畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (12): 5368-5378.doi: 10.11843/j.issn.0366-6964.2024.12.004
孟亚轩1,2,3(), 刘彦2,3, 韦兴茹4, 陈国顺1,*(
), 冯涛1,2,3,*(
)
收稿日期:
2024-05-20
出版日期:
2024-12-23
发布日期:
2024-12-27
通讯作者:
陈国顺,冯涛
E-mail:18793606358@163.com;chengs@gsau.edu.cn;fengtao@baafs.net.cn
作者简介:
孟亚轩(2000-), 女, 甘肃金昌人, 硕士生, 主要从事繁殖营养调控研究, E-mail: 18793606358@163.com
基金资助:
MENG Yaxuan1,2,3(), LIU Yan2,3, WEI Xingru4, CHEN Guoshun1,*(
), FENG Tao1,2,3,*(
)
Received:
2024-05-20
Online:
2024-12-23
Published:
2024-12-27
Contact:
CHEN Guoshun, FENG Tao
E-mail:18793606358@163.com;chengs@gsau.edu.cn;fengtao@baafs.net.cn
摘要:
氧化应激是细胞内外环境变化导致产生过多活性氧的状态,在调控子宫功能中发挥着重要作用。近年来,研究表明氧化应激可以通过影响子宫内生殖激素、免疫反应、调节子宫环境和细胞信号传导等途径调控母畜子宫功能。此外,过度氧化应激会损害母体和胎盘功能,与子宫内膜癌、先兆子痫、妊娠期糖尿病和宫内生长受限等生殖疾病的形成关系密切。本文综述了近年来关于氧化应激调控母畜子宫功能的研究进展,旨在深入了解氧化应激对母畜子宫功能的影响,为提高母畜繁殖效率提供理论指导和实践应用。
中图分类号:
孟亚轩, 刘彦, 韦兴茹, 陈国顺, 冯涛. 氧化应激对母畜子宫及妊娠影响的研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5368-5378.
MENG Yaxuan, LIU Yan, WEI Xingru, CHEN Guoshun, FENG Tao. Research Progress in the Effect of Oxidative Stress on Uterus and Pregnancy in Female Livestock[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5368-5378.
1 |
YOSHIKAWA T , YOU F . Oxidative stress and bio-regulation[J]. Int J Mol Sci, 2024, 25 (6): 3360.
doi: 10.3390/ijms25063360 |
2 |
ZHANG Y H , ZHAO W , XU H F , et al. Hyperandrogenism and insulin resistance-induced fetal loss: evidence for placental mitochondrial abnormalities and elevated reactive oxygen species production in pregnant rats that mimic the clinical features of polycystic ovary syndrome[J]. J Physiol, 2019, 597 (15): 3927- 3950.
doi: 10.1113/JP277879 |
3 | SANG Y F , LI Y H , XU L , et al. Regulatory mechanisms of endometrial decidualization and pregnancy-related diseases[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52 (2): 105- 115. |
4 |
KAJIHARA T , JONES M , FUSI L , et al. Differential expression of FOXO1 and FOXO3a confers resistance to oxidative cell death upon endometrial decidualization[J]. Mol Endocrinol, 2006, 20 (10): 2444- 2455.
doi: 10.1210/me.2006-0118 |
5 |
SHAITO A , ARAMOUNI K , ASSAF R , et al. Oxidative stress-induced endothelial dysfunction in cardiovascular diseases[J]. Front Biosci (Landmark Ed), 2022, 27 (3): 105.
doi: 10.31083/j.fbl2703105 |
6 |
YAN F , ZHAO Q , LI Y , et al. The role of oxidative stress in ovarian aging: a review[J]. J Ovarian Res, 2022, 15 (1): 100.
doi: 10.1186/s13048-022-01032-x |
7 |
BATÓG G , DOŁOTO A , BAĄK E , et al. The interplay of oxidative stress and immune dysfunction in Hashimoto's thyroiditis and polycystic ovary syndrome: a comprehensive review[J]. Front Immunol, 2023, 14, 1211231.
doi: 10.3389/fimmu.2023.1211231 |
8 |
SUGINO N , SHIMAMURA K , TAKIGUCHI S , et al. Changes in activity of superoxide dismutase in the human endometrium throughout the menstrual cycle and in early pregnancy[J]. Hum Reprod, 1996, 11 (5): 1073- 1078.
doi: 10.1093/oxfordjournals.humrep.a019299 |
9 |
FRANCO C , SCIATTI E , FAVERO G , et al. Essential hypertension and oxidative stress: novel future perspectives[J]. Int J Mol Sci, 2022, 23 (22): 14489.
doi: 10.3390/ijms232214489 |
10 |
ALBRAHIM T , ALANGRY R , ALOTAIBI R , et al. Effects of regular exercise and intermittent fasting on neurotransmitters, inflammation, oxidative stress, and brain-derived neurotrophic factor in cortex of ovariectomized rats[J]. Nutrients, 2023, 15 (19): 4270.
doi: 10.3390/nu15194270 |
11 |
DEMIRCI-ÇEKIÇ S , ÖZKAN G , AVAN A N , et al. Biomarkers of oxidative stress and antioxidant defense[J]. J Pharm Biomed Anal, 2022, 209, 114477.
doi: 10.1016/j.jpba.2021.114477 |
12 |
ZHOU K , XIAO J , WANG H , et al. Estradiol regulates oxidative stress and angiogenesis of myocardial microvascular endothelial cells via the CDK1/CDK2 pathway[J]. Heliyon, 2023, 9 (3): e14305.
doi: 10.1016/j.heliyon.2023.e14305 |
13 |
GUO Y S , CAI X S , LU H W , et al. 17β-estradiol promotes apoptosis of HepG2 cells caused by oxidative stress by increasing Foxo3a phosphorylation[J]. Front Pharmacol, 2021, 12, 607379.
doi: 10.3389/fphar.2021.607379 |
14 |
DOMAZETOVIC V , FALSETTI I , CIUFFI S , et al. Effect of oxidative stress-induced apoptosis on active FGF23 levels in MLO-Y4 cells: the protective role of 17-β-estradiol[J]. Int J Mol Sci, 2022, 23 (4): 2103.
doi: 10.3390/ijms23042103 |
15 |
GALMÉS-PASCUAL B M , MARTÁNEZ-CIGNONI M R , MORÁN-COSTOYA A , et al. 17β-estradiol ameliorates lipotoxicity-induced hepatic mitochondrial oxidative stress and insulin resistance[J]. Free Radic Biol Med, 2020, 150, 148- 160.
doi: 10.1016/j.freeradbiomed.2020.02.016 |
16 |
TIAN X , GAO Z L , YIN D Y , et al. 17beta-estradiol alleviates contusion-induced skeletal muscle injury by decreasing oxidative stress via SIRT1/PGC-1α/Nrf2 pathway[J]. Steroids, 2023, 191, 109160.
doi: 10.1016/j.steroids.2022.109160 |
17 |
HAJIALIZADEH Z , KHAKSARI M . The protective effects of 17-β estradiol and SIRT1 against cardiac hypertrophy: a review[J]. Heart Fail Rev, 2022, 27 (2): 725- 738.
doi: 10.1007/s10741-021-10171-0 |
18 |
XU Y Y , XU H , YIN X P , et al. 17 β-Estradiol alleviates oxidative damage in osteoblasts by regulating miR-320/RUNX2 signaling pathway[J]. J Biosci, 2021, 46 (4): 113.
doi: 10.1007/s12038-021-00236-5 |
19 |
LIEHR J G . Genotoxic effects of estrogens[J]. Mutat Res/Rev Genet Toxicol, 1990, 238 (3): 269- 276.
doi: 10.1016/0165-1110(90)90018-7 |
20 |
NASIADEK M , SKRZYPIŃSKA-GAWRYSIAK M , DARAGÓ A , et al. Involvement of oxidative stress in the mechanism of cadmium-induced toxicity on rat uterus[J]. Environ Toxicol Pharmacol, 2014, 38 (2): 364- 373.
doi: 10.1016/j.etap.2014.07.007 |
21 |
JUN Y W , ALBARRAN E , WILSON D L , et al. Fluorescence imaging of mitochondrial DNA base excision repair reveals dynamics of oxidative stress responses[J]. Angew Chem Int Ed, 2022, 61 (6): e202111829.
doi: 10.1002/anie.202111829 |
22 |
AL-GUBORY K H , BOLIFRAUD P , GARREL C . Regulation of key antioxidant enzymatic systems in the sheep endometrium by ovarian steroids[J]. Endocrinology, 2008, 149 (9): 4428- 4434.
doi: 10.1210/en.2008-0187 |
23 | SINGH D , SHARMA M K , PANDEY R S . Changes in superoxide dismutase activity and estradiol-17 beta content in follicles of different sizes from ruminants[J]. Indian J Exp Biol, 1998, 36 (4): 358- 360. |
24 |
LALORAYA M , JAIN S , THOMAS M , et al. Estrogen surge: a regulatory switch for superoxide radical generation at implantation[J]. IUBMB Life, 1996, 39 (5): 933- 940.
doi: 10.1080/15216549600201082 |
25 |
VELUTHAKAL R , ESPARZA D , HOOLACHAN J M , et al. Mitochondrial dysfunction, oxidative stress, and inter-organ miscommunications in T2D progression[J]. Int J Mol Sci, 2024, 25 (3): 1504.
doi: 10.3390/ijms25031504 |
26 |
DURANTI G . Oxidative stress and skeletal muscle function[J]. Int J Mol Sci, 2023, 24 (12): 10227.
doi: 10.3390/ijms241210227 |
27 | ALESE M O , BAMISI O D , ALESE O O . Progesterone modulates cadmium-induced oxidative stress and inflammation in hepatic tissues of Wistar rats[J]. Int J Clin Exp Pathol, 2021, 14 (10): 1048- 1055. |
28 |
FENG L P , ALLEN T K , MARINELLO W P , et al. Roles of progesterone receptor membrane component 1 in oxidative stress-induced aging in chorion cells[J]. Reprod Sci, 2019, 26 (3): 394- 403.
doi: 10.1177/1933719118776790 |
29 |
LALORAYA M , KUMAR G P , LALORAYA M M . Histochemical study of superoxide dismutase in the ovary of the rat during the oestrous cycle[J]. J Reprod Fert, 1989, 86 (2): 583- 587.
doi: 10.1530/jrf.0.0860583 |
30 | MANCINI A , DI SEGNI C , RAIMONDO S , et al. Thyroid hormones, oxidative stress, and inflammation[J]. Mediators Inflamm, 2016, 2016, 6757154. |
31 |
HUANG P S , WANG C S , YEH C T , et al. Roles of thyroid hormone-associated microRNAs affecting oxidative stress in human hepatocellular carcinoma[J]. Int J Mol Sci, 2019, 20 (20): 5220.
doi: 10.3390/ijms20205220 |
32 |
BUCZYŃSKA A , SIDORKIEWICZ I , ROGUCKI M , et al. Oxidative stress and radioiodine treatment of differentiated thyroid cancer[J]. Sci Rep, 2021, 11 (1): 17126.
doi: 10.1038/s41598-021-96637-5 |
33 |
AGHAJANOVA L , STAVREUS-EVERS A , LINDEBERG M , et al. Thyroid-stimulating hormone receptor and thyroid hormone receptors are involved in human endometrial physiology[J]. Fertil Steril, 2011, 95 (1): 230- 237.e2.
doi: 10.1016/j.fertnstert.2010.06.079 |
34 |
HULCHIY M , ZHANG H , CLINE J M , et al. Receptors for thyrotropin-releasing hormone, thyroid-stimulating hormone, and thyroid hormones in the macaque uterus: effects of long-term sex hormone treatment[J]. Menopause, 2012, 19 (11): 1253- 1259.
doi: 10.1097/gme.0b013e318252e450 |
35 |
FEDAIL J S , ZHENG K Z , WEI Q W , et al. Roles of thyroid hormones in follicular development in the ovary of neonatal and immature rats[J]. Endocrine, 2014, 46 (3): 594- 604.
doi: 10.1007/s12020-013-0092-y |
36 |
ÖNER J , ÖNER H . Immunodetection of thyroid hormone receptor (alpha1/alpha2) in the rat uterus and oviduct[J]. Acta Histochem Cytochem, 2007, 40 (3): 77- 81.
doi: 10.1267/ahc.06026 |
37 |
KONG L F , WEI Q W , FEDAIL J S , et al. Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats[J]. J Reprod Dev, 2015, 61 (3): 219- 227.
doi: 10.1262/jrd.2014-129 |
38 | STAVREUS EVERS A . Paracrine interactions of thyroid hormones and thyroid stimulation hormone in the female reproductive tract have an impact on female fertility[J]. Front Endocrinol (Lausanne), 2012, 3, 50. |
39 | VILLANUEVA I , ALVA-SÁNCHEZ C , PACHECO-ROSADO J . The role of thyroid hormones as inductors of oxidative stress and neurodegeneration[J]. Oxid Med Cell Longev, 2013, 2013, 218145. |
40 | REHMAN R , RAJPAR H I , ASHRAF M , et al. Role of oxidative stress and altered thyroid hormones in unexplained infertility[J]. J Pak Med Assoc, 2020, 70 (8): 1345- 1349. |
41 |
KRAVCHENKO V , ZAKHARCHENKO T . Thyroid hormones and minerals in immunocorrection of disorders in autoimmune thyroid diseases[J]. Front Endocrinol (Lausanne), 2023, 14, 1225494.
doi: 10.3389/fendo.2023.1225494 |
42 | SUGINO N . The role of oxygen radical-mediated signaling pathways in endometrial function[J]. Placenta, 2007, 28 (Suppl 1): S133- S136. |
43 | DAS A , ROYCHOUDHURY S . Reactive Oxygen Species in the Reproductive System: Sources and Physiological Roles[J]. Adv Exp Med Biol, 2022, 1358, 9- 40. |
44 |
RUDER E H , HARTMAN T J , BLUMBERG J , et al. Oxidative stress and antioxidants: exposure and impact on female fertility[J]. Hum Reprod Update, 2008, 14 (4): 345- 357.
doi: 10.1093/humupd/dmn011 |
45 |
BAI X C , ZHENG L W , LI D D , et al. Research progress of endometrial receptivity in patients with polycystic ovary syndrome: a systematic review[J]. Reprod Biol Endocrinol, 2021, 19 (1): 122.
doi: 10.1186/s12958-021-00802-4 |
46 |
JIANG N X , LI X L . The disorders of endometrial receptivity in PCOS and its mechanisms[J]. Reprod Sci, 2022, 29 (9): 2465- 2476.
doi: 10.1007/s43032-021-00629-9 |
47 |
HU M , ZHANG Y , LU L , et al. Overactivation of the androgen receptor exacerbates gravid uterine ferroptosis via interaction with and suppression of the NRF2 defense signaling pathway[J]. FEBS Lett, 2022, 596 (6): 806- 825.
doi: 10.1002/1873-3468.14289 |
48 |
SONG P , LIU C , SUN M , et al. Transcription Factor Nrf2 Modulates Lipopolysaccharide-Induced Injury in Bovine Endometrial Epithelial Cells[J]. Int J Mol Sci, 2023, 24 (13): 11221.
doi: 10.3390/ijms241311221 |
49 |
CHEN M X , LI J , ZHANG B , et al. Uterine insulin sensitivity defects induced embryo implantation loss associated with mitochondrial dysfunction-triggered oxidative stress[J]. Oxid Med Cell Longev, 2021, 2021, 6655685.
doi: 10.1155/2021/6655685 |
50 |
BELLEZZA I , GIAMBANCO I , MINELLI A , et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865 (5): 721- 733.
doi: 10.1016/j.bbamcr.2018.02.010 |
51 |
TANIKAWA N , OHTSU A , KAWAHARA-MIKI R , et al. Age-associated mRNA expression changes in bovine endometrial cells in vitro[J]. Reprod Biol Endocrinol, 2017, 15 (1): 63.
doi: 10.1186/s12958-017-0284-z |
52 |
TEKLENBURG G , SALKER M , MOLOKHIA M , et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation[J]. PLoS One, 2010, 5 (4): e10258.
doi: 10.1371/journal.pone.0010258 |
53 |
ZHANG H Q , DAVIES K J A , FORMAN H J . Oxidative stress response and Nrf2 signaling in aging[J]. Free Radic Biol Med, 2015, 88, 314- 336.
doi: 10.1016/j.freeradbiomed.2015.05.036 |
54 | LI Z Q , ZHENG C N , LIU H T , et al. A novel oxidative stress-related gene signature as an indicator of prognosis and immunotherapy responses in HNSCC[J]. Aging (Albany NY), 2023, 15 (24): 14957- 14984. |
55 |
CARNEVALE E M , GINTHER O J . Relationships of age to uterine function and reproductive efficiency in mares[J]. Theriogenology, 1992, 37 (5): 1101- 1115.
doi: 10.1016/0093-691X(92)90108-4 |
56 |
AKIYAMA Y , IVANOV P . Oxidative stress, transfer RNA metabolism, and protein synthesis[J]. Antioxid Redox Signal, 2024, 40 (10-12): 715- 735.
doi: 10.1089/ars.2022.0206 |
57 |
SALAMONSEN L A , LATHBURY L J . Endometrial leukocytes and menstruation[J]. Hum Reprod Update, 2000, 6 (1): 16- 27.
doi: 10.1093/humupd/6.1.16 |
58 |
KWAK-KIM J , BAO S H , LEE S K , et al. Immunological modes of pregnancy loss: inflammation, immune effectors, and stress[J]. Am J Reprod Immunol, 2014, 72 (2): 129- 140.
doi: 10.1111/aji.12234 |
59 |
DYMANOWSKA-DYJAK I , TERPIŁOWSKA B , MORAWSKA-MICHALSKA I , et al. Immune dysregulation in endometriomas: implications for inflammation[J]. Int J Mol Sci, 2024, 25 (9): 4802.
doi: 10.3390/ijms25094802 |
60 |
VALENZUELA-MELGAREJO F J , LAGUNAS C , CARMONA-PASTÉN F , et al. Supraphysiological role of melatonin over vascular dysfunction of pregnancy, a new therapeutic agent?[J]. Front Physiol, 2021, 12, 767684.
doi: 10.3389/fphys.2021.767684 |
61 |
RUDNICKA E , SUCHTA K , GRYMOWICZ M , et al. Chronic low grade inflammation in pathogenesis of PCOS[J]. Int J Mol Sci, 2021, 22 (7): 3789.
doi: 10.3390/ijms22073789 |
62 |
FALOMO M E , DEL RE B , ROSSI M , et al. Relationship between postpartum uterine involution and biomarkers of inflammation and oxidative stress in clinically healthy mares (Equus caballus)[J]. Heliyon, 2020, 6 (4): e03691.
doi: 10.1016/j.heliyon.2020.e03691 |
63 |
IBRAHIM M A , ALBAHLOL I A , WANI F A , et al. Resveratrol protects against cisplatin-induced ovarian and uterine toxicity in female rats by attenuating oxidative stress, inflammation and apoptosis[J]. Chem Biol Interact, 2021, 338, 109402.
doi: 10.1016/j.cbi.2021.109402 |
64 |
TANTENGCO O A G , VINK J , MEDINA P M B , et al. Oxidative stress promotes cellular damages in the cervix: implications for normal and pathologic cervical function in human pregnancy[J]. Biol Reprod, 2021, 105 (1): 204- 216.
doi: 10.1093/biolre/ioab058 |
65 |
LI X , WU H S , XING W W , et al. Short-term association of fine particulate matter and its constituents with oxidative stress, symptoms and quality of life in patients with allergic rhinitis: a panel study[J]. Environ Int, 2023, 182, 108319.
doi: 10.1016/j.envint.2023.108319 |
66 |
ZULFIQAR F , NAFEES M , CHEN J J , et al. Chemical priming enhances plant tolerance to salt stress[J]. Front Plant Sci, 2022, 13, 946922.
doi: 10.3389/fpls.2022.946922 |
67 | HU X Q , SONG R , ZHANG L B . Effect of oxidative stress on the estrogen-NOS-NO-KCa channel pathway in uteroplacental dysfunction: its implication in pregnancy complications[J]. Oxid Med Cell Longev, 2019, 2019, 9194269. |
68 |
WU Y , LI M , ZHANG J , et al. Unveiling uterine aging: Much more to learn[J]. Ageing Res Rev, 2023, 86, 101879.
doi: 10.1016/j.arr.2023.101879 |
69 |
ÖNER-İYIDOǦAN Y , KOÇAK H , GVRDÜL F , et al. Indices of oxidative stress in eutopic and ectopic endometria of women with endometriosis[J]. Gynecol Obstet Invest, 2004, 57 (4): 214- 217.
doi: 10.1159/000076691 |
70 |
WU H , XU T , CHEN T , et al. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice[J]. Sci Total Environ, 2022, 838, 155825.
doi: 10.1016/j.scitotenv.2022.155825 |
71 |
NELSON W , ADU-GYAMFI E A , CZIKA A , et al. Bisphenol A-induced mechanistic impairment of decidualization[J]. Mol Reprod Dev, 2020, 87 (8): 837- 842.
doi: 10.1002/mrd.23400 |
72 |
TAMARU S , KAJIHARA T , MIZUNO Y , et al. Heparin prevents oxidative stress-induced apoptosis in human decidualized endometrial stromal cells[J]. Med Mol Morphol, 2019, 52 (4): 209- 216.
doi: 10.1007/s00795-019-00220-x |
73 |
LEITAO B , JONES M C , FUSI L , et al. Silencing of the JNK pathway maintains progesterone receptor activity in decidualizing human endometrial stromal cells exposed to oxidative stress signals[J]. FASEB J, 2010, 24 (5): 1541- 1551.
doi: 10.1096/fj.09-149153 |
74 |
LIU A X , HE W H , YIN L J , et al. Sustained endoplasmic reticulum stress as a cofactor of oxidative stress in decidual cells from patients with early pregnancy loss[J]. J Clin Endocrinol Metab, 2011, 96 (3): E493- E497.
doi: 10.1210/jc.2010-2192 |
75 |
ZHANG S , LIN H Y , KONG S B , et al. Physiological and molecular determinants of embryo implantation[J]. Mol Aspects Med, 2013, 34 (5): 939- 980.
doi: 10.1016/j.mam.2012.12.011 |
76 |
ZHENG H T , ZHANG H Y , CHEN S T , et al. The detrimental effects of stress-induced glucocorticoid exposure on mouse uterine receptivity and decidualization[J]. FASEB J, 2020, 34 (11): 14200- 14216.
doi: 10.1096/fj.201902911RR |
77 |
LI Y , CHEN S T , HE Y Y , et al. The regulation and function of acetylated high-mobility group box 1 during implantation and decidualization[J]. Front Immunol, 2023, 14, 1024706.
doi: 10.3389/fimmu.2023.1024706 |
78 |
TAKEZAWA Y , IWAI M , FUJIKI Y , et al. Embryonic β-catenin is required for priming of the uterus to implantation[J]. Lab Invest, 2023, 103 (3): 100026.
doi: 10.1016/j.labinv.2022.100026 |
79 |
DEER E , HERROCK O , CAMPBELL N , et al. The role of immune cells and mediators in preeclampsia[J]. Nat Rev Nephrol, 2023, 19 (4): 257- 270.
doi: 10.1038/s41581-022-00670-0 |
80 |
MATSUBARA K , HIGAKI T , MATSUBARA Y , et al. Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia[J]. Int J Mol Sci, 2015, 16 (3): 4600- 4614.
doi: 10.3390/ijms16034600 |
81 |
NEHA K , HAIDER R , PATHAK A , et al. Medicinal prospects of antioxidants: a review[J]. Eur J Med Chem, 2019, 178, 687- 704.
doi: 10.1016/j.ejmech.2019.06.010 |
82 |
MICHALAK M . Plant-derived antioxidants: significance in skin health and the ageing process[J]. Int J Mol Sci, 2022, 23 (2): 585.
doi: 10.3390/ijms23020585 |
83 |
BURTON G J , CINDROVA-DAVIES T , YUNG H W , et al. HYPOXIA AND REPRODUCTIVE HEALTH: oxygen and development of the human placenta[J]. Reproduction, 2021, 161 (1): F53- F65.
doi: 10.1530/REP-20-0153 |
84 |
JELIC M D , MANDIC A D , MARICIC S M , et al. Oxidative stress and its role in cancer[J]. J Cancer Res Ther, 2021, 17 (1): 22- 28.
doi: 10.4103/jcrt.JCRT_862_16 |
85 |
LIU Q , YU M H , ZHANG T . Construction of oxidative stress-related genes risk model predicts the prognosis of uterine corpus endometrial cancer patients[J]. Cancers (Basel), 2022, 14 (22): 5572.
doi: 10.3390/cancers14225572 |
86 |
BUKATO K , KOSTRZEWA T , GAMMAZZA A M , et al. Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers[J]. Cell Commun Signal, 2024, 22 (1): 205.
doi: 10.1186/s12964-024-01583-0 |
87 | PUNNONEN R , KUDO R , PUNNONEN K , et al. Activities of antioxidant enzymes and lipid peroxidation in endometrial cancer[J]. Eur J Cancer, 1993, 29A (2): 266- 269. |
88 |
MONGE M , COLAS E , DOLL A , et al. Proteomic approach to ETV5 during endometrial carcinoma invasion reveals a link to oxidative stress[J]. Carcinogenesis, 2009, 30 (8): 1288- 1297.
doi: 10.1093/carcin/bgp119 |
89 |
CROSBIE EJ , KITSON SJ , MCALPINE JN , et al. Endometrial cancer[J]. Lancet, 2022, 399 (10333): 1412- 1428.
doi: 10.1016/S0140-6736(22)00323-3 |
90 | BAKHTIYAROV K , IVANTSOVA M , KUKES I , et al. Metabolomic markers of endometriosis: Prospects[J]. Georgian Med News, 2023, (340-341): 275- 279. |
91 |
CLOWER L , FLESHMAN T , GELDENHUYS WJ , et al. Targeting Oxidative Stress Involved in Endometriosis and Its Pain[J]. Biomolecules, 2022, 12 (8): 1055.
doi: 10.3390/biom12081055 |
92 |
BARDEN A E , SHINDE S , PHILLIPS M , et al. Mediators of inflammation resolution and vasoactive eicosanoids in gestational diabetes and preeclampsia[J]. J Hypertens, 2022, 40 (11): 2236- 2244.
doi: 10.1097/HJH.0000000000003253 |
93 |
LIU G H , DONG Y L , WANG Z X , et al. Restraint stress delays endometrial adaptive remodeling during mouse embryo implantation[J]. Stress, 2015, 18 (6): 699- 709.
doi: 10.3109/10253890.2015.1078305 |
94 | KATERJI M , FILIPPOVA M , DUERKSEN-HUGHES P . Approaches and methods to measure oxidative stress in clinical samples: research applications in the cancer field[J]. Oxid Med Cell Longev, 2019, 2019, 1279250. |
95 | GRIENDLING K K , SORESCU D , LASSEGUE B , et al. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology[J]. Arterioscler Thromb Vasc Biol, 2000, 20 (10): 2175- 2183. |
96 | TRUJILLO M , ODLE A K , AYKIN-BURNS N , et al. Chemotherapy induced oxidative stress in the ovary: drug-dependent mechanisms and potential interventions[J]. Biol Reprod, 2023, 108 (4): 522- 537. |
97 | WANG Y W , QI H , LIU Y , et al. The double-edged roles of ROS in cancer prevention and therapy[J]. Theranostics, 2021, 11 (10): 4839- 4857. |
98 | HUANG X J , JIA L Y , JIA Y H , et al. sFlt-1-enriched exosomes induced endothelial cell dysfunction and a preeclampsia-like phenotype in mice[J]. Cytokine, 2023, 166, 156190. |
99 | LI H M , REN J , LI Y S , et al. Oxidative stress: the nexus of obesity and cognitive dysfunction in diabetes[J]. Front Endocrinol (Lausanne), 2023, 14, 1134025. |
100 | OGUNTIBEJU O O . Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links[J]. Int J Physiol Pathophysiol Pharmacol, 2019, 11 (3): 45- 63. |
101 | CONTRERAS-DUARTE S , CARVAJAL L , GARCHITORENA M J , et al. Gestational diabetes mellitus treatment schemes modify maternal plasma cholesterol levels dependent to women's weight: possible impact on feto-placental vascular function[J]. Nutrients, 2020, 12 (2): 506. |
102 | BURTON G J , JAUNIAUX E . Pathophysiology of placental-derived fetal growth restriction[J]. Am J Obstet Gynecol, 2018, 218 (2S): S745- S761. |
103 | MANDÒ C , DE PALMA C , STAMPALIJA T , et al. Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia[J]. Am J Physiol Endocrinol Metab, 2014, 306 (4): E404- E413. |
104 | CHANDRAHARAN E , GHI T , FIENI S , et al. Optimizing the management of acute, prolonged decelerations and fetal bradycardia based on the understanding of fetal pathophysiology[J]. Am J Obstet Gynecol, 2023, 228 (6): 645- 656. |
105 | OKE S L , HARDY D B . The role of cellular stress in intrauterine growth restriction and postnatal dysmetabolism[J]. Int J Mol Sci, 2021, 22 (13): 6986. |
106 | DAVY P , NAGATA M , BULLARD P , et al. Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta[J]. Placenta, 2009, 30 (6): 539- 542. |
107 | ZHANG H , ZHENG Y , LIU X , et al. Autophagy attenuates placental apoptosis, oxidative stress and fetal growth restriction in pregnant ewes[J]. Environ Int, 2023, 173, 107806. |
[1] | 杨硕, 霍敏, 苏子轩, 石玉祥. 线粒体质量控制对畜禽氧化应激影响的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3769-3776. |
[2] | 袁紫金, 王婉昕, 邢娅, 李家惠, 薛颖, 葛晶, 赵敏孟, 刘龙, 龚道清, 耿拓宇. HDLBP通过调控氧化应激水平和炎性因子表达参与鹅肥肝的形成[J]. 畜牧兽医学报, 2024, 55(9): 3897-3913. |
[3] | 王忆, 巩建飞, 衡诺, 胡樱凡, 王蕊, 王欢, 朱妮, 何维, 胡智辉, 郝海生, 朱化彬, 赵善江. 褪黑素通过改善线粒体动力学缓解棕榈酸诱导的牛子宫内膜上皮细胞损伤[J]. 畜牧兽医学报, 2024, 55(9): 3978-3987. |
[4] | 刘馨蔓, 周鸿缘, 桑锐, 葛冰洁, 闫可心, 王巍, 于明弘, 刘晓童, 邱谦, 张雪梅. 蒲公英甾醇对AFB1性肝损伤肉鸡肝组织氧化应激的影响[J]. 畜牧兽医学报, 2024, 55(9): 4141-4152. |
[5] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
[6] | 鲜婷婷, 刘彦, 曹忻, 冯涛. 母猪子宫内膜炎阴道菌群与血清促炎细胞因子的变化及其相关性分析[J]. 畜牧兽医学报, 2024, 55(8): 3688-3698. |
[7] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2825-2835. |
[8] | 李京宇, 陈金铭, 张明一, 赵姗姗, 陶德良, 宋军科, 杨新, 樊莹莹, 赵光辉. 犬新孢子虫miRNAs的鉴定与分析[J]. 畜牧兽医学报, 2024, 55(7): 3085-3093. |
[9] | 褚婷婷, 张晓宇, 孙磊, 童嘉顺, 张磊, 宋宇轩. 家畜子宫内膜纤维化的细胞分子机制研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2334-2344. |
[10] | 王选艺, 孙亚伟, 龙雨薇, 王俪颖, 周渝新, 李娜, 马雪连, 赵红琼, 姚刚. 屡配不孕母牛FOXP3、FSHR、FMR1基因多态性与生殖激素相关性分析[J]. 畜牧兽医学报, 2024, 55(6): 2727-2740. |
[11] | 杨小峰, 秦小伟, 吕丽华. MNQ的一种衍生物对LPS体外诱导的牛卵巢卵泡颗粒细胞炎性损伤的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2032-2041. |
[12] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[13] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[14] | 戴帆, 刘占有, 张旭阳, 李武. 乌头酸脱羧酶1对BCG诱导巨噬细胞炎症反应的调控作用研究[J]. 畜牧兽医学报, 2024, 55(4): 1696-1706. |
[15] | 章心婷, 邱文粤, 庞晓玥, 苏依曼, 叶嘉莉, 黄健佳, 周水莲, 唐兆新, 王荣梅, 苏荣胜. 积雪草酸通过抑制氧化应激和铁死亡减轻脂多糖诱导的肉鸡心肌损伤的研究[J]. 畜牧兽医学报, 2024, 55(4): 1787-1799. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||