畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (6): 2215-2222.doi: 10.11843/j.issn.0366-6964.2023.06.001
安宗麒, 占思远, 李利, 张红平*
收稿日期:
2022-10-08
出版日期:
2023-06-23
发布日期:
2023-06-16
通讯作者:
张红平,主要从事动物遗传育种与繁殖研究,E-mail:zhp@sicau.edu.cn
作者简介:
安宗麒(1997-),女,贵州贵阳人,硕士生,主要从事动物遗传育种与繁殖研究,E-mail:anzongqi@outlook.com
基金资助:
AN Zongqi, ZHAN Siyuan, LI Li, ZHANG Hongping*
Received:
2022-10-08
Online:
2023-06-23
Published:
2023-06-16
摘要: 竞争性内源RNA(competing endogenous RNA,ceRNA)机制指具有同种miRNA反应元件(microRNA response elements,MRE)的RNA分子,通过竞争性地结合该miRNA以在转录后水平调控基因的表达,进而影响细胞的生物学功能。ceRNA机制的有效性受细胞环境、miRNA活性及其与不同RNA分子间亲和力等因素的影响。虽然环状RNA(circular RNA,circRNA)和长链非编码RNA(long non-coding RNA,lncRNA)等均可作为ceRNA,但circRNA是相对更为有效的ceRNA分子,因为其在进化过程中稳定且保守,可使ceRNA信号在不同组织中传导。本文在探讨ceRNA调控机制影响因素的基础上,进一步综述了circRNA作为ceRNA调控畜禽肌肉发育、脂肪沉积、乳腺及卵泡发育等方面的研究进展,以期为深入研究畜禽重要经济性状中ceRNA调控网络提供新思路。
中图分类号:
安宗麒, 占思远, 李利, 张红平. circRNA作为ceRNA调控畜禽重要经济性状的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2215-2222.
AN Zongqi, ZHAN Siyuan, LI Li, ZHANG Hongping. ceRNA-mediated Function of CircRNA on Critical Economic Traits in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2215-2222.
[1] | CESANA M,CACCHIARELLI D,LEGNINI I,et al.A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA[J].Cell,2011,147(2):358-369. |
[2] | SALMENA L,POLISENO L,TAY Y,et al.A ceRNA hypothesis:The Rosetta stone of a hidden RNA language?[J].Cell,2011,146(3):353-358. |
[3] | KARRETH F A,TAY Y,PERNA D,et al.In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma[J].Cell,2011,147(2):382-395. |
[4] | CHIU H S,MARTÍNEZ M R,BANSAL M,et al.High-throughput validation of ceRNA regulatory networks[J].BMC Genomics,2017,18(1):418. |
[5] | TAY Y,RINN J,PANDOLFI P P.The multilayered complexity of ceRNA crosstalk and competition[J].Nature,2014,505(7483):344-352. |
[6] | LI J J,LIU Y,XIN X F,et al.Evidence for positive selection on a number of microRNA regulatory interactions during recent human evolution[J].PLoS Genet,2012,8(3):e1002578. |
[7] | THOMAS M,LIEBERMAN J,LAL A.Desperately seeking microRNA targets[J].Nat Struct Mol Biol,2010,17(10):1169-1174. |
[8] | SEITZ H.Redefining microRNA targets[J].Curr Biol,2009,19(10):870-873. |
[9] | MEMCZAK S,JENS M,ELEFSINIOTI A,et al.Circular RNAs are a large class of animal RNAs with regulatory potency[J].Nature,2013,495(7441):333-338. |
[10] | ALA U,KARRETH F A,BOSIA C,et al.Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments[J].Proc Natl Acad Sci U S A,2013,110(18):7154-7159. |
[11] | KIMURA T,JIANG S W,YOSHIDA N,et al.Interferon-alpha competing endogenous RNA network antagonizes microRNA-1270[J].Cell Mol Life Sci,2015,72(14):2749-2761. |
[12] | STAMOULAKATOU E,PINOLI P,CERI S,et al.Impact of mutational signatures on microRNA and their response elements[C]//Proceedings of the Pacific Symposium on Biocomputing 2020.Fairmont Orchid:World Scientific Publishing,2020:250-261. |
[13] | GARCIA D M,BAEK D,SHIN C,et al.Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs[J].Nat Struct Mol Biol,2011,18(10):1139-1146. |
[14] | FIGLIUZZI M,MARINARI E,DE MARTINO A.MicroRNAs as a selective channel of communication between competing RNAs:a steady-state theory[J].Biophys J,2013,104(5):1203-1213. |
[15] | LI Y,ZHENG Q P,BAO C Y,et al.Circular RNA is enriched and stable in exosomes:A promising biomarker for cancer diagnosis[J].Cell Res,2015,25(8):981-984. |
[16] | EBERT M S,SHARP P A.Emerging roles for natural microRNA sponges[J].Curr Biol,2010,20(19):R858-R861. |
[17] | DENZLER R,AGARWAL V,STEFANO J,et al.Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance[J].Mol cell,2014,54(5):766-776. |
[18] | BOSSON A D,ZAMUDIO J R,SHARP P A.Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition[J].Mol Cell,2014,56(3):347-359. |
[19] | QI X L,ZHANG D H,WU N,et al.CeRNA in cancer:Possible functions and clinical implications[J].J Med Genet,2015,52(10):710-718. |
[20] | TAN C,LIU S,TAN S K,et al.Polymorphisms in microRNA target sites of forkhead box O genes are associated with hepatocellular carcinoma[J].PLoS One,2015,10(3):e0119210. |
[21] | GRIMSON A,FARH K K H,JOHNSTON W K,et al.MicroRNA targeting specificity in mammals:Determinants beyond seed pairing[J].Mol Cell,2007,27(1):91-105. |
[22] | EBERT M S,SHARP P A.MicroRNA sponges:progress and possibilities[J].RNA,2010,16(11):2043-2050. |
[23] | RYBAK-WOLF A,STOTTMEISTER C,GLAŽAR P,et al.Circular RNAs in the mammalian brain are highly abundant,conserved,and dynamically expressed[J].Mol Cell,2015,58(5):870-885. |
[24] | HANSEN T B,JENSEN T I,CLAUSEN B H,et al.Natural RNA circles function as efficient microRNA sponges[J].Nature,2013,495(7441):384-388. |
[25] | ZHANG P P,CHAO Z,ZHANG R,et al.Circular RNA regulation of myogenesis[J].Cells,2019,8(8):885. |
[26] | ZHOU Z Y,LI K Y,LIU J N,et al.Expression profile analysis to identify circular RNA expression signatures in muscle development of Wu'an goat Longissimus dorsi tissues[J].Front Vet Sci,2022,9:833946. |
[27] | LIU R L,LIU X X,BAI X J,et al.Identification and characterization of circRNA in Longissimus dorsi of different breeds of cattle[J].Front Genet,2020,11:565085. |
[28] | LI M,ZHANG N,ZHANG W F,et al.Comprehensive analysis of differentially expressed circRNAs and ceRNA regulatory network in porcine skeletal muscle[J].BMC Genomics,2021,22(1):320. |
[29] | QI A,RU W X,YANG H Y,et al.Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2k7/JNK pathway[J].J Agric Food Chem,2022,70(10):3357-3373. |
[30] | ZHANG R M,PAN Y,ZOU C X,et al.CircUBE2Q2 promotes differentiation of cattle muscle stem cells and is a potential regulatory molecule of skeletal muscle development[J].BMC Genomics,2022,23(1):267. |
[31] | LI H,YANG J M,WEI X F,et al.CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a[J].J Cell Physiol,2018,233(6):4643-4651. |
[32] | RU W X,QI A,SHEN X M,et al.The circular RNA circCPE regulates myoblast development by sponging miR-138[J].J Anim Sci Biotechnol,2021,12(1):102. |
[33] | WANG X G,CAO X K,DONG D,et al.Circular RNA TTN acts as a miR-432 sponge to facilitate proliferation and differentiation of myoblasts via the IGF2/PI3K/AKT signaling pathway[J].Mol Ther Nucleic Acids,2019,18:966-980. |
[34] | YUE B L,WANG J,RU W X,et al.The circular RNA circHUWE1 sponges the miR-29b-AKT3 axis to regulate myoblast development[J].Mol Ther Nucleic Acids,2020,19:1086-1097. |
[35] | SHEN X M,TANG J,RU W X,et al.CircINSR regulates fetal bovine muscle and fat development[J].Front Cell Dev Biol,2021,8:615638. |
[36] | SHEN X M,ZHANG X Y,RU W X,et al.circINSR promotes proliferation and reduces apoptosis of embryonic myoblasts by sponging miR-34a[J].Mol Ther Nucleic Acids,2020,19:986-999. |
[37] | OUYANG H J,CHEN X L,LI W M,et al.Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken[J].Front Genet,2018,9:172. |
[38] | CHEN B,YU J,GUO L J,et al.Circular RNA circHIPK3 promotes the proliferation and differentiation of chicken myoblast cells by sponging miR-30a-3p[J].Cells,2019,8(2):177. |
[39] | ZHAO J,ZHAO X Y,SHEN X X,et al.CircCCDC91 regulates chicken skeletal muscle development by sponging miR-15 family via activating IGF1-PI3K/AKT signaling pathway[J].Poult Sci,2022,101(5):101803. |
[40] | SHEN X M,TANG J,JIANG R,et al.CircRILPL1 promotes muscle proliferation and differentiation via binding miR-145 to activate IGF1R/PI3K/AKT pathway[J].Cell Death Dis,2021,12(2):142. |
[41] | CAI B L,MA M T,ZHOU Z,et al.CircPTPN4 regulates myogenesis via the miR-499-3p/NAMPT axis[J].J Anim Sci Biotechnol,2022,13(1):2. |
[42] | WANG Z J,ZHANG M,LI K,et al.CircMGA depresses myoblast proliferation and promotes myotube formation through miR-144-5p/FAP signal[J].Animals (Basel),2022,12(7):873. |
[43] | LI K,HUANG W C,WANG Z J,et al.CircTAF8 regulates myoblast development and associated carcass traits in chicken[J].Front Genet,2022,12:743757. |
[44] | KYEI B,ODAME E,LI L,et al.Knockdown of CDR1as decreases differentiation of goat skeletal muscle satellite cells via upregulating mir-27a-3p to inhibit ANGPT1[J].Genes (Basel),2022,13(4):663. |
[45] | ZHANG Z, FAN Y, DENG K, et al. Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1[J]. Faseb,2022,36(1):e22097. |
[46] | CAO H G,LIU J M,DU T N,et al.Circular RNA screening identifies circMYLK4 as a regulator of fast/slow myofibers in porcine skeletal muscles[J].Mol Genet Genomics,2022,297(1):87-99. |
[47] | JIN L,TANG Q Z,HU S L,et al.A pig bodymap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription[J].Nat Commun,2021,12(1):3715. |
[48] | HUANG J P,ZHAO J H,ZHENG Q Z,et al.Characterization of circular RNAs in Chinese buffalo (Bubalus bubalis) adipose tissue:A focus on circular RNAs involved in fat deposition[J].Animals (Basel),2019,9(7):403. |
[49] | WU J Y,ZHANG S L,YUE B L,et al.CircRNA profiling reveals circPPARγ modulates adipogenic differentiation via sponging miR-92a-3p[J].J Agric Food Chem,2022,70(22):6698-6708. |
[50] | LI B J,HE Y,WU W J,et al.Circular RNA profiling identifies novel circPPARA that promotes intramuscular fat deposition in pigs[J].J Agric Food Chem,2022,70(13):4123-4137. |
[51] | JIANG R,LI H,YANG J M,et al.CircRNA profiling reveals an abundant circFUT10 that promotes adipocyte proliferation and inhibits adipocyte differentiation via sponging let-7[J].Mol Ther Nucleic Acids,2020,20:491-501. |
[52] | ZHANG P P,HAN Q,SHENG M X,et al.Identification of circular RNA expression profiles in white adipocytes and their roles in Adipogenesis[J].Front Physiol,2021,12:728208. |
[53] | WANG L D,LIANG W S,WANG S S,et al.Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J].PLoS One,2020,15(7):e0236069. |
[54] | HAO Z Y,ZHOU H T,HICKFORD J G H,et al.Identification and characterization of circular RNA in lactating mammary glands from two breeds of sheep with different milk production profiles using RNA-seq[J].Genomics,2020,112(3):2186-2193. |
[55] | WANG J Q,ZHOU H T,HICKFORD J G H,et al.Identification and characterization of circular RNAs in mammary gland tissue from sheep at peak lactation and during the nonlactating period[J].J Dairy Sci,2021,104(2):2396-2409. |
[56] | WANG D Y,CHEN Z J,ZHUANG X N,et al.Identification of circRNA-associated-ceRNA networks involved in milk fat metabolism under heat stress[J].Int J Mol Sci,2020,21(11):4162. |
[57] | ZHANG M,MA L,LIU Y H,et al.CircRNA-006258 sponge-adsorbs miR-574-5p to regulate cell growth and milk synthesis via EVI5l in goat mammary epithelial cells[J].Genes (Basel),2020,11(7):718. |
[58] | WANG D Y,ZHAO Z J,SHI Y R,et al.CircEZH2 regulates milk fat metabolism through miR-378b sponge activity[J].Animals (Basel),2022,12(6):718. |
[59] | CLIFFORD R L,SINGER C A,JOHN A E.Epigenetics and miRNA emerge as key regulators of smooth muscle cell phenotype and function[J].Pulm Pharmacol Ther,2013,26(1):75-85. |
[60] | LIU Y F,ZHOU Z Y,HE X Y,et al.Differentially expressed circular RNA profile signatures identified in prolificacy trait of Yunshang black goat ovary at estrus cycle[J].Front Physiol,2022,13:820459. |
[61] | MA L,ZHANG M,CAO F J,et al.Effect of MiR-100-5p on proliferation and apoptosis of goat endometrial stromal cell in vitro and embryo implantation in vivo[J].J Cell Mol Med,2022,26(9):2543-2556. |
[62] | LIU X R,ZHANG L,YANG L C,et al.miR-34a/c induce caprine endometrial epithelial cell apoptosis by regulating circ-8073/CEP55 via the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways[J].J Cell Physiol,2020,235(12):10051-10067. |
[63] | LI X Y,GAO F L,FAN Y S,et al.A novel identified circ-ANKHD1 targets the miR-27a-3p/SFRP1 signaling pathway and modulates the apoptosis of granulosa cells[J].Environ Sci Pollut Res Int,2021,28(41):57459-57469. |
[64] | GUO T Y,ZHANG J B,YAO W,et al.CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles[J].Biochim Biophys Acta Gene Regul Mech,2019,1862(10):194420. |
[65] | WU Y,XIAO H W,PI J S,et al.The circular RNA aplacirc_13267 upregulates duck granulosa cell apoptosis by the apla-miR-1-13/THBS1 signaling pathway[J].J Cell Physiol,2020,235(7-8):5750-5763. |
[66] | WANG H M,ZHANG Y,ZHANG J B,et al.CircSLC41A1 resists porcine granulosa cell apoptosis and follicular atresia by promoting SRSF1 through miR-9820-5p sponging[J].Int J Mol Sci,2022,23(3):1509. |
[67] | CAO Z B,GAO D,XU T T,et al.Circular RNA profiling in the oocyte and cumulus cells reveals that circARMC4 is essential for porcine oocyte maturation[J].Aging,2019,11(18):8015-8034. |
[1] | 王亚鑫, 王璟, 田学凯, 杨公社, 于太永. 多组学技术在畜禽重要经济性状研究中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1842-1853. |
[2] | 段益欣, 张林云, 赵永聚. SNP遗传力估计方法、影响因素及其在畜禽育种中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1854-1865. |
[3] | 余祖华, 高梦茹, 齐志颖, 张静雨, 何雷, 陈建, 丁轲. RNA结合蛋白ELAVL1的功能及其调控病毒复制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1914-1925. |
[4] | 曹玉珠, 邢雨欣, 马乘霖, 管宏波, 贾其辉, 康相涛, 田亚东, 李转见, 刘小军, 李红. 鸡FGF6基因生物学特性及其多态性与经济性状的关联分析[J]. 畜牧兽医学报, 2024, 55(4): 1536-1550. |
[5] | 任钰为, 陈星, 林燕宁, 黄潇仙, 洪玲玲, 王峰, 孙瑞萍, 张艳, 刘海隆, 郑心力, 晁哲. 基于全基因组重测序研究文昌鸡产蛋性能的影响因素[J]. 畜牧兽医学报, 2024, 55(2): 502-514. |
[6] | 茹盟, 曾文惠, 彭剑玲, 曾庆节, 殷超, 崔勇, 魏庆, 梁海平, 谢贤华, 黄建珍. 蛋鸡卵泡发育及其表观遗传调控机制研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3613-3622. |
[7] | 王思盈, 邹宏, 宋振辉. Na+/H+交换体家族第三个亚型在感染性腹泻中的作用及活性调控机制[J]. 畜牧兽医学报, 2023, 54(8): 3230-3241. |
[8] | 王静宇, 樊姝琪, 黎成, 尹宁, 庄彬贤, 刘慧铭, 温永仙. 我国猪丹毒疫情的时空特征及其影响因素[J]. 畜牧兽医学报, 2023, 54(6): 2528-2542. |
[9] | 蒋盛强, 胡靖, 陈红英. H1N1亚型流感病毒感染A549细胞的环状RNA表达分析[J]. 畜牧兽医学报, 2023, 54(11): 4724-4734. |
[10] | 马子明, 郭星汝, 戴天姝, 魏士昊, 史远刚, 淡新刚. 牛子宫复旧调控机制及促进子宫复旧方法的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 58-68. |
[11] | 李亭亭, 刘秋月, 李向臣, 王海涛. 绵羊经济性状相关基因研究进展及其应用[J]. 畜牧兽医学报, 2022, 53(8): 2417-2434. |
[12] | 张弥, 涂闻君, 张奇, 江莎. 影响鸡脂肪肝出血综合征的因素及“多重打击”学说[J]. 畜牧兽医学报, 2022, 53(8): 2453-2469. |
[13] | 邵冰豪, 高林歌, 朱星浩, 张怀勇, 陈文, 黄艳群. 鸡环状RNA circSESN1的表达特性探究[J]. 畜牧兽医学报, 2022, 53(7): 2141-2151. |
[14] | 万涛, 王澳, 张海亮, 胡丽蓉, 赵善江, 张翰霖, 王炎, 郭刚, 俞英, 王雅春. 荷斯坦牛血浆抗缪勒氏管激素浓度的影响因素分析及遗传参数估计[J]. 畜牧兽医学报, 2022, 53(1): 161-168. |
[15] | 周志楠, 陈祥, 张艳, 杨沛方, 惠茂茂, 唐文, 洪磊. CTSD对黔北麻羊卵泡颗粒细胞的调控机制及功能分析[J]. 畜牧兽医学报, 2021, 52(5): 1278-1292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||