畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3802-3811.doi: 10.11843/j.issn.0366-6964.2024.09.006
汪芳洲1,2(), 谭凌云2, 李燕2, 谷宏婧2,*(
), 王慧1,2,*(
)
收稿日期:
2023-11-13
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
谷宏婧,王慧
E-mail:wfz147658@163.com;ghj0048@163.com;geno0109@vip.sina.com
作者简介:
汪芳洲(1999-), 女, 青海西宁人, 硕士生, 主要从事病原微生物感染与防治研究,E-mail: wfz147658@163.com
基金资助:
Fangzhou WANG1,2(), Lingyun TAN2, Yan LI2, Hongjing GU2,*(
), Hui WANG1,2,*(
)
Received:
2023-11-13
Online:
2024-09-23
Published:
2024-09-27
Contact:
Hongjing GU, Hui WANG
E-mail:wfz147658@163.com;ghj0048@163.com;geno0109@vip.sina.com
摘要:
亨尼帕病毒(Henipavirus,HNV)是一类重要的新发人兽共患病原,经接触、口鼻传播感染可引发呼吸、神经系统疾病,死亡率高达75%。HNV属于副黏病毒科单股负链RNA包膜病毒,随着环境变化,新的亚型不断涌现,传播范围逐渐扩大,严重威胁全球公共卫生安全、经济发展与社会稳定。然而,其致病机制尚不清楚,预防疫苗及治疗药物也未上市,引起WHO高度关注,HNV疫苗与药物研发列入需要紧急研发蓝图清单。本文通过对HNV的病原学特征、编码蛋白的结构和功能、致病机制进行总结,为研制有效干预HNV感染的药物和疫苗提供思路。
中图分类号:
汪芳洲, 谭凌云, 李燕, 谷宏婧, 王慧. 亨尼帕病毒编码蛋白的特征及致病机制[J]. 畜牧兽医学报, 2024, 55(9): 3802-3811.
Fangzhou WANG, Lingyun TAN, Yan LI, Hongjing GU, Hui WANG. Progress on the Characteristics of Virus-encoded Proteins and Pathogenic Mechanism of Henipavirus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3802-3811.
表 1
亨尼帕病毒编码蛋白及其主要功能"
病毒蛋白 Viral protein | 氨基酸数量/aa Amino acid number | 相对分子质量/ku Relative molecular weight | 主要功能 Main functions | 参考文献 References |
核衣壳蛋白 Nucleoprotein | 532 | 58 | 病毒的主要结构蛋白,附着病毒RNA形成RNPs | [ |
磷酸化蛋白 Phosphoprotein | 709 | 78 | 病毒磷酸化蛋白,聚合酶辅助因子,对干扰素可产生拮抗效果 | [ |
基质蛋白 Matrix protein | 352 | 39 | 负责介导病毒组装和出芽 | [ |
融合糖蛋白 Fusion protein | 546 | 60 | 介导病毒包膜与细胞膜融合,主要抗原蛋白 | [ |
附着糖蛋白 Glycoprotein | 602 | 66 | 介导病毒与细胞受体的结合,主要抗原蛋白 | [ |
大蛋白 Polymerase | 2 244 | 247 | 高度保守,具有RNA聚合酶活性,主要参与病毒的复制和转录 | [ |
C蛋白 C protein | 166 | 18 | 调节病毒RNA合成和毒力因子产生 | [ |
V蛋白 V protein | 456 | 50 | 抑制宿主细胞免疫反应,HNV发病机制和致死性的主要决定因素 | [ |
W蛋白 W protein | 450 | 50 | 控制炎症反应,影响疾病进程 | [ |
1 |
LI H Z , KIM J V , PICKERING B S . Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence[J]. Front Microbiol, 2023, 14, 1167085.
doi: 10.3389/fmicb.2023.1167085 |
2 | JOHNSTON G P , BRADEL-TRETHEWAY B , PIEHOWSKI P D , et al. Nipah virus-like particle egress is modulated by cytoskeletal and vesicular trafficking pathways: a validated particle proteomics analysis[J]. Msystems, 2019, 4 (5): e00194- 19. |
3 |
MARSH G A , DE JONG C , BARR J A , et al. Cedar virus: a novel Henipavirus isolated from Australian bats[J]. PLoS Pathog, 2012, 8 (8): e1002836.
doi: 10.1371/journal.ppat.1002836 |
4 | WU Z Q , YANG L , YANG F , et al. Novel henipa-like virus, Mojiang paramyxovirus, in rats, China, 2012[J]. Emerg Infect Dis, 2014, 20 (6): 1064- 1066. |
5 |
TABASSUM S , NAEEM A , REHAN S T , et al. Langya virus outbreak in China, 2022:are we on the verge of a new pandemic?[J]. J Virus Erad, 2022, 8 (3): 100087.
doi: 10.1016/j.jve.2022.100087 |
6 |
DREXLER J F , CORMAN V M , MVLLER M A , et al. Bats host major mammalian paramyxoviruses[J]. Nat Commun, 2012, 3, 796.
doi: 10.1038/ncomms1796 |
7 |
TSIMBALYUK S , CROSS E M , HOAD M , et al. The intrinsically disordered w protein is multifunctional during henipavirus infection, disrupting host signalling pathways and nuclear import[J]. Cells, 2020, 9 (8): 1913.
doi: 10.3390/cells9081913 |
8 |
LAWRENCE P , ESCUDERO-PÉREZ B . Henipavirus immune evasion and pathogenesis mechanisms: lessons learnt from natural infection and animal models[J]. Viruses, 2022, 14 (5): 936.
doi: 10.3390/v14050936 |
9 | LUBY S P, BRODER C C. Paramyxoviruses: henipaviruses[M]//KASLOW R A, STANBERRY L R, POWERS A M. Viral Infections of Humans: Epidemiology and Control. New York: Springer, 2020: 1-51. |
10 |
FIELD H E . Hendra virus ecology and transmission[J]. Curr Opin Virol, 2016, 16, 120- 125.
doi: 10.1016/j.coviro.2016.02.004 |
11 |
AIYAR A , PINGALI P . Pandemics and food systems-towards a proactive food safety approach to disease prevention & management[J]. Food Secur, 2020, 12 (4): 749- 756.
doi: 10.1007/s12571-020-01074-3 |
12 |
SINGH R K , DHAMA K , CHAKRABORTY S , et al. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies-a comprehensive review[J]. Vet Quart, 2019, 39 (1): 26- 55.
doi: 10.1080/01652176.2019.1580827 |
13 |
AZARM K D , LEE B . Differential features of fusion activation within the Paramyxoviridae[J]. Viruses, 2020, 12 (2): 161.
doi: 10.3390/v12020161 |
14 |
WANG Z Q , AMAYA M , ADDETIA A , et al. Architecture and antigenicity of the Nipah virus attachment glycoprotein[J]. Science, 2022, 375 (6587): 1373- 1378.
doi: 10.1126/science.abm5561 |
15 |
VOIGT K , HOFFMANN M , DREXLER J F , et al. Fusogenicity of the ghana virus (Henipavirus: Ghanaian bat henipavirus) fusion protein is controlled by the cytoplasmic domain of the attachment glycoprotein[J]. Viruses, 2019, 11 (9): 800.
doi: 10.3390/v11090800 |
16 |
PRIYADARSINEE L , SARMA H , SASTRY G N . Glycoprotein attachment with host cell surface receptor ephrin B2 and B3 in mediating entry of nipah and hendra virus: a computational investigation[J]. J Chem Sci (Bangalore), 2022, 134 (4): 114.
doi: 10.1007/s12039-022-02110-9 |
17 |
PRYCE R , AZARM K , RISSANEN I , et al. A key region of molecular specificity orchestrates unique ephrin-B1 utilization by Cedar virus[J]. Life Sci Alliance, 2020, 3 (1): e201900578.
doi: 10.26508/lsa.201900578 |
18 |
RISSANEN I , AHMED A A , AZARM K , et al. Idiosyncratic Mòjiāng virus attachment glycoprotein directs a host-cell entry pathway distinct from genetically related henipaviruses[J]. Nat Commun, 2017, 8, 16060.
doi: 10.1038/ncomms16060 |
19 |
LAING E D , NAVARATNARAJAH C K , CHELIOUT DA SILVA S , et al. Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by Cedar virus[J]. Proc Natl Acad Sci U S A, 2019, 116 (41): 20707- 20715.
doi: 10.1073/pnas.1911773116 |
20 |
LI K M , YAN S Y , WANG N N , et al. Emergence and adaptive evolution of Nipah virus[J]. Transbound Emerg Dis, 2020, 67 (1): 121- 132.
doi: 10.1111/tbed.13330 |
21 |
YEO Y Y , BUCHHOLZ D W , GAMBLE A , et al. Headless henipaviral receptor binding glycoproteins reveal fusion modulation by the head/stalk interface and post-receptor binding contributions of the head domain[J]. J Virol, 2021, 95 (20): e0066621.
doi: 10.1128/JVI.00666-21 |
22 |
BRODER C C . Henipavirus outbreaks to antivirals: the current status of potential therapeutics[J]. Curr Opin Virol, 2012, 2 (2): 176- 187.
doi: 10.1016/j.coviro.2012.02.016 |
23 |
KRVGER N , HOFFMANN M , DREXLER J F , et al. Attachment protein G of an African bat henipavirus is differentially restricted in chiropteran and nonchiropteran cells[J]. J Virol, 2014, 88 (20): 11973- 11980.
doi: 10.1128/JVI.01561-14 |
24 |
XU K , CHAN Y P , BRADEL-TRETHEWAY B , et al. Crystal structure of the pre-fusion nipah virus fusion glycoprotein reveals a novel hexamer-of-trimers assembly[J]. PLoS Pathog, 2015, 11 (12): e1005322.
doi: 10.1371/journal.ppat.1005322 |
25 | ZAMORA J L R , ORTEGA V , JOHNSTON G P , et al. Novel roles of the N1 loop and N4 alpha-helical region of the nipah virus fusion glycoprotein in modulating early and late steps of the membrane fusion cascade[J]. J Virol, 2021, 95 (9): e01707- 20. |
26 |
MAY A J , POTHULA K R , JANOWSKA K , et al. Structures of langya virus fusion protein ectodomain in pre- and postfusion conformation[J]. J Virol, 2023, 97 (6): e0043323.
doi: 10.1128/jvi.00433-23 |
27 |
AHMAD S , NAZARIAN S , ALIZADEH A , et al. Computational design of a multi-epitope vaccine candidate against Langya henipavirus using surface proteins[J]. J Biomol Struct Dyn, 2023,
doi: 10.1080/07391102.2023.2258403 |
28 |
DANG H V , CROSS R W , BORISEⅥCH V , et al. Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins[J]. Nat Struct Mol Biol, 2021, 28 (5): 426- 434.
doi: 10.1038/s41594-021-00584-8 |
29 |
BYRNE P O , FISHER B E , AMBROZAK D R , et al. Structural basis for antibody recognition of vulnerable epitopes on Nipah virus F protein[J]. Nat Commun, 2023, 14 (1): 1494.
doi: 10.1038/s41467-023-36995-y |
30 | CIFUENTES-MUÑOZ N , SUN W N , RAY G , et al. Mutations in the transmembrane domain and cytoplasmic tail of hendra virus fusion protein disrupt virus-like-particle assembly[J]. J Virol, 2017, 91 (14): e00152- 17. |
31 |
MCLINTON E C , WAGSTAFF K M , LEE A , et al. Nuclear localization and secretion competence are conserved among henipavirus matrix proteins[J]. J Gen Virol, 2017, 98 (4): 563- 576.
doi: 10.1099/jgv.0.000703 |
32 |
BHARAJ P , WANG Y E , DAWES B E , et al. The matrix protein of nipah virus targets the E3-ubiquitin ligase TRIM6 to inhibit the IKKε kinase-mediated Type-Ⅰ IFN antiviral response[J]. PLoS Pathog, 2016, 12 (9): e1005880.
doi: 10.1371/journal.ppat.1005880 |
33 |
STROH E , FISCHER K , SCHWAIGER T , et al. Henipavirus-like particles induce a CD8 T cell response in C57BL/6 mice[J]. Vet Microbiol, 2019, 237, 108405.
doi: 10.1016/j.vetmic.2019.108405 |
34 | 肖昌. 亨得拉和尼帕病毒结构蛋白的表达及抗原表位研究[D]. 长春: 吉林大学, 2006. |
XIAO C. Expression and epitopes mapping of structural proteinsof hendra and nipah virus[D]. Changchun: Jilin University, 2006. (in Chinese) | |
35 | 张体银, 王武军, 张志灯, 等. 尼帕病毒蛋白功能研究进展[J]. 畜牧与兽医, 2014, 46 (8): 115- 118. |
ZHANG T Y , WANG W J , ZHANG Z D , et al. Progress in the functional study of Nipah virus proteins[J]. Animal Husbandry and Veterinary Medicine, 2014, 46 (8): 115- 118. | |
36 |
MCNABB L , ANDIANI A , BULAVAITE A , et al. Development and validation of an IgM antibody capture ELISA for early detection of Hendra virus[J]. J Virol Methods, 2021, 298, 114296.
doi: 10.1016/j.jviromet.2021.114296 |
37 | SUGAI A , SATO H , TAKAYAMA I , et al. Nipah and hendra virus nucleoproteins inhibit nuclear accumulation of signal transducer and activator of transcription 1 (STAT1) and STAT2 by interfering with their complex formation[J]. J Virol, 2017, 91 (21): e01136- 17. |
38 |
DOCHOW M , KRUMM S A , CROWE J E JR , et al. Independent structural domains in paramyxovirus polymerase protein[J]. J Biol Chem, 2012, 287 (9): 6878- 6891.
doi: 10.1074/jbc.M111.325258 |
39 |
VELKOV T , CARBONE V , AKTER J , et al. The RNA-dependent-RNA polymerase, an emerging antiviral drug target for the Hendra virus[J]. Curr Drug Targets, 2014, 15 (1): 103- 113.
doi: 10.2174/1389450114888131204163210 |
40 | POCH O , BLUMBERG B M , BOUGUELERET L , et al. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains[J]. J Gen Virol, 1990, 71 (Pt 5): 1153- 1162. |
41 |
BRUHN J F , HOTARD A L , SPIROPOULOU C F , et al. A conserved basic patch and central kink in the nipah virus phosphoprotein multimerization domain are essential for polymerase function[J]. Structure, 2019, 27 (4): 660- 668. e4.
doi: 10.1016/j.str.2019.01.012 |
42 | 袁军龙, 袁东波, 尹念春. 尼帕病毒病病原及防治概述[J]. 中国动物保健, 2021, 23 (4): 114- 115. |
YUAN J L , YUAN D B , YIN N C . Overview of the pathogenesis and control of Nipah virus disease[J]. China Animal Health, 2021, 23 (4): 114- 115. | |
43 | LO M K , HARCOURT B H , MUNGALL B A , et al. Determination of the henipavirus phosphoprotein gene mRNA editing frequencies and detection of the C, V and W proteins of Nipah virus in virus-infected cells[J]. J Gen Virol, 2009, 90 (Pt 2): 398- 404. |
44 | KEIFFER T R , CIANCANELLI M J , EDWARDS M R , et al. Interactions of the nipah virus P, V, and W proteins across the STAT family of transcription factors[J]. Msphere, 2020, 5 (6): e00449- 20. |
45 | SATTERFIELD B A , CROSS R W , FENTON K A , et al. The immunomodulating V and W proteins of Nipah virus determine disease course[J]. Nat Commun, 2015, 6, 7483. |
46 | ENCHÉRY F , DUMONT C , IAMPIETRO M , et al. Nipah virus W protein harnesses nuclear 14-3-3 to inhibit NF-κB-induced proinflammatory response[J]. Commun Biol, 2021, 4 (1): 1292. |
47 | LO M K , PEEPLES M E , BELLINI W J , et al. Distinct and overlapping roles of Nipah virus P gene products in modulating the human endothelial cell antiviral response[J]. PLoS One, 2012, 7 (10): e47790. |
48 | PESCE G , GONDELAUD F , PTCHELKINE D , et al. Experimental evidence of intrinsic disorder and amyloid formation by the Henipavirus W proteins[J]. Int J Mol Sci, 2022, 23 (2): 923. |
49 | ESCAFFRE O , BORISEⅥCH V , ROCKX B . Pathogenesis of Hendra and Nipah virus infection in humans[J]. J Infect Dev Ctries, 2013, 7 (4): 308- 311. |
50 | QUARLERI J , GALVAN V , DELPINO M V . Henipaviruses: an expanding global public health concern?[J]. Geroscience, 2022, 44 (5): 2447- 2459. |
51 | MADERA S , KISTLER A , RANAⅣOSON H C , et al. Discovery and genomic characterization of a novel henipavirus, angavokely virus, from fruit bats in madagascar[J]. J Virol, 2022, 96 (18): e0092122. |
[1] | 张帆帆, 李杰茂, 谭佳, 黄江南, 吴玲, 韦启鹏, 康昭风. 禽偏肺病毒的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3344-3353. |
[2] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[3] | 张少华, 王帅, 邹扬, 刘仲藜, 才学鹏. 羊捻转血矛线虫病检测方法研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1499-1510. |
[4] | 高远集, 刘畅, 陈淼, 陈松彪, 张俊峰, 李静, 贾艳艳, 廖成水, 郭荣显, 丁轲, 余祖华, 尚珂. 细菌外膜囊泡结构、分泌特性及致病机制[J]. 畜牧兽医学报, 2024, 55(3): 971-983. |
[5] | 陈宏建, 曹艳, 樊杰, 甘荣萱, 宋文博, 喻盛炜, 杨婷, 赵艳霞, 魏春燕, 谢锐, 华琳, 彭忠, 吴斌. 2020—2022年湖北省生猪屠宰场伪狂犬病病毒的分离鉴定及遗传进化分析[J]. 畜牧兽医学报, 2023, 54(7): 2972-2981. |
[6] | 阿比克哈莫, 汤承, 杨晨, 杨发龙. 嵴病毒的研究进展[J]. 畜牧兽医学报, 2023, 54(3): 900-913. |
[7] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
[8] | 何姝凡, 岳华, 汤承, 刘杰. 牛腺病毒3型的研究进展[J]. 畜牧兽医学报, 2022, 53(4): 1030-1040. |
[9] | 张依玲, 阚子斐, 牛铮, 余秋寒, 冉玲, 张淑娟, 邹宏, 徐沙沙, 张静怡, 宋振辉. 精密组织切片的制备及其应用[J]. 畜牧兽医学报, 2022, 53(2): 339-348. |
[10] | 谢黎卿, 杨洋, 彭远义, 李能章. 病原微生物荚膜多糖的生物学功能[J]. 畜牧兽医学报, 2021, 52(3): 576-587. |
[11] | 赵龙, 李昊, 汤承, 岳华. 牛环曲病毒研究进展[J]. 畜牧兽医学报, 2021, 52(10): 2753-2761. |
[12] | 郭紫晶, 何琪富, 岳华, 汤承. 引起犊牛腹泻的Nebovirus[J]. 畜牧兽医学报, 2020, 51(3): 433-442. |
[13] | 宋一鸣,窦永喜,张志东. 马鼻炎病毒研究进展[J]. 畜牧兽医学报, 2015, 46(3): 357-361. |
[14] | 胡景杰,郭鑫,李人卫,龚道清,杜生明. 畜禽重要病原的致病机理研究——国家自然科学基金重大项目介绍[J]. 畜牧兽医学报, 2014, 45(12): 2088-2090. |
[15] | 徐磊,曾亮明,王玉玲,陈先进,林伯全,林拱阳,傅光华,施少华,程龙飞,黄瑜,张渊魁. 福建省猪群感染牛病毒性腹泻病毒的病原学检测与分析[J]. 畜牧兽医学报, 2014, 45(12): 2006-2012. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||