畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (8): 3230-3241.doi: 10.11843/j.issn.0366-6964.2023.08.010
王思盈, 邹宏, 宋振辉*
收稿日期:
2022-10-26
出版日期:
2023-08-23
发布日期:
2023-08-22
通讯作者:
宋振辉,主要从事动物微生物学与免疫学研究,E-mail:szh7678@swu.edu.cn
作者简介:
王思盈(2002-),女,湖南湘潭人,本科生,主要从事动物微生物学与免疫学研究,E-mail:1493626735@qq.com
基金资助:
WANG Siying, ZOU Hong, SONG Zhenhui*
Received:
2022-10-26
Online:
2023-08-23
Published:
2023-08-22
摘要: Na+/H+交换子转运蛋白(Na+/H+ exchanger transporters,NHEs)在各种生物过程中起重要作用,包括Na+吸收、细胞内pH稳态、细胞体积调节、增殖和凋亡。其中,Na+/H+交换体家族第三个亚型(Na+/H+ exchanger isoform 3,NHE3)高度表达于肠道和肾近端小管中发挥中性NaCl的吸收作用,当细菌、病毒和毒素等病原感染肠道后,会引起肠上皮细胞上相应的NHE3活性受到抑制和Na+转运障碍,从而使得肠道内的水和电解质潴留、营养物质吸收停滞并导致腹泻的发生。近年来,关于病毒、细菌以及其他微生物感染引起胃肠上皮NHE3活性改变的研究取得了重大进展。本文综述了部分病原微生物感染引起机体腹泻时NHE3的活性变化,以及NHE3活性调控机制,包括NHE3从上皮质膜顶端到细胞内体循环、转录和翻译调控、蛋白质之间的动态相互作用以及相关信号通路的调控机制等。
中图分类号:
王思盈, 邹宏, 宋振辉. Na+/H+交换体家族第三个亚型在感染性腹泻中的作用及活性调控机制[J]. 畜牧兽医学报, 2023, 54(8): 3230-3241.
WANG Siying, ZOU Hong, SONG Zhenhui. The Role of Na+/H+ Exchanger Isoform 3 in Infectious Diarrhea and Its Activity Regulation Mechanism[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3230-3241.
[1] | ANDEREGG M A, GYIMESI G, HO T M, et al. The less well-known little brothers:the SLC9B/NHA sodium proton exchanger subfamily-structure, function, regulation and potential drug-target approaches[J]. Front Physiol, 2022, 13:898508. |
[2] | FUSTER D G, ALEXANDER R T. Traditional and emerging roles for the SLC9 Na+/H+ exchangers[J]. Pflügers Arch-Eur J Physiol, 2014, 466(1):61-76. |
[3] | GIRARDI A C C, DI SOLE F. Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction[J]. Am J Physiol-Cell Physiol, 2012, 302(11):C1569-C1587. |
[4] | SURAWICZ C M. Mechanisms of diarrhea[J]. Curr Gastroenterol Rep, 2010, 12(4):236-241. |
[5] | SLEPKOV E R, RAINEY J K, SYKES B D, et al. Structural and functional analysis of the Na+/H+ exchanger[J]. Biochem J, 2007, 401(3):623-633. |
[6] | PRIYAMVADA S, GOMES R, GILL R K, et al. Mechanisms underlying dysregulation of electrolyte absorption in inflammatory bowel disease-associated diarrhea[J]. Inflamm Bowel Dis, 2015, 21(12):2926-2935. |
[7] | LI T T, TUO B G. Pathophysiology of hepatic Na+/H+ exchange (Review)[J]. Exp Ther Med, 2020, 20(2):1220-1229. |
[8] | LEE S H, KIM T, PARK E S, et al. Corrigendum to "NHE10, an osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival"[Biochem. Biophys. Res. Commun. 369 (2008) 320-326] [J]. Biochem Biophys Res Commun, 2008, 373(1):174. |
[9] | 王 岩, 赵 蒙, 魏倩倩, 等. NHE1生物学功能的研究进展[J]. 特产研究, 2022, 44(5):129-135.WANG Y, ZHAO M, WEI Q Q, et al. Research progress on biological function of NHE1[J]. Special Wild Economic Animal and Plant Research, 2022, 44(5):129-135. (in Chinese) |
[10] | MOESER A J, NIGHOT P K, RYAN K A, et al. Mice lacking the Na+/H+ exchanger 2 have impaired recovery of intestinal barrier function[J]. Am J Physiol-Gastrointest Liver Physiol, 2008, 295(4):G791-G797. |
[11] | MATTHIS A L, KAJI I, ENGEVIK K A, et al. Deficient active transport activity in healing mucosa after mild gastric epithelial damage[J]. Dig Dis Sci, 2020, 65(1):119-131. |
[12] | HE P J, YUN C C. Mechanisms of the regulation of the intestinal Na+/H+ exchanger NHE3[J]. J Biomed Biotechnol, 2010, 2010:238080. |
[13] | ARENA E A, LONGO W E, ROBERTS K E, et al. Functional role of NHE4 as a pH regulator in rat and human colonic crypts[J]. Am J Physiol-Cell Physiol, 2012, 302(2):C412-C418. |
[14] | CHEN X J, WANG X Y, TANG L Y, et al. Nhe5 deficiency enhances learning and memory via upregulating Bdnf/TrkB signaling in mice[J]. Am J Med Genet Part B-Neuropsychiatr Genet, 2017, 174(8):828-838. |
[15] | LIU C, XU H, ZHANG B, et al. NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion[J]. Am J Physiol-Cell Physiol, 2013, 305(1):C121-C128. |
[16] | XU H, LI J, CHEN R J, et al. NHE2X3 DKO mice exhibit gender-specific NHE8 compensation[J]. Am J Physiol-Gastrointest Liver Physiol, 2011, 300(4):G647-G653. |
[17] | GRAY M E, LEE S, MCDOWELL A L, et al. Dual targeting of EGFR and ERBB2 pathways produces a synergistic effect on cancer cell proliferation and migration in vitro[J]. Vet Comp Oncol, 2017, 15(3):890-909. |
[18] | LEE S H, KIM T, PARK E S, et al. NHE10, a novel osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival[J]. Biochem Biophys Res Commun, 2008, 369(2):320-326. |
[19] | ALEXANDER R T, JAUMOUILLÉ V, YEUNG T, et al. Membrane surface charge dictates the structure and function of the epithelial Na+/H+ exchanger[J]. EMBO J, 2011, 30(4):679-691. |
[20] | FUSTER D, MOE O W, HILGEMANN D W. Steady-state function of the ubiquitous mammalian Na/H exchanger (NHE1) in relation to dimer coupling models with 2Na/2H stoichiometry[J]. J Gen Physiol, 2009, 133(3):345. |
[21] | CHA B, DONOWITZ M. The epithelial brush border Na+/H+ exchanger NHE3 associates with the actin cytoskeleton by binding to ezrin directly and via PDZ domain-containing Na+/H+ exchanger regulatory factor (NHERF) proteins[J]. Clin Exp Pharmacol Physiol, 2008, 35(8):863-871. |
[22] | PEDERSEN S F, COUNILLON L. The SLC9A-C mammalian Na+/H+ exchanger family:molecules, mechanisms, and physiology[J]. Physiol Rev, 2019, 99(4):2015-2113. |
[23] | MCDONOUGH A A. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure[J]. Am J Physiol-Regul Integr Comp Physiol, 2010, 298(5):R851-R861. |
[24] | NWIA S M, LI X C, LEITE A P D O, et al. The Na+/H+ exchanger 3 in the intestines and the proximal tubule of the kidney:localization, physiological function, and key roles in angiotensin II-induced hypertension[J]. Front Physiol, 2022, 13:861659. |
[25] | DANIEL H. Molecular and integrative physiology of intestinal peptide transport[J]. Annu Rev Physiol, 2004, 66:361-384. |
[26] | ZACHOS N C, TSE M, DONOWITZ M. Molecular physiology of intestinal N+/H+ exchange[J]. Annu Rev Physiol, 2005, 67:411-443. |
[27] | KOVESDY C P, ADEBIYI A, ROSENBAUM D, et al. Novel treatments from inhibition of the intestinal sodium-hydrogen exchanger 3[J]. Int J Nephrol Renovasc Dis, 2021, 14:411-420. |
[28] | SINGH V, YANG J B, CHEN T E, et al. Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea:stimulation of Na+ absorption[J]. Clin Gastroenterol Hepatol, 2014, 12(1):27-31. |
[29] | LEDOUSSAL C, WOO A L, MILLER M L, et al. Loss of the NHE2 Na+/H+ exchanger has no apparent effect on diarrheal state of NHE3-deficient mice[J]. Am J Physiol Gastrointest Liver Physiol, 2001, 281(6):G1385-G1396. |
[30] | KARASOV W H. Integrative physiology of transcellular and paracellular intestinal absorption[J]. J Exp Biol, 2017, 220(14):2495-2501. |
[31] | NIKOLOVSKA K, SEIDLER U E, STOCK C. The role of plasma membrane sodium/hydrogen exchangers in gastrointestinal functions:proliferation and differentiation, fluid/electrolyte transport and barrier integrity[J]. Front Physiol, 2022, 13:899286. |
[32] | NIU Z, XU S S, ZHANG Y L, et al. Transmissible gastroenteritis virus nucleocapsid protein interacts with Na+/H+ exchanger 3 To reduce Na+/H+ exchanger activity and promote piglet diarrhea[J]. J Virol, 2022, 96(22):e0147322. |
[33] | YANG Z, RAN L, YUAN P, et al. EGFR as a negative regulatory protein adjusts the activity and mobility of NHE3 in the cell membrane of IPEC-J2 cells with TGEV infection[J]. Front Microbiol, 2018, 9:2734. |
[34] | YANG Y, YU Q H, SONG H, et al. Decreased NHE3 activity and trafficking in TGEV-infected IPEC-J2 cells via the SGLT1-mediated P38 MAPK/AKt2 pathway[J]. Virus Res, 2020, 280:197901. |
[35] | 余秋寒. TGEV感染对NHE3活性影响的初步研究[D]. 重庆:西南大学, 2020.YU Q H. Preliminary study on the effect of TGEV infection on the activity of NHE3[D]. Chongqing:Southwest University, 2020. (in Chinese) |
[36] | NIU Z, ZHANG Y L, KAN Z F, et al. Decreased NHE3 activity in intestinal epithelial cells in TGEV and PEDV-induced piglet diarrhea[J]. Vet Microbiol, 2021, 263:109263. |
[37] | 晏 涛, 牛 铮, 张依琳, 等. 猪流行性腹泻病毒感染猪肠上皮细胞引起Na+/H+交换器NHE3活性下降[J]. 西南大学学报:自然科学版, 2022, 44(4):70-77.YAN T, NIU Z, ZHANG Y L, et al. Infection of porcine intestinal epithelial cells with porcine epidemic diarrhea virus resulted in a decrease in NHE3 activity of Na+/H+ exchangers[J]. Journal of Southwest University:Natural Science Edition, 2022, 44(4):70-77. (in Chinese) |
[38] | 王 昕, 范媛媛, 王 鹏, 等. 轮状病毒对NHE3蛋白水平及其生物活性的影响[J]. 广东医学, 2018, 39(7):971-973.WANG X, FAN Y Y, WANG P, et al. Effects of rotavirus on expression levels and bioactivity of NHE3[J]. Guangdong Medical Journal, 2018, 39(7):971-973. (in Chinese) |
[39] | 牛美兰, 裴岩岩, 王 鹏, 等. 网格蛋白内吞途径在轮状病毒感染对Caco-2细胞钠氢交换蛋白3调控中的作用[J]. 中国感染与化疗杂志, 2018, 18(6):599-603.NIU M L, PEI Y Y, WANG P, et al. Effect of rotavirus infection on regulating the expression of Na+-H+ exchanger 3 in Caco-2 cells via clathrin dependent endocytosis pathway[J]. Chinese Journal of Infection and Chemotherapy, 2018, 18(6):599-603. (in Chinese) |
[40] | 王 鹏, 秦红霞, 田一博, 等. 脂筏依赖性内吞途径对轮状病毒感染细胞表面NHE3蛋白的调控作用[J]. 医学研究生学报, 2021, 34(2):131-134.WANG P, QIN H X, TIAN Y B, et al. Effects of lipid rafts dependent endocytosis pathway on regulation of NHE3 trafficking mechanism on the surface of rotavirus infected cells[J]. Journal of Medical Postgraduates, 2021, 34(2):131-134. (in Chinese) |
[41] | 王 鹏, 牛美兰, 陈长英, 等. 细胞内Ca2+在轮状病毒感染对Caco-2细胞NHE3蛋白调控中的作用[J]. 中华微生物学和免疫学杂志, 2019, 39(2):94-99.WANG P, NIU M L, CHEN Z Y, et al. Role of intracellular Ca2+ in regulating NHE3 expression in Caco-2 cells during rotavirus infection[J]. Chinese Journal of Microbiology and Immunology, 2019, 39(2):94-99. (in Chinese) |
[42] | DONOWITZ M, TSE C M, DOKLADNY K, et al. SARS-COV-2 induced Diarrhea is inflammatory, Ca2+ Dependent and involves activation of calcium activated Cl channels[J]. bioRxiv, 2021, doi:10. 1101/2021. 04. 27. 441695. |
[43] | PEARCE S C, SUNTORNSARATOON P, KISHIDA K, et al. Expression of SARS-CoV-2 entry factors, electrolyte, and mineral transporters in different mouse intestinal epithelial cell types[J]. Physiol Rep, 2021, 9(21):e15061. |
[44] | CURE M C, CURE E. Prolonged NHE activation may be both cause and outcome of cytokine release syndrome in COVID-19[J]. Curr Pharm Des, 2022, 28(22):1815-1822. |
[45] | CURE M C, CURE E. Effects of the Na+/H+ ion exchanger on susceptibility to COVID-19 and the course of the disease[J]. J Renin Angiotensin Aldosterone Syst, 2021, 2021:4754440. |
[46] | DAS S, JAYARATNE R, BARRETT K E. The role of ion transporters in the pathophysiology of infectious diarrhea[J]. Cell Mol Gastroenterol Hepatol, 2018, 6(1):33-45. |
[47] | WERNICK N L B, CHINNAPEN D J F, CHO J A, et al. Cholera toxin:an intracellular journey into the cytosol by way of the endoplasmic reticulum[J]. Toxins (Basel), 2010, 2(3):310-325. |
[48] | SINGH V, YANG J B, YIN J Y, et al. Cholera toxin inhibits SNX27-retromer-mediated delivery of cargo proteins to the plasma membrane[J]. J Cell Sci, 2018, 131(16):jcs218610. |
[49] | HECHT G, HODGES K, GILL R K, et al. Differential regulation of Na+/H+ exchange isoform activities by enteropathogenic E. coli in human intestinal epithelial cells[J]. Am J Physiol-Gastrointest Liver Physiol, 2004, 287(2):G370-G378. |
[50] | HODGES K, ALTO N M, RAMASWAMY K, et al. The enteropathogenic Escherichia coli effector protein EspF decreases sodium hydrogen exchanger 3 activity[J]. Cell Microbiol, 2008, 10(8):1735-1745. |
[51] | JENKIN K A, HAN Y R, LIN S B, et al. Nedd4-2-dependent ubiquitination potentiates the inhibition of human NHE3 by Cholera toxin and enteropathogenic Escherichia coli[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(3):695-716. |
[52] | HAYASHI H, SZASZI K, COADY-OSBERG N, et al. Inhibition and redistribution of NHE3, the apical Na+/H+ exchanger, by Clostridium difficile toxin B[J]. J Gen Physiol, 2004, 123(5):491-504. |
[53] | LEE J S, LEE Y M, KIM J Y, et al. βPix Up-regulates Na+/H+ exchanger 3 through a shank2-mediated protein-protein interaction[J]. J Biol Chem, 2010, 285(11):8104-8113. |
[54] | 杨 洋. 基于SGLT1介导的p-38MAPK/AKt2信号通路探讨TGEV感染对NHE3易位的影响与机制[D]. 重庆:西南大学, 2019.YANG Y. The mechanism of SGLT1 regulating p-38MAPKAKt2 signal pathway on NHE3 translocation in TGEV infection[D]. Chongqing:Southwest University, 2019. (in Chinese) |
[55] | ENNS C B, HARDING J C S, LOEWEN M E. Decreased electrogenic anionic secretory response in the porcine colon following in vivo challenge with Brachyspira spp. supports an altered mucin environment[J]. Am J Physiol-Gastrointest Liver Physiol, 2019, 316(4):G495-G508. |
[56] | ENNS C B, KEITH B A, CHALLA N, et al. Impairment of electroneutral Na+ transport and associated downregulation of NHE3 contributes to the development of diarrhea following in vivo challenge with Brachyspira spp[J]. Am J Physiol-Gastrointest Liver Physiol, 2020, 318(2):G288-G297. |
[57] | WELLE T, HOEKSTRA A T, DAEMEN I A J J M, et al. Metabolic response of porcine colon explants to in vitro infection by Brachyspira hyodysenteriae:a leap into disease pathophysiology[J]. Metabolomics, 2017, 13(7):83. |
[58] | CHEN X S, ZHAO X X, ZHAO C X, et al. Cryptosporidium infection induced the dropping of SCFAS and dysbiosis in intestinal microbiome of Tibetan pigs[J]. Microb Pathog, 2023, 174:105922. |
[59] | KUMAR A, JAYAWARDENA D, ANBAZHAGAN A N, et al. Decreased SLC26A3 expression and function in intestinal epithelial cells in response to Cryptosporidium parvum infection[J]. Am J Physiol Cell Physiol, 2019, 317(6):C1205-C1212. |
[60] | YU Q. Slc26a3 (DRA) in the gut:expression, function, regulation, role in infectious diarrhea and inflammatory bowel disease[J]. Inflamm Bowel Dis, 2021, 27(4):575-584. |
[61] | ALEXANDER R T, FURUYA W, SZÁSZI K, et al. Rho GTPases dictate the mobility of the Na/H exchanger NHE3 in epithelia:role in apical retention and targeting[J]. Proc Natl Acad Sci U S A, 2005, 102(34):12253-12258. |
[62] | GIRARDI A C C, DI SOLE F. Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction[J]. Am J Physiol Cell Physiol, 2012, 302(11):C1569-C1587. |
[63] | KIELA P R, KUSCUOGLU N, MIDURA A J, et al. Molecular mechanism of rat NHE3 gene promoter regulation by sodium butyrate[J]. Am J Physiol Cell Physiol, 2007, 293(1):C64-C74. |
[64] | MUSCH M W, BOOKSTEIN C, XIE Y, et al. SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells[J]. Am J Physiol Gastrointest Liver Physiol, 2001, 280(4):G687-G693. |
[65] | AMIN R, DUDEJA P K, RAMASWAMY K, et al. Involvement of Sp1 and Sp3 in differential regulation of human NHE3 promoter activity by sodium butyrate and IFN-γ/TNF-α[J]. Am J Physiol-Gastrointest Liver Physiol, 2007, 293(1):G374-G382. |
[66] | MUTHUSAMY S, JEONG J J, CHENG M, et al. Hepatocyte nuclear factor 4α regulates the expression of intestinal epithelial Na+/H+ exchanger isoform 3[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 314(1):G14-G21. |
[67] | BOBULESCU I A, DWARAKANATH V, ZOU L X, et al. Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis[J]. Am J Physiol-Renal Physiol, 2005, 289(4):F685-F691. |
[68] | HE P J, LEE S J, LIN S B, et al. Serum-and glucocorticoid-induced kinase 3 in recycling endosomes mediates acute activation of Na+/H+ exchanger NHE3 by glucocorticoids[J]. Mol Biol Cell, 2011, 22(20):3812-3825. |
[69] | WANG D S, ZHANG H C, LANG F, et al. Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires a functional glucocorticoid receptor[J]. Am J Physiol-Cell Physiol, 2007, 292(1):C396-C404. |
[70] | GRAHAMMER F, HENKE G, SANDU C, et al. Intestinal function of gene-targeted mice lacking serum-and glucocorticoid-inducible kinase 1[J]. Am J Physiol-Gastrointest Liver Physiol, 2006, 290(6):G1114-G1123. |
[71] | ANBAZHAGAN A N, PRIYAMVADA S, KUMAR A, et al. Downregulation of NHE-3 (SLC9A3) expression by MicroRNAs in intestinal epithelial cells[J]. Am J Physiol Cell Physiol, 2022, 323(6):C1720-C1727. |
[72] | HU M C, DI SOLE F, ZHANG J N, et al. Chronic regulation of the renal Na+/H+ exchanger NHE3 by dopamine:translational and posttranslational mechanisms[J]. Am J Physiol-Renal Physiol, 2013, 304(9):F1169-F1180. |
[73] | BOBULESCU I A, QUIÑONES H, GISLER S M, et al. Acute regulation of renal Na+/H+ exchanger NHE3 by dopamine:role of protein phosphatase 2A[J]. Am J Physiol-Renal Physiol, 2010, 298(5):F1205-F1213. |
[74] | ALEXANDER R T, MALEVANETS A, DURKAN A M, et al. Membrane curvature alters the activation kinetics of the epithelial Na+/H+ exchanger, NHE3[J]. J Biol Chem, 2007, 282(10):7376-7384. |
[75] | LI X H, ZHANG H P, CHEONG A, et al. Carbachol regulation of rabbit ileal brush border Na+-H+ exchanger 3 (NHE3) occurs through changes in NHE3 trafficking and complex formation and is Src dependent[J]. J Physiol, 2004, 556(3):791-804. |
[76] | HU M C, FAN L, CROWDER L A, et al. Dopamine acutely stimulates Na+/H+ exchanger (NHE3) endocytosis via clathrin-coated vesicles:dependence on protein kinase A-mediated NHE3 phosphorylation[J]. J Biol Chem, 2001, 276(29):26906-26915. |
[77] | MUSCH M W, ARVANS D L, WALSH-REITZ M M, et al. Synaptotagmin I binds intestinal epithelial NHE3 and mediates cAMP-and Ca2+-induced endocytosis by recruitment of AP2 and clathrin[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292(6):G1549-G1558. |
[78] | AVULA L R, CHEN T E, KOVBASNJUK O, et al. Both NHERF3 and NHERF2 are necessary for multiple aspects of acute regulation of NHE3 by elevated Ca2+, cGMP, and lysophosphatidic acid[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 314(1):G81-G90. |
[79] | DONOWITZ M, LI X H. Regulatory binding partners and complexes of NHE3[J]. Physiol Rev, 2007, 87(3):825-872. |
[80] | HAN Y R, YUN C C. Metformin inhibits Na+/H+ exchanger NHE3 resulting in intestinal water loss[J]. Front Physiol, 2022, 13:867244. |
[81] | STEPHENS C E, WHITTAMORE J M, HATCH M. The role of NHE3 (Slc9a3) in oxalate and sodium transport by mouse intestine and regulation by cAMP[J]. Physiol Rep, 2021, 9(7):e14828. |
[82] | RAN L, YAN T, ZHANG Y L, et al. The recycling regulation of sodium-hydrogen exchanger isoform 3(NHE3) in epithelial cells[J]. Cell Cycle, 2021, 20(24):2565-2582. |
[83] | ALEXANDER R T, MALEVANETS A, DURKAN A M, et al. Membrane curvature alters the activation kinetics of the epithelial Na+/H+ exchanger, NHE3[J]. J Biol Chem, 2007, 282(10):7376-7384. |
[84] | ZACHOS N C, ALAMELUMANGPURAM B, LEE L J, et al. Carbachol-mediated endocytosis of NHE3 involves a clathrin-independent mechanism requiring lipid rafts and Cdc42[J]. Cell Physiol Biochem, 2014, 33(3):869-881. |
[85] | FIELD M. Intestinal ion transport and the pathophysiology of diarrhea[J]. J Clin Invest, 2003, 111(7):931-943. |
[1] | 白瑜, 王武, 王碧, 李颖, 冯自立. 蛋清溶菌酶淀粉样纤维对人神经母细胞瘤细胞的毒性[J]. 畜牧兽医学报, 2022, 53(8): 2721-2728. |
[2] | 贾发杰, 牛胜, 张宁, 李欣, 宁官保, 张鼎, 李宏全, 马海利, 郝卫芳, 高文伟, 赵宇军, 高诗敏, 李桂兰, 李建慧, 闫芳, 高荣琨, 田文霞. 重组鸡GSTA3蛋白对福美双诱导胫骨软骨发育不良肉鸡红细胞免疫相关基因转录的影响[J]. 畜牧兽医学报, 2018, 49(4): 811-817. |
[3] | 张宁, 李欣, 宁官保, 张鼎, Ali Raza Jahejo, 李宏全, 马海利, 郝卫芳, 高文伟, 赵宇军, 高诗敏, 李桂兰, 李建慧, 闫芳, 高荣琨, 田文霞. 福美双诱导的肉鸡胫骨软骨发育不良软骨细胞凋亡[J]. 畜牧兽医学报, 2017, 48(12): 2421-2428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||