 原始卵泡的激活↑ 基质细胞密度保持不变 | Cavalcante等[ |
10 ng·mL-1、50 ng·mL-1 | 卵母细胞核成熟↑ 积云细胞扩张↑ | El-Raey等[ |
10-9 mol·L-1 | 卵母细胞成熟相关基因(GDF-9、BMP-15、ATPase 6、ATPase 8)mRNA↑卵母细胞成熟↑ | Yang等[ |
10-11、10-9、10-7、10-5、10-3 mol·L-1 | 当浓度大于10-9 mol·L-1,细胞卵裂率和囊胚率↓ | Tian等[ |
表 3
外源褪黑素调控体外母牛颗粒细胞的应用效果"
状态 Status | 添加水平 Supplemental doses | 应用效果 Application effect | 引用 Reference | 备注 Remark |
正常状态 Normal state | 400、800、1 200、1 600、2 000 pg·mL-1 | 培养浓度对凋亡率无显著影响 培养时间越长,细胞的凋亡率↓ | Wang等[ | 细胞凋亡 |
1 200 pg·mL-1 | Bcl-2、BCL-XL、GPX4和Sod1的表达↑ Bax、CASP3和TP53的表达↓ 颗粒细胞凋亡↓ | Wang等[ | 细胞凋亡 | |
10-9、10-7 mol·L-1 | 有丝分裂G2/M期↑ 细胞周期抑制剂蛋白p21、p27水平↓ | Riaz等[ | 细胞周期 | |
1 200 pg·mL-1 | P4产生↑ 雌二醇合成↓ | Wang等[ | 激素合成 | |
应激状态 Stress state | 10-8 mol·L-1 | 线粒体自噬↑ 氧化应激诱导的细胞凋亡、线粒体损伤↓ | Xu等[ | 氧化应激 |
10-4 mol·L-1 | 自噬相关基因LC3-Ⅱ水平↓ 颗粒细胞自噬作用↓ | 杨方晓等[ | HT-2毒素 |
表 4
外源褪黑素调控母牛体外胚胎的应用效果"
添加水平 Supplemental doses | 应用效果 Application effect | 引用 Reference |
10-5 mol·L-1、5×10-5 mol·L-1 | 细胞减数分裂成熟率↑ 可移植胚胎(TE)产量↑ | Manjunatha等[ |
10-12 mol·L-1 | 卵母细胞IVM质量↑ 胚胎卵裂率和囊胚率↑ | Sampaio等[ |
10-11 mol·L-1 | 囊胚百分比↑ 内细胞团(ICM)数↑ 胚胎总细胞数↑ | Gutiérrez-Añez等[ |
10-7 mol·L-1 | 胚胎卵裂率↑ 8细胞胚产量↑ 培养第7天的囊胚数量↑ | Wang等[ |
10-3 mol·L-1 | 牛胚胎囊胚率、孵化囊胚率和平均细胞数/囊胚数保持不变 | Wang等[ |
10-5、10-4、10-3 mol·L-1 | 胚胎卵裂率保持不变 胚胎囊胚率保持不变 | Tsantarliotou等[ |
1 | ARERO G B . Major Reproductive health disorders in dairy cows[J]. J Anim Biol Vet Sci, 2022, 1, 1- 11. |
2 |
ENDO N . Possible causes and treatment strategies for the estrus and ovulation disorders in dairy cows[J]. J Reprod Dev, 2022, 68 (2): 85- 89.
doi: 10.1262/jrd.2021-125 |
3 |
LI Z Q , ZHANG K Y , ZHOU Y M , et al. Role of melatonin in bovine reproductive biotechnology[J]. Molecules, 2023, 28 (13): 4940.
doi: 10.3390/molecules28134940 |
4 |
DIRANDEH E , ANSARI-PIRSARAEI Z , THATCHER W . Melatonin as a smart protector of pregnancy in dairy cows[J]. Antioxidants, 2022, 11 (2): 292.
doi: 10.3390/antiox11020292 |
5 |
FU Y , YAO S Y , WANG T K , et al. Effects of melatonin on rumen microorganisms and methane production in dairy cow: results from in vitro and in vivo studies[J]. Microbiome, 2023, 11 (1): 196.
doi: 10.1186/s40168-023-01620-z |
6 |
AHMAD S B , ALI A , BILAL M , et al. Melatonin and health: Insights of melatonin action, biological functions, and associated disorders[J]. Cell Mol Neurobiol, 2023, 43 (6): 2437- 2458.
doi: 10.1007/s10571-023-01324-w |
7 |
ROMANINI E B , VOLPATO A M , DOS SANTOS J S , et al. Melatonin concentration in cow's milk and sources of its variation[J]. J Appl Anim Res, 2019, 47 (1): 140- 145.
doi: 10.1080/09712119.2019.1583570 |
8 |
BROCKUS K E , HART C G , GILFEATHER C L , et al. Dietary melatonin alters uterine artery hemodynamics in pregnant Holstein heifers[J]. Domest Anim Endocrinol, 2016, 55, 1- 10.
doi: 10.1016/j.domaniend.2015.10.006 |
9 | 赵增元, 吴昊, 姚松阳, 等. 皮下埋植褪黑素对奶牛超数排卵效果的影响[J]. 中国奶牛, 2022, (11): 17- 22. |
ZHAO Z Y , WU H , YAO S Y , et al. Effects of implantation melatonin on superovulation results in dairy cows[J]. China Dairy Cattle, 2022, (11): 17- 22. | |
10 |
RATCHAMAK R , THANANURAK P , BOONKUM W , et al. The melatonin treatment improves the ovarian responses after superstimulation in Thai-Holstein crossbreeds under heat stress conditions[J]. Front Vet Sci, 2022, 9, 888039.
doi: 10.3389/fvets.2022.888039 |
11 |
GHUMAN S S , HONPARKHE M , SINGH B . Effect of melatonin implantation prior to ovsynch plus cidr protocol on subsequent ovarian activity and pregnancy rate in summer anestrous Murrah buffaloes[J]. Buffalo Bull, 2023, 42 (2): 263- 269.
doi: 10.56825/bufbu.2023.4223586 |
12 | GHUMAN S P S , SINGH J , HONPARKHE M , et al. Induction of ovulation of ovulatory size non-ovulatory follicles and initiation of ovarian cyclicity in summer anoestrous buffalo heifers (bubalus bubalis) using melatonin implants[J]. Reprod Domest Anim, 2010, 45 (4): 600- 607. |
13 |
LOCHAN S , HONPARKHE M , CHEEMA R S , et al. Ameliorating postpartum reproductive cyclicity using exogenous melatonin implant in water buffalo (Bubalus bubalis)[J]. Indian J Anim Sci, 2020, 90 (2): 181- 184.
doi: 10.56093/ijans.v90i2.98772 |
14 |
MCCARTY K J , OWEN M P T , HART C G , et al. Effect of chronic melatonin supplementation during mid to late gestation on maternal uterine artery blood flow and subsequent development of male offspring in beef cattle[J]. J Anim Sci, 2018, 96 (12): 5100- 5111.
doi: 10.1093/jas/sky363 |
15 |
GUO L , LI M , GAO X , et al. Two melatonin treatments improve the conception rate after fixed-time artificial insemination in beef heifers following synchronisation of oestrous cycles using the CoSynch-56 protocol[J]. Aust Vet J, 2021, 99 (10): 449- 455.
doi: 10.1111/avj.13100 |
16 |
REID D S , GEARY T W , ZEZESKI A L , et al. Effects of prenatal and postnatal melatonin supplementation on overall performance, male reproductive performance, and testicular hemodynamics in beef cattle[J]. J Anim Sci, 2023, 101, skad111.
doi: 10.1093/jas/skad111 |
17 | SWANSON R M , CONTRERAS-CORREA Z E , DINH T , et al. Effects of melatonin supplementation during mid-to late-gestation nutrient restriction on maternal and fetal amino acid concentrations[J]. J Anim Sci, 2021, 99 (S2): 17. |
18 |
BRYDON L , PETIT L , DELAGRANGE P , et al. Functional expression of MT2 (Mel1b) melatonin receptors in human PAZ6 adipocytes[J]. Endocrinology, 2001, 142 (10): 4264- 4271.
doi: 10.1210/endo.142.10.8423 |
19 | HEO J S , PYO S , LIM J Y , et al. Biological effects of melatonin on human adipose-derived mesenchymal stem cells[J]. Int J Mol Med, 2019, 44 (6): 2234- 2244. |
20 |
RAKHA S I , ELMETWALLY M A , EL-SHEIKH ALI H , et al. Importance of antioxidant supplementation during in vitro maturation of mammalian oocytes[J]. Vet Sci, 2022, 9 (8): 439.
doi: 10.3390/vetsci9080439 |
21 | KRISHER R L . The effect of oocyte quality on development[J]. J Anim Sci, 2004, 82 (S13): E14- E23. |
22 |
ZHAO X M , WANG N , HAO H S , et al. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events[J]. J Pineal Res, 2018, 64 (1): e12445.
doi: 10.1111/jpi.12445 |
23 |
PANG Y W , ZHAO S J , SUN Y Q , et al. Protective effects of melatonin on the in vitro developmental competence of bovine oocytes[J]. Anim Sci J, 2018, 89 (4): 648- 660.
doi: 10.1111/asj.12970 |
24 |
CAVALCANTE B N , MATOS-BRITO B G , PAULINO L R F M , et al. Effects of melatonin on morphology and development of primordial follicles during in vitro culture of bovine ovarian tissue[J]. Reprod Domest Anim, 2019, 54 (12): 1567- 1573.
doi: 10.1111/rda.13565 |
25 |
EL-RAEY M , GESHI M , SOMFAI T , et al. Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle[J]. Mol Reprod Dev, 2011, 78 (4): 250- 262.
doi: 10.1002/mrd.21295 |
26 |
YANG M H , TAO J L , CHAI M L , et al. Melatonin improves the quality of inferior bovine oocytes and promoted their subsequent IVF embryo development: mechanisms and results[J]. Molecules, 2017, 22 (12): 2059.
doi: 10.3390/molecules22122059 |
27 |
TIAN X Z , WANG F , HE C J , et al. Beneficial effects of melatonin on bovine oocytes maturation: a mechanistic approach[J]. J Pineal Res, 2014, 57 (3): 239- 247.
doi: 10.1111/jpi.12163 |
28 | 高超, 田秀芝, 张璐, 等. 外源褪黑素对牛卵母细胞体外成熟的影响[J]. 中国农业科学, 2011, 44 (17): 3634- 3640. |
GAO C , TIAN X Z , ZHANG L , et al. Effect of exogenous melatonin (MT) in bovine oocyte in vitro maturation[J]. Scientia Agricultura Sinica, 2011, 44 (17): 3634- 3640. | |
29 | YANG L , WANG Q K , CUI M S , et al. Effect of melatonin on the in vitro maturation of porcine oocytes, development of parthenogenetically activated embryos, and expression of genes related to the oocyte developmental capability[J]. Animals (Basel), 2020, 10 (2): 209. |
30 |
BARROS V R P , MONTE A P O , SANTOS J M S , et al. Effects of melatonin on the in vitro growth of early antral follicles and maturation of ovine oocytes[J]. Domest Anim Endocrinol, 2020, 71, 106386.
doi: 10.1016/j.domaniend.2019.106386 |
31 |
NIKMARD F , HOSSEINI E , BAKHTIYARI M , et al. Effects of melatonin on oocyte maturation in PCOS mouse model[J]. Anim Sci J, 2017, 88 (4): 586- 592.
doi: 10.1111/asj.12675 |
32 |
XU G Q , DONG Y Y Y , WANG Z , et al. Melatonin attenuates oxidative stress-induced apoptosis of bovine ovarian granulosa cells by promoting mitophagy via SIRT1/FoxO1 signaling pathway[J]. Int J Mol Sci, 2023, 24 (16): 12854.
doi: 10.3390/ijms241612854 |
33 |
WANG S J , LIU W J , WU C J , et al. Melatonin suppresses apoptosis and stimulates progesterone production by bovine granulosa cells via its receptors (MT1 and MT2)[J]. Theriogenology, 2012, 78 (7): 1517- 1526.
doi: 10.1016/j.theriogenology.2012.06.019 |
34 |
WANG S J , LIU W J , WANG L K , et al. The role of Melatonin receptor MTNR1A in the action of Melatonin on bovine granulosa cells[J]. Mol Reprod Dev, 2017, 84 (11): 1140- 1154.
doi: 10.1002/mrd.22877 |
35 |
RIAZ H , YOUSUF M R , LIANG A X , et al. Effect of melatonin on regulation of apoptosis and steroidogenesis in cultured buffalo granulosa cells[J]. Anim Sci J, 2019, 90 (4): 473- 480.
doi: 10.1111/asj.13152 |
36 | 杨方晓, 李莲, 赵若含, 等. 褪黑素对HT-2毒素诱导的牛卵巢颗粒细胞内质网应激与自噬的影响[J]. 南京农业大学学报, 2020, 43 (1): 143- 150. |
YANG F X , LI L , ZHAO R H , et al. Effects of melatonin on endoplasmic reticulum stress and autophagy in bovine ovarian granulosa cells induced by HT-2 toxin[J]. Journal of Nanjing Agricultural University, 2020, 43 (1): 143- 150. | |
37 |
DE AVILA FERRONATO G , DOS SANTOS C M , DA S ROSA P M , et al. Bovine in vitro oocyte maturation and embryo culture in liquid marbles 3D culture system[J]. PLoS One, 2023, 18 (4): e0284809.
doi: 10.1371/journal.pone.0284809 |
38 |
MANJUNATHA B M , DEVARAJ M , GUPTA P S P , et al. Effect of taurine and melatonin in the culture medium on buffalo in vitro embryo development[J]. Reprod Domest Anim, 2009, 44 (1): 12- 16.
doi: 10.1111/j.1439-0531.2007.00982.x |
39 |
SAMPAIO R V , CONCEIÇÃO D S B , MIRANDA M S , et al. MT3 melatonin binding site, MT1 and MT2 melatonin receptors are present in oocyte, but only MT1 is present in bovine blastocyst produced in vitro[J]. Reprod Biol Endocrinol, 2012, 10, 103.
doi: 10.1186/1477-7827-10-103 |
40 |
GUTIÉRREZ-AÑEZ J C , LUCAS-HAHN A , HADELER K G , et al. Melatonin enhances in vitro developmental competence of cumulus-oocyte complexes collected by ovum pick-up in prepubertal and adult dairy cattle[J]. Theriogenology, 2021, 161, 285- 293.
doi: 10.1016/j.theriogenology.2020.12.011 |
41 |
WANG F , TIAN X Z , ZHOU Y H , et al. Melatonin improves the quality of in vitro produced (IVP) bovine embryos: implications for blastocyst development, cryotolerance, and modifications of relevant gene expression[J]. PLoS One, 2014, 9 (4): e93641.
doi: 10.1371/journal.pone.0093641 |
42 |
WANG F , TIAN X Z , ZHANG L , et al. Beneficial effects of melatonin on in vitro bovine embryonic development are mediated by melatonin receptor 1[J]. J Pineal Res, 2014, 56 (3): 333- 342.
doi: 10.1111/jpi.12126 |
43 | TSANTARLIOTOU M P , ATTANASIO L , DE ROSA A , et al. The effect of melatonin on bovine in vitro embryo development[J]. Ital J Anim Sci, 2007, 6 (S1): 488- 489. |
44 | GAO Y , ZHAO S Q , ZHANG Y , et al. Melatonin receptors: a key mediator in animal reproduction[J]. Vet Sci, 2022, 9 (7): 309. |
45 | PAULINO L R F M , BARROSO P A A , SILVA B R , et al. Immunolocalization of melatonin receptors in bovine ovarian follicles and in vitro effects of melatonin on growth, viability and gene expression in secondary follicles[J]. Domest Anim Endocrinol, 2022, 81, 106750. |
46 | SILVA B R , COSTA F C , DE LIMA NETO M F , et al. Melatonin acts through different mechanisms to control oxidative stress and primordial follicle activation and survival during in vitro culture of bovine ovarian tissue[J]. Domest Anim Endocrinol, 2024, 86, 106824. |
47 | LIU W J , WANG S J , ZHOU J X , et al. RNAi-mediated knockdown of MTNR1B without disrupting the effects of melatonin on apoptosis and cell cycle in bovine granulose cells[J]. PeerJ, 2018, 6, e4463. |
48 | LIU Y J , YAO S Y , MENG Q G , et al. A novel signaling transduction pathway of melatonin on lactose synthesis in cows via melatonin receptor 1 (MT1) and prolactin receptor (PRLR)[J]. Peer J, 2023, 11, e15932. |
49 | FAVERO G , FRANCESCHETTI L , BONOMINI F , et al. Melatonin as an anti-inflammatory agent modulating inflammasome activation[J]. Int J Endocrinol, 2017, 2017, 1835195. |
50 | GAO Y J , LI Y N , WANG J M , et al. Melatonin alleviates lipopolysaccharide-induced endometritis by inhibiting the activation of NLRP3 inflammasome through autophagy[J]. Animals (Basel), 2023, 13 (15): 2449. |
51 | YAO S Y , WU H , MA H , et al. Effects of rumen bypass melatonin feeding (RBMF) on milk quality and mastitis of Holstein cows[J]. PeerJ, 2020, 8, e9147. |
52 | YU G M , KUBOTA H , OKITA M , et al. The anti-inflammatory and antioxidant effects of melatonin on LPS-stimulated bovine mammary epithelial cells[J]. PLoS One, 2017, 12 (5): e0178525. |
53 | FERLAZZO N , ANDOLINA G , CANNATA A , et al. Is melatonin the cornucopia of the 21st century?[J]. Antioxidants (Basel), 2020, 9 (11): 1088. |
54 | BANTOUNOU M , PLASCEVIC J , GALLEY H F . Melatonin and related compounds: Antioxidant and anti-inflammatory actions[J]. Antioxidants(Basel), 2022, 11 (3): 532. |
55 | LI H Y , SUN P . Insight of melatonin: the potential of melatonin to treat bacteria-induced mastitis[J]. Antioxidants (Basel), 2022, 11 (6): 1107. |
56 | MUÑOZ-JURADO A , ESCRIBANO B M , CABALLERO-VILLARRASO J , et al. Melatonin and multiple sclerosis: Antioxidant, anti-inflammatory and immunomodulator mechanism of action[J]. Inflammopharmacology, 2022, 30 (5): 1569- 1596. |
57 | CHO J H , BHUTANI S , KIM C H , et al. Anti-inflammatory effects of melatonin: A systematic review and meta-analysis of clinical trials[J]. Brain Behav Immun, 2021, 93, 245- 253. |
58 | TOMÁS-ZAPICO C , COTO-MONTES A . A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes[J]. J Pineal Res, 2005, 39 (2): 99- 104. |
59 | MA J Y , WANG J E , HU S M , et al. Effects of melatonin on development and hormone secretion of sheep theca cells in vitro[J]. Theriogenology, 2023, 198, 172- 182. |
60 | ZHENG P , QIN X , FENG R , et al. Alleviative effect of melatonin on the decrease of uterine receptivity caused by blood ammonia through ROS/NF-κB pathway in dairy cow[J]. Ecotoxicol Environ Saf, 2022, 231, 113166. |
61 | ARANDA-RIVERA A K , CRUZ-GREGORIO A , ARANCIBIA-HERNÁNDEZ Y L , et al. RONS and oxidative stress: an overview of basic concepts[J]. Oxygen, 2022, 2 (4): 437- 478. |
62 | MARQUES T C , DA SILVA SANTOS E C , DIESEL T O , et al. Melatonin reduces apoptotic cells, SOD2 and HSPB1 and improves the in vitro production and quality of bovine blastocysts[J]. Reprod Domest Anim, 2018, 53 (1): 226- 236. |
63 | SILVA B R , BARROZO L G , NASCIMENTO D R , et al. Effects of cyclic adenosine monophosphate modulating agents during oocyte pre-maturation and the role of melatonin on in vitro maturation of bovine cumulus-oocyte complexes[J]. Anim Reprod Sci, 2023, 257, 107327. |
64 | YANG F X , LI L , CHEN K L , et al. Melatonin alleviates β-zearalenol and HT-2 toxin-induced apoptosis and oxidative stress in bovine ovarian granulosa cells[J]. Environ Toxicol Pharmacol, 2019, 68, 52- 60. |
65 | PENG W , LEI M T , ZHANG J , et al. The protective effect of melatonin on the in vitro development of yak embryos against hydrogen peroxide-induced oxidative injury[J]. Zygote, 2019, 27 (3): 118- 125. |
66 | REITER R J , MAYO J C , TAN D X , et al. Melatonin as an antioxidant: under promises but over delivers[J]. J Pineal Res, 2016, 61 (3): 253- 278. |
67 | TARGHAZEH N , REITER R J , RAHIMI M , et al. Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy[J]. Biochimie, 2022, 202, 34- 48. |
68 | EL-SHEIKH M , MESALAM A A , KANG S M , et al. Modulation of apoptosis and autophagy by melatonin in juglone-exposed bovine oocytes[J]. Animals (Basel), 2023, 13 (9): 1475. |
69 | HU W Y , ZHANG Y , WANG D L , et al. Iron overload-induced ferroptosis impairs porcine oocyte maturation and subsequent embryonic developmental competence in vitro[J]. Front Cell Dev Biol, 2021, 9, 673291. |
70 | XIA L J , SHEN Y P , LIU S Y , et al. Iron overload triggering ECM-mediated Hippo/YAP pathway in follicle development: a hypothetical model endowed with therapeutic implications[J]. Front Endocrinol (Lausanne), 2023, 14, 1174817. |
71 | FU W , DAI C , MA Z F , et al. Enhanced glutathione production protects against zearalenone-induced oxidative stress and ferroptosis in female reproductive system[J]. Food Chem Toxicol, 2024, 185, 114462. |
72 | 郭燕. 褪黑素与水牛瘤胃菌群和生殖激素季节性波动的关系[D]. 武汉: 华中农业大学, 2023. |
GUO Y. Relationship between melatonin and rumenflora and seasonal fluctuation of reproductive hormones in buffalo[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese) | |
73 | MESSMAN R D , CONTRERAS-CORREA Z E , PAZ H A , et al. Melatonin-induced changes in the bovine vaginal microbiota during maternal nutrient restriction[J]. J Anim Sci, 2021, 99 (5): skab098. |
74 | OTERO C , SAAVEDRA L , DE RUIZ C S , et al. Vaginal bacterial microflora modifications during the growth of healthy cows[J]. Lett Appl Microbiol, 2000, 31 (3): 251- 254. |
75 | WANG J , LIU C , NESENGANI L T , et al. Comparison of vaginal microbial community structure of beef cattle between luteal phase and follicular phase[J]. Indian J Anim Res, 2019, 53 (10): 1298- 1303. |
76 | BICALHO M L S , SANTIN T , RODRIGUES M X , et al. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome[J]. J Dairy Sci, 2017, 100 (4): 3043- 3058. |
[1] | 贾宏霞, 刘在霞, 周乐, 鲍艳春, 霍晨曦, 左鹏鹏, 谷明娟, 娜日苏, 张文广. 基因组选择在肉牛中的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3757-3768. |
[2] | 付红玉, 李玥, 崔晗, 李玖芝, 许琬雪, 王曦, 樊瑞锋. 长链酯酰辅酶A合成酶4介导铁死亡的发生机制[J]. 畜牧兽医学报, 2024, 55(9): 3792-3801. |
[3] | 汪芳洲, 谭凌云, 李燕, 谷宏婧, 王慧. 亨尼帕病毒编码蛋白的特征及致病机制[J]. 畜牧兽医学报, 2024, 55(9): 3802-3811. |
[4] | 高语馨, 刘青, 陈继兰, 麻慧. miRNAs介导寄生虫和宿主互作机制的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3812-3823. |
[5] | 刘思宇, 张曼, 张岩, 魏稚彤, 祁兴磊, 高腾云, 刘贤, 梁栋, 付彤. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55(9): 3876-3886. |
[6] | 李相辰, 王林楠, 于正青, 张莉, 杨晨晨, 宋亮丽. 槲皮素抑制自噬恢复LTA诱导的奶牛乳腺上皮细胞紧密连接功能[J]. 畜牧兽医学报, 2024, 55(9): 3887-3896. |
[7] | 师睿, 李珊珊, 张海亮, 路海博, 闫青霞, 张毅, 陈绍祜, 王雅春. 中国荷斯坦牛繁殖性状的基因型与环境互作[J]. 畜牧兽医学报, 2024, 55(9): 3968-3977. |
[8] | 王忆, 巩建飞, 衡诺, 胡樱凡, 王蕊, 王欢, 朱妮, 何维, 胡智辉, 郝海生, 朱化彬, 赵善江. 褪黑素通过改善线粒体动力学缓解棕榈酸诱导的牛子宫内膜上皮细胞损伤[J]. 畜牧兽医学报, 2024, 55(9): 3978-3987. |
[9] | 戴舒颖, 刘青, 李爱国, 余博, 陈洪波. 牛体外胚胎生产过程中培养液添加物研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3309-3320. |
[10] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
[11] | 张涛, 李佳芪, 胥磊, 王丹, 张梦华, 张涛, 闫梦婕, 王玮韬, 范守民, 黄锡霞. 基于全基因组重测序数据的新疆褐牛基因组结构变异检测及群体结构分析[J]. 畜牧兽医学报, 2024, 55(8): 3427-3435. |
[12] | 王若薇, 许曦瑶, 汤晓娜, 王春梅, 赵锋. 结缔组织生长因子体外调控奶牛乳腺上皮细胞生长和泌乳分化[J]. 畜牧兽医学报, 2024, 55(8): 3446-3459. |
[13] | 卢增华, 崔燕, 余四九, 白雪峰, 卢鸿琴, 何俊峰, 卢凯, 翟国亮, 祁正满. 促红细胞生成素对牦牛肾间质成纤维细胞凋亡因子表达的影响[J]. 畜牧兽医学报, 2024, 55(8): 3460-3471. |
[14] | 沈鹏, 王艺, 任炜杰, 杨永春, 宋厚辉, 王志亮. 牛结节性皮肤病免疫抗体监测的Meta分析[J]. 畜牧兽医学报, 2024, 55(8): 3649-3658. |
[15] | 郭子骄, 郑伟杰, 孙伟, 吴宝江, 包向男, 张琪, 贺巾锋, 包斯琴, 赵高平, 王子馨, 韩博, 李喜和, 孙东晓. 荷斯坦奶牛胚胎基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2940-2950. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||