1 |
胥磊, 张梦华, 张涛, 等. 基于主成分分析和因子分析估计新疆褐牛体型性状的遗传参数[J]. 畜牧兽医学报, 2023, 54 (9): 3677- 3688.
doi: 10.11843/j.issn.0366-6964.2023.09.009
|
|
XU L , ZHANG M H , ZHANG T , et al. Genetic parameter estimates for body conformation in xinjiang brown cattle based on principal component analysis and factor analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3677- 3688.
doi: 10.11843/j.issn.0366-6964.2023.09.009
|
2 |
胥磊, 张梦华, 王丹, 等. 新疆褐牛不同生长阶段体尺体重的遗传参数估计[J]. 中国畜牧兽医, 2021, 48 (11): 4105- 4114.
|
|
XU L , ZHANG M H , WANG D , et al. Estimation of genetic parameters of body size and body weight in Xinjiang brown cattle at different growth stages[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (11): 4105- 4114.
|
3 |
王彩云. 新疆褐牛乳用品系选种选配方案的制定及应用[D]. 乌鲁木齐: 新疆农业大学, 2022.
|
|
WANG C Y. Formulation and application of seed selection and mating program for dairy line of Xinjiang brown cattle[D]. Urumqi: Xinjiang Agricultural University, 2022. (in Chinese)
|
4 |
ZHOU J H , LIU L Y , CHEN C J , et al. Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle[J]. BMC Genomics, 2019, 20 (1): 827.
doi: 10.1186/s12864-019-6224-x
|
5 |
JU X , HUANG X X , ZHANG M H , et al. Effects of eight InDel variants in FHIT on milk traits in Xinjiang brown cattle[J]. Anim Biotechnol, 2021, 32 (4): 486- 494.
doi: 10.1080/10495398.2020.1724124
|
6 |
ZHANG M H , LUO H P , XU L , et al. Genomic selection for milk production traits in Xinjiang brown cattle[J]. Animals, 2022, 12 (2): 136.
doi: 10.3390/ani12020136
|
7 |
CHEN Q M , XU L , ZHANG M H , et al. Whole genome resequencing reveals the genetic contribution of Kazakh and Swiss Brown cattle to a population of Xinjiang Brown cattle[J]. Gene, 2022, 839, 146725.
doi: 10.1016/j.gene.2022.146725
|
8 |
PAUDEL Y , MADSEN O , MEGENS H J , et al. Copy number variation in the speciation of pigs: a possible prominent role for olfactory receptors[J]. BMC Genomics, 2015, 16 (1): 330.
doi: 10.1186/s12864-015-1449-9
|
9 |
杨金晶. 基于混合测序的基因组变异检测方法研究[D]. 南京: 东南大学, 2019.
|
|
YANG J J. Study on detection of genome variation based on pool sequencing[D]. Nanjing: Southeast University, 2019. (in Chinese)
|
10 |
林燕, 黄敏, 李秀金, 等. 利用全基因组重测序数据检测8个鸭品种基因组拷贝数变异[J]. 畜牧兽医学报, 2023, 54 (9): 3700- 3709.
doi: 10.11843/j.issn.0366-6964.2023.09.011
|
|
LIN Y , HUANG M , LI X J , et al. Uncovering genome-wide copy number variations in 8 duck breeds using whole genome resequencing data[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3700- 3709.
doi: 10.11843/j.issn.0366-6964.2023.09.011
|
11 |
宗文成, 王立刚, 宋成义, 等. 猪基因组结构变异研究进展[J]. 畜牧兽医学报, 2022, 53 (9): 2833- 2844.
doi: 10.11843/j.issn.0366-6964.2022.09.002
|
|
ZONG W C , WANG L G , SONG C Y , et al. Advances of structural variation in pig genome[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 2833- 2844.
doi: 10.11843/j.issn.0366-6964.2022.09.002
|
12 |
刘文禹. 基因组结构变异揭示牦牛高海拔适应遗传学机制[D]. 兰州: 兰州大学, 2022.
|
|
LIU W Y. Genetic basis of yak adaptation to life at high altitude revealed by genome stuctural variants[D]. Lanzhou: Lanzhou University, 2022. (in Chinese)
|
13 |
LI H , DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25 (14): 1754- 1760.
doi: 10.1093/bioinformatics/btp324
|
14 |
惠科铭, 李莎, 曹琴琴, 等. 阿勒泰白头牛基因组结构变异分析[J]. 中国牛业科学, 2023, 49 (3): 1-4, 56.
|
|
HUI K M , LI S , CAO Q Q , et al. Identification of genomic structure variation in Altay white-headed cattle[J]. China Cattle Science, 2023, 49 (3): 1-4, 56.
|
15 |
LAYER R M , CHIANG C , QUINLAN A R , et al. LUMPY: a probabilistic framework for structural variant discovery[J]. Genome Biol, 2014, 15 (6): R84.
|
16 |
RAUSCH T , ZICHNER T , SCHLATTL A , et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis[J]. Bioinformatics, 2012, 28 (18): i333- i339.
|
17 |
CHEN X Y , SCHULZ-TRIEGLAFF O , SHAW R , et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications[J]. Bioinformatics, 2016, 32 (8): 1220- 1222.
|
18 |
郭健. 基于基因组结构变异发掘桃重要农艺性状关键基因[D]. 武汉: 华中农业大学, 2021.
|
|
GUO J. Identification of causal genes responsible for key agronomic traits based on genome structural variations in peach[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
|
19 |
JEFFARES D C , JOLLY C , HOTI M , et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast[J]. Nat Commun, 2017, 8 (1): 14061.
|
20 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
|
21 |
张顺进. 郏县红牛基因组变异图谱构建及选择信号分析[D]. 杨凌: 西北农林科技大学, 2022.
|
|
ZHANG S J. Jiaxian red cattle genome variation map construction and selection signal analysis[D]. Yangling: Northwest A&F University, 2022. (in Chinese)
|
22 |
DE DONATO M , PETERS S O , MITCHELL S E , et al. Genotyping-by-Sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing[J]. PLoS One, 2013, 8 (5): e62137.
|
23 |
ZHOU J H , LIU L Y , REYNOLDS E , et al. Discovering copy number variation in dual-purpose Xinjiang brown cattle[J]. Front Genet, 2022, 12, 747431.
|
24 |
吴晓平, 刘林, 刘文娇, 等. 拷贝数变异及其在奶牛育种中的研究现状[J]. 中国奶牛, 2012, (11): 2- 6.
|
|
WU X P , LIU L , LIU W J , et al. Copy number variations and its current progress in dairy breeding[J]. China Dairy Cattle, 2012, (11): 2- 6.
|
25 |
LIU G E , VAN TASSELL C P , SONSTEGARD T S , et al. Detection of germline and somatic copy number variations in cattle[J]. Dev Biol (Basel), 2008, 132, 231- 237.
|
26 |
王彩云, 刘奎国, 李维勇, 等. 新疆褐牛不同冻精来源后裔生产性能对比分析[J]. 中国畜牧杂志, 2023, 59 (2): 85- 91.
|
|
WANG C Y , LIU K G , LI W Y , et al. Comparative analysis of production performance of descent from different frozen semen sources in Xinjiang brown cattle[J]. Chinese Journal of Animal Science, 2023, 59 (2): 85- 91.
|
27 |
MENON D , INNES A , OAKLEY A J , et al. GSTO1-1 plays a pro-inflammatory role in models of inflammation, colitis and obesity[J]. Sci Rep, 2017, 7 (1): 17832.
|
28 |
WANG X F , ZHAO C G , ZHANG G W , et al. Molecular characterization of a novel GSTO2 of Fasciola hepatica and its roles in modulating murine macrophages[J]. Parasite, 2022, 29, 16.
|
29 |
HANCOCK J T , VEAL D , CRAIG T J , et al. Do SNPs in Glutathione S-Transferase-Omega Allow Predictions of the Susceptibility of Vertebrates to SARS-CoV-2?[J]. React Oxygen Species, 2022, 12, c14- c29.
|
30 |
LAODIM T , ELZO M A , KOONAWOOTRITTRIRON S , et al. Pathway enrichment and protein interaction network analysis for milk yield, fat yield and age at first calving in a Thai multibreed dairy population[J]. AsianAustralas J Anim Sci, 2018, 32 (4): 508- 518.
|
31 |
GOLOMBEK D A , ROSENSTEIN R E . Physiology of circadian entrainment[J]. Physiol Rev, 2010, 90 (3): 1063- 1102.
|
32 |
HOWARD J T , KACHMAN S D , SNELLING W M , et al. Beef cattle body temperature during climatic stress: a genome-wide association study[J]. Int J Biometeorol, 2014, 58 (7): 1665- 1672.
|
33 |
闫向民, 谢鹏贵, 李娜, 等. 新疆伊犁地区新疆褐牛与哈萨克牛群体改良效果评价分析[J]. 草食家畜, 2019, (6): 16- 21.
|
|
YAN X M , XIE P G , LI N , et al. Evaluation on the group improvement effects of Xinjiang brown cattle and Kazakh cattle in Yili prefecture[J]. GrassFeeding Livestock, 2019, (6): 16- 21.
|
34 |
AHAD W A , ANDRABI M , BEIGH S A , et al. Applications of Myostatin (MSTN) gene in the livestock animals and humans: a review[J]. Int J Curr Microbiol Appl Sci, 2017, 6 (9): 1807- 1811.
|
35 |
ZHANG Z J , LING Y H , WANG L J , et al. Polymorphisms of the myostatin gene (MSTN) and its relationship with growth traits in goat breeds[J]. Genet Mol Res, 2013, 12 (2): 965- 971.
|
36 |
ZHANG C Y , LIU Y , XU D Q , et al. Polymorphisms of myostatin gene (MSTN) in four goat breeds and their effects on Boer goat growth performance[J]. Mol Biol Rep, 2012, 39 (3): 3081- 3087.
|
37 |
MU T , HU H H , FENG X F , et al. The PI4K2A positively regulates the synthesis of milk fat in cows, promotes the proliferation of bovine mammary epithelial cells, and inhibits their apoptosis[J]. Res Square, 2023,
doi: 10.21203/rs.3.rs-3299960/v1
|
38 |
SHI L , LIU L , MA Z , et al. Identification of genetic associations of ECHS1 gene with milk fatty acid traits in dairy cattle[J]. Anim Genet, 2019, 50 (5): 430- 438.
|
39 |
LI C , SUN D X , ZHANG S L , et al. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese holstein[J]. PLoS One, 2014, 9 (5): e96186.
|
40 |
JIANG Z , DE S , GARCIA M D , et al. An independent confirmation of a quantitative trait locus for milk yield and composition traits on bovine chromosome 26[J]. J Anim Breed Genet, 2005, 122 (4): 281- 284.
|
41 |
RINCON G , ISLAS-TREJO A , CASTILLO A R , et al. Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle[J]. J Dairy Res, 2012, 79 (1): 66- 75.
|