畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3876-3886.doi: 10.11843/j.issn.0366-6964.2024.09.013
刘思宇1(), 张曼1, 张岩1, 魏稚彤1, 祁兴磊2, 高腾云1, 刘贤3, 梁栋1,*(
), 付彤1,*(
)
收稿日期:
2024-03-13
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
梁栋,付彤
E-mail:1287051437@qq.com;554230517@qq.com;futong2004@126.com
作者简介:
刘思宇(2001-),男,河南商丘人,本科生,主要从事畜禽分子数量遗传学研究,E-mail: 1287051437@qq.com
基金资助:
Siyu LIU1(), Man ZHANG1, Yan ZHANG1, Zhitong WEI1, Xinglei QI2, Tengyun GAO1, Xian LIU3, Dong LIANG1,*(
), Tong FU1,*(
)
Received:
2024-03-13
Online:
2024-09-23
Published:
2024-09-27
Contact:
Dong LIANG, Tong FU
E-mail:1287051437@qq.com;554230517@qq.com;futong2004@126.com
摘要:
旨在通过遗传多样性和群体结构分析,评估南阳牛的保种效果。本研究基于30头健康南阳牛的全基因组重测序数据,通过变异检测获得单核苷酸多态性(single nucleotide polymorphism, SNP)信息,综合分析群体遗传多样性、群体结构、亲缘关系以及连续纯和片段(ROH)分布特征,对南阳牛保种群的保种效果进行全面评估。结果显示:1)共检测到高质量SNPs位点数目是25 929 389个;2)保种群遗传多样性丰富,核苷酸多样性为0.002 9,多态性标记比例为0.888 7,最小等位基因频率为0.186 1,期望杂合度为0.274 9,观测杂合度为0.255 7;3)世代有效群体含量在1 000代前为2 834头,在20代前为149头,呈逐年下降趋势;4)主成分分析结果显示南阳牛保种群没有明显分层;5)个体间的遗传距离介于0.80~0.89,平均遗传距离为0.83±0.02;6)30头南阳牛个体共分为7个家系,公牛可分为5个家系;7)共检测到ROH片段数目是4 992个,平均每头南阳牛的ROH片段长度为约74.41 Mb,总长度为2.18 Gb,基于ROH的平均近交系数为0.031,0.5 Mb以下的ROH片段占比最多为75.72%,2~4 Mb的ROH片段占比最少为0.16%。综上所述,南阳牛保种群体遗传多样性丰富,没有出现明显分层,近交水平较低,但仍有个别个体近交较高。因此,未来的保种工作应加强选种和选配管理,以促进群体的可持续发展。
中图分类号:
刘思宇, 张曼, 张岩, 魏稚彤, 祁兴磊, 高腾云, 刘贤, 梁栋, 付彤. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55(9): 3876-3886.
Siyu LIU, Man ZHANG, Yan ZHANG, Zhitong WEI, Xinglei QI, Tengyun GAO, Xian LIU, Dong LIANG, Tong FU. Evaluation of the Conservation Effect in Nanyang Cattle Based on Resequencing Data[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3876-3886.
表 1
南阳牛遗传多样性相关参数统计"
参数 Parameter | SNPs数量 Number of SNPs | 最小等位基因频率 (MAF) Minor allele frequency | 多态性标记比例(PN) Proportion of polymorphic marker | 期望杂合度(He) Expected heterozygosity | 观测杂合度(Ho) Observed heterozygosity | 核苷酸多样性 (π) Nucleotide diversity |
南阳牛 Nanyang cattle | 25 929 389 | 0.186 1 | 0.888 7 | 0.274 9 | 0.255 7 | 0.002 9 |
表 2
南阳牛保种群体家系划分结果"
家系 Family | 性别 Sex | 数量 Number | 个体号 Individual number |
家系A Family A | 公 | 3 | NY010M、NY022M、NY027M |
家系B Family B | 公 | 2 | NY023M、NY026M |
母 | 5 | NY004F、NY008F、NY012F、NY015F、NY030F | |
家系C Family C | 母 | 6 | NY005F、NY007F、NY009F、NY011F、NY014F、NY029F |
家系D Family D | 公 | 1 | NY025M |
母 | 3 | NY006F、NY013F、NY028F | |
家系E Family E | 母 | 2 | NY001F、NY003F |
家系F Family F | 公 | 2 | NY018M、NY020M |
家系G Family G | 公 | 4 | NY017M、NY019M、NY021M、NY024M |
母 | 2 | NY002F、NY016F |
1 |
XIA X , QU K , ZHANG G , et al. Comprehensive analysis of the mitochondrial DNA diversity in Chinese cattle[J]. Anim Genet, 2019, 50 (1): 70- 73.
doi: 10.1111/age.12749 |
2 |
ZHANG Y , WEI Z T , ZHANG M , et al. Population structure and selection signal analysis of Nanyang cattle based on whole-genome sequencing data[J]. Genes, 2024, 15 (3): 351.
doi: 10.3390/genes15030351 |
3 |
XIA X , YAO Y , LI C , et al. Genetic diversity of Chinese cattle revealed by Y-SNP and Y-STR markers[J]. Anim Genet, 2019, 50 (1): 64- 69.
doi: 10.1111/age.12742 |
4 |
陈希鹃, 肖喜东, 吴明安. 南阳黄牛的保种、改良与种公牛饲养管理[J]. 养殖与饲料, 2020, (3): 47- 48.
doi: 10.3969/j.issn.1671-427X.2020.03.017 |
CHEN X J , XIAO X D , WU M A . Breeding, improvement and breeding management of Nanyang yellow cattle[J]. Breeding and Feed, 2020, (3): 47- 48.
doi: 10.3969/j.issn.1671-427X.2020.03.017 |
|
5 |
杜书增, 王冠立, 王玉海, 等. 南阳牛肉用选育改良及其产业化开发[J]. 中国牛业科学, 2016, 42 (2): 63- 66.
doi: 10.3969/j.issn.1001-9111.2016.02.020 |
DU S Z , WANG G L , WANG Y H , et al. Breeding and improvement of Nanyang cattle and its beed industrialization[J]. China Cattle Science, 2016, 42 (2): 63- 66.
doi: 10.3969/j.issn.1001-9111.2016.02.020 |
|
6 | 岁丰军. 南阳牛保种育种现状[C]//《第八届中国牛业发展大会》论文集. 昌吉: 中国畜牧业协会, 2013: 248-251. |
SUI F J. Current situation of Nanyang cattle breeding[C]//Proceedings of the 8th China Cattle Industry Development Conference. Changji: China Animal Husbandry Association, 2013: 248-251. (in Chinese) | |
7 | 茹宝瑞, 高腾云. 关于南阳牛育种与生产的一些建议[C]//《第六届中国牛业发展大会》论文集. 重庆: 中国畜牧业协会牛业分会, 2011: 310-313. |
RU B R, GAO T Y. Some suggestions on breeding and production of Nanyang cattle[C]//Proceedings of the 6th China Cattle Industry Development Conference. Chongqing: China Animal Husbandry Association Cattle Industry Branch, 2011: 310-313. (in Chinese) | |
8 |
LIANG D , ZHAO P J , SI J F , et al. Genomic analysis revealed a convergent evolution of LINE-1 in coat color: a case study in water buffaloes (Bubalus bubalis)[J]. Mol Biol Evol, 2021, 38 (3): 1122- 1136.
doi: 10.1093/molbev/msaa279 |
9 | KARIMI K , KOSHKOIYEH A E , FOZI M A , et al. Prioritization for conservation of Iranian native cattle breeds based on genome-wide SNP data[J]. Conserv Genet, 2016, 17 (1): 77- 89. |
10 |
刘继强, 郝晓东, 武丽娜, 等. 全基因组SNP分型技术在畜禽遗传育种研究中的应用[J]. 畜牧兽医学报, 2022, 53 (12): 4123- 4137.
doi: 10.11843/j.issn.0366-6964.2022.12.001 |
LIU J Q , HAO X D , WU L N , et al. Application of whole genome SNP genotyping technology in livestock and poultry genetics and breeding[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (12): 4123- 4137.
doi: 10.11843/j.issn.0366-6964.2022.12.001 |
|
11 |
HU M Y , SHI L L , YI W F , et al. Identification of genomic diversity and selection signatures in Luxi cattle using whole-genome sequencing data[J]. Anim Biosci, 2024, 37 (3): 461- 470.
doi: 10.5713/ab.23.0304 |
12 | 龙熙, 柴捷, 潘红梅, 等. 基于SNP芯片的盆周山地猪群体选择信号分析[J]. 中国畜牧杂志, 2023, 59 (12): 136- 140. |
LONG X , CHAI J , PAN H M , et al. Signal analysis of population selection of mountainous pigs in pelvic region based on SNP chip[J]. Chinese Journal of Animal Science, 2023, 59 (12): 136- 140. | |
13 |
JAGANNATHAN V , GERBER V , RIEDER S , et al. Comprehensive characterization of horse genome variation by whole-genome sequencing of 88 horses[J]. Anim Genet, 2019, 50 (1): 74- 77.
doi: 10.1111/age.12753 |
14 | 史露露, 胡明月, 赖伟宁, 等. 基于50K SNP芯片的夏洛来羊遗传结构及选择信号分析[J]. 黑龙江畜牧兽医, 2023, (6): 49-53, 59, 139-140. |
SHI L L , HU M Y , LAI W N , et al. Genetic structure and selection signal analysis of Charolais sheep based on 50K SNP chip[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023, (6): 49-53, 59, 139-140. | |
15 |
GUO Y , RUBIN G J , RÖNNEBURG T , et al. Whole-genome selective sweep analyses identifies the region and candidate gene associated with white earlobe color in Mediterranean chickens[J]. Poult Sci, 2024, 103 (1): 103232.
doi: 10.1016/j.psj.2023.103232 |
16 |
MEI C G , WANG H C , LIAO Q J , et al. Genetic architecture and selection of Chinese cattle revealed by whole genome resequencing[J]. Mol Biol Evol, 2018, 35 (3): 688- 699.
doi: 10.1093/molbev/msx322 |
17 |
ZHANG S J , YAO Z , LI X M , et al. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data[J]. BMC Genomics, 2022, 23 (1): 460.
doi: 10.1186/s12864-022-08645-y |
18 |
CHEN N B , CAI Y D , CHEN Q M , et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J]. Nat Commun, 2018, 9 (1): 2337.
doi: 10.1038/s41467-018-04737-0 |
19 |
BOLGER A M , LOHSE M , USADEL B . Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30 (15): 2114- 2120.
doi: 10.1093/bioinformatics/btu170 |
20 | LI H . Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM[J]. arXiv preprint, 2013, arXiv, 1303.3997. |
21 | EBBERT M T W , WADSWORTH M E , STALEY L A , et al. Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches[J]. BMC Bioinformatics, 2016, 7, 239. |
22 |
MCKENNA A , HANNA M , BANKS E , et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20 (9): 1297- 1303.
doi: 10.1101/gr.107524.110 |
23 |
DANECEK P , AUTON A , ABECASIS G , et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27 (15): 2156- 2158.
doi: 10.1093/bioinformatics/btr330 |
24 | CINGOLANI P . Variant annotation and functional prediction: SnpEff[J]. Methods Mol Biol, 2022, 2493, 289- 314. |
25 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
26 | BARBATO M , OROZCO-TERWENGEL P , TAPIO M , et al. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data[J]. Front Genet, 2015, 6, 109. |
27 |
BRADBURY P J , ZHANG Z W , KROON D E , et al. TASSEL: software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23 (19): 2633- 2635.
doi: 10.1093/bioinformatics/btm308 |
28 | WANG Y , DONG R L , LI X , et al. Analysis of the genetic diversity and family structure of the Licha Black pig population on Jiaodong Peninsula, Shandong Province, China[J]. Animals (Basel), 2022, 12 (8): 1045. |
29 |
EDWARDS C E , TESSIER B C , SWIFT J F , et al. Conservation genetics of the threatened plant species Physaria filiformis (Missouri bladderpod) reveals strong genetic structure and a possible cryptic species[J]. PLoS One, 2021, 16 (3): e0247586.
doi: 10.1371/journal.pone.0247586 |
30 |
刘晨龙, 卢丹, 周泉勇, 等. 利用高密度SNP芯片分析杭猪的群体遗传结构[J]. 畜牧兽医学报, 2022, 53 (8): 2502- 2513.
doi: 10.11843/j.issn.0366-6964.2022.08.009 |
LIU C L , LU D , ZHOU Q Y , et al. Analysis of population genetic structure of hang pigs by high density SNP chip[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (8): 2502- 2513.
doi: 10.11843/j.issn.0366-6964.2022.08.009 |
|
31 | 陈国宏, 季从亮, 王敏强. 12个中国地方鸡种群体遗传结构及遗传多样性分析[J]. 中国畜牧兽医文摘, 2006, (5): 32. |
CHEN G H , JI C L , WANG M Q . Analysis of population genetic structure and genetic diversity of 12 local chicken breeds in China[J]. Chinese Journal of Animal Science and Veterinary Abstracts, 2006, (5): 32. | |
32 |
李隐侠, 牙生江·那斯尔, 赛里克·都曼, 等. SNP芯片评估柯尔克孜羊群体遗传多样性和遗传结构[J]. 畜牧兽医学报, 2023, 54 (2): 572- 583.
doi: 10.11843/j.issn.0366-6964.2023.02.015 |
LI Y X , YASHENGJIANG ·NASIER , SAILIKE ·DUMAN , et al. Evaluation of genetic diversity and genetic structure in Kirgiz sheep population based on SNPs chip[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 572- 583.
doi: 10.11843/j.issn.0366-6964.2023.02.015 |
|
33 |
马克岩, 韩金涛, 白雅琴, 等. 基于简化基因组测序的永登七山羊遗传多样性分析[J]. 畜牧兽医学报, 2023, 54 (5): 1939- 1950.
doi: 10.11843/j.issn.0366-6964.2023.05.016 |
MA K Y , HAN J T , BAI Y Q , et al. Genetic diversity analysis of Yongdeng Qishan sheep based on specific-locus amplified fragment sequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1939- 1950.
doi: 10.11843/j.issn.0366-6964.2023.05.016 |
|
34 | 马钧, 樊安平, 王武生, 等. 全基因组重测序解析秦川牛保种群遗传多样性和遗传结构[J]. 遗传, 2023, 45 (7): 602- 616. |
MA J , FAN A P , WANG W S , et al. Analysis of genetic diversity and genetic structure of Qinchuan cattle conservation population using whole-genome resequencing[J]. Hereditas, 2023, 45 (7): 602- 616. |
[1] | 张涛, 李佳芪, 胥磊, 王丹, 张梦华, 张涛, 闫梦婕, 王玮韬, 范守民, 黄锡霞. 基于全基因组重测序数据的新疆褐牛基因组结构变异检测及群体结构分析[J]. 畜牧兽医学报, 2024, 55(8): 3427-3435. |
[2] | 宋科林, 闫尊强, 王鹏飞, 程文昊, 李杰, 白雅琴, 孙国虎, 滚双宝. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55(3): 995-1006. |
[3] | 任钰为, 陈星, 林燕宁, 黄潇仙, 洪玲玲, 王峰, 孙瑞萍, 张艳, 刘海隆, 郑心力, 晁哲. 基于全基因组重测序研究文昌鸡产蛋性能的影响因素[J]. 畜牧兽医学报, 2024, 55(2): 502-514. |
[4] | 林燕, 黄敏, 李秀金, 张续勐, 黄运茂, 田允波, 伍仲平. 利用全基因组重测序数据检测8个鸭品种基因组拷贝数变异[J]. 畜牧兽医学报, 2023, 54(9): 3700-3709. |
[5] | 路畅, 董磊, 张万锋, 高鹏飞, 郭晓红, 蔡春波, 曹果清, 李步高. 基于全基因组重测序对晋汾白猪单核苷酸多态性位点鉴定和筛选[J]. 畜牧兽医学报, 2023, 54(7): 2761-2771. |
[6] | 杨晴, 巩静, 赵雪艳, 朱晓东, 耿立英, 张传生, 王继英. 芯片和重测序在猪遗传结构研究中的应用比较[J]. 畜牧兽医学报, 2023, 54(7): 2772-2782. |
[7] | 王静琳, 刘阳光, 徐启隆, 陈朔, 邓在双, 程诗雨, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 皖岳黑猪基因组遗传变异分析及特征SNPs挖掘[J]. 畜牧兽医学报, 2023, 54(7): 2783-2793. |
[8] | 张任豹, 周东辉, 周李生, 高霄霄, 柳楠, 贺建宁. 基于70 K SNP芯片分析济宁青山羊保种群体的遗传结构[J]. 畜牧兽医学报, 2023, 54(7): 2836-2847. |
[9] | 赵真坚, 王书杰, 陈栋, 姬祥, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 唐国庆. 基于低深度全基因组测序分析内江猪群体结构和遗传多样性[J]. 畜牧兽医学报, 2023, 54(6): 2297-2307. |
[10] | 陶璇, 杨雪梅, 梁艳, 刘一辉, 汪勇, 孔繁晶, 雷云峰, 杨跃奎, 王言, 安瑞, 杨坤, 吕学斌, 何志平, 顾以韧. 基于SNP芯片的丫杈猪保种群体遗传结构研究[J]. 畜牧兽医学报, 2023, 54(6): 2308-2319. |
[11] | 杨苏坤, 董依萌, 王洪亮, 赵喜堂, 陈旭, 邢秀梅. 基于mtDNA和Y染色体基因片段的塔河马鹿种公鹿遗传多样性分析[J]. 畜牧兽医学报, 2023, 54(6): 2402-2413. |
[12] | 龙熙, 陈力, 吴平先, 张廷焕, 潘红梅, 张亮, 王金勇, 郭宗义, 柴捷. 合川黑猪保种群遗传结构及选择信号分析[J]. 畜牧兽医学报, 2023, 54(5): 1854-1867. |
[13] | 马克岩, 韩金涛, 白雅琴, 李讨讨, 马友记. 基于简化基因组测序的永登七山羊遗传多样性分析[J]. 畜牧兽医学报, 2023, 54(5): 1939-1950. |
[14] | 高超群, 曹然然, 杜文苹, 胡晓玉, 雷艳茹, 李文婷, 康相涛. 基于全基因组SNP标记分析中国地方鸡品种的遗传多样性和种群结构[J]. 畜牧兽医学报, 2023, 54(2): 554-562. |
[15] | 李隐侠, 牙生江·那斯尔, 赛里克·都曼, 钱勇, 曹少先, 王伟列, 孟春花, 张俊, 张建丽. SNP芯片评估柯尔克孜羊群体遗传多样性和遗传结构[J]. 畜牧兽医学报, 2023, 54(2): 572-583. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||