畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (2): 443-450.doi: 10.11843/j.issn.0366-6964.2023.02.003
杨小耿1,3, 张慧珠3, 李键1,2,3, 向华3, 何翃闳1,2,3*
收稿日期:
2022-09-05
出版日期:
2023-02-23
发布日期:
2023-02-21
通讯作者:
何翃闳,主要从事动物生殖生理及胚胎工程研究,E-mail:honghong3h@126.com
作者简介:
杨小耿(1996-),女,云南富源人,硕士生,主要从事动物胚胎工程研究,E-mail:xgengy@126.com
基金资助:
YANG Xiaogeng1,3, ZHANG Huizhu3, LI Jian1,2,3, XIANG Hua3, HE Honghong1,2,3*
Received:
2022-09-05
Online:
2023-02-23
Published:
2023-02-21
摘要: DNA甲基化(DNA methylation)是一种动态、可逆并可以遗传的表观遗传修饰模式,主要发生在哺乳动物原始生殖细胞和早期胚胎发育过程中,能够通过高动态和协同的核酶网络附着在DNA的CpG区域,同时还通过改变调控区域的功能状态进而调控基因表达且不影响DNA序列所携带的遗传信息。DNA甲基化主要涉及基因组印迹、转座元件沉默、X染色体失活和衰老等多种关键生理过程,在哺乳动物卵母细胞和胚胎发育中发挥着重要作用。本文介绍了DNA甲基化的建立与去除机制及其生物学功能,重点阐述了DNA甲基化在哺乳动物卵母细胞和胚胎发育过程中精准生成、维持、读取和删除等动态变化过程,为进一步研究哺乳动物表观遗传调控提供参考依据。
中图分类号:
杨小耿, 张慧珠, 李键, 向华, 何翃闳. DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 443-450.
YANG Xiaogeng, ZHANG Huizhu, LI Jian, XIANG Hua, HE Honghong. Research Progress of the DNA Methylation in Mammalian Oocyte and Early Embryo Development[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 443-450.
[1] | BERNSTEIN B E, MEISSNER A, LANDER E S.The mammalian epigenome[J].Cell, 2007, 128(4):669-681. |
[2] | DELCUVE G P, RASTEGAR M, DAVIE J R.Epigenetic control[J].J Cell Physiol, 2009, 219(2):243-250. |
[3] | 甘麦邻, 杨大洪, 谭 娅, 等.环境因素引起的哺乳动物跨代DNA甲基化修饰现象[J].畜牧兽医学报, 2017, 48(12):2225-2231.GAN M L, YANG D H, TAN Y, et al.The study of influence of environment on transgenerational inheritance of DNA methylation in mammals[J].Acta Veterinaria et Zootechnica Sinica, 2017, 48(12):2225-2231.(in Chinese) |
[4] | NISHIYAMA A, NAKANISHI M.Navigating the DNA methylation landscape of cancer[J].Trends Genet, 2021, 37(11):1012-1027. |
[5] | HALUŠKOVA J, HOLEČKOVÁ B, STANIČOVÁ J.DNA methylation studies in cattle[J].J Appl Genet, 2021, 62(1):121-136. |
[6] | XIE S, QIAN C M.The growing complexity of UHRF1-Mediated maintenance DNA methylation[J].Genes (Basel), 2018, 9(12):600. |
[7] | SCHVBELER D.Function and information content of DNA methylation[J].Nature, 2015, 517(7534):321-326. |
[8] | REN H L, TAYLOR R B, DOWNING T L, et al.Locally correlated kinetics of post-replication DNA methylation reveals processivity and region specificity in DNA methylation maintenance[J].J Roy Soc Interface, 2022, 19(195):20220415. |
[9] | MING X, ZHANG Z Q, ZOU Z N, et al.Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration[J].Cell Res, 2020, 30(11):980-996. |
[10] | GUO H S, ZHU P, YAN L Y, et al.The DNA methylation landscape of human early embryos[J].Nature, 2014, 511(7511):606-610. |
[11] | SMITH Z D, CHAN M M, MIKKELSEN T S, et al.A unique regulatory phase of DNA methylation in the early mammalian embryo[J].Nature, 2012, 484(7394):339-344. |
[12] | UYAL F, CINAR O, CAN A.Knockdown of Dnmt1 and Dnmt3a gene expression disrupts preimplantation embryo development through global DNA methylation[J].J Assist Reprod Genet, 2021, 38(12):3135-3144. |
[13] | ZHOU X F, HE Y T, LI N, et al.DNA methylation mediated RSPO2 to promote follicular development in mammals[J].Cell Death Dis, 2021, 12(7):653. |
[14] | MAUNAKEA A K, NAGARAJAN R P, BILENKY M, et al.Conserved role of intragenic DNA methylation in regulating alternative promoters[J].Nature, 2010, 466(7303):253-257. |
[15] | SENDŽIKAIT[AKE·] G, KELSEY G.The role and mechanisms of DNA methylation in the oocyte[J].Essays Biochem, 2019, 63(6):691-705. |
[16] | ZHANG J, HAO L L, WEI Q, et al.TET3 overexpression facilitates DNA reprogramming and early development of bovine SCNT embryos[J].Reproduction, 2020:160(3) 379-391. |
[17] | NISHIYAMA A, MULHOLLAND C B, BULTMANN S, et al.Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation[J].Nat Commun, 2020, 11(1):1222. |
[18] | PETRYK N, BULTMANN S, BARTKE T, et al.Staying true to yourself:mechanisms of DNA methylation maintenance in mammals[J].Nucl Acids Res, 2021, 49(6):3020-3032. |
[19] | MAENOHARA S, UNOKI M, TOH H, et al.Role of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos[J].PLoS Genet, 2017, 13(10):e1007042. |
[20] | 李 秦.抗坏血酸在牦牛卵母细胞和体外受精胚胎DNA甲基化调控中的应用[D].兰州:甘肃农业大学, 2020.LI Q.Application of ascorbic acid in the regulation of DNA methylation in yak oocytes and IVF embryos[D].Lanzhou:Gansu Agricultural University, 2020.(in Chinese) |
[21] | LYKO F.The DNA methyltransferase family:a versatile toolkit for epigenetic regulation[J].Nat Rev Genet, 2018, 19(2):81-92. |
[22] | GOLL M G, KIRPEKAR F, MAGGERT K A, et al.Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2[J].Science, 2006, 311(5759):395-398. |
[23] | 王倩倩.双加氧酶Tet对DNA甲基化修饰的影响及相关调控机制研究[D].北京:中国农业大学, 2018.WANG Q Q.Effects of Tet dioxygenases on DNA methylation and related regulatory mechanisms[D].Beijing:China Agricultural University, 2018.(in Chinese) |
[24] | ITO T, KUBIURA-ICHIMARU M, MURAKAMI Y, et al.DNMT1 regulates the timing of DNA methylation by DNMT3 in an enzymatic activity-dependent manner in mouse embryonic stem cells[J].PLoS One, 2022, 17(1):e0262277. |
[25] | CHEN Z Y, ZHANG Y.Role of mammalian DNA methyltransferases in development[J].Annu Rev Biochem, 2020, 89:135-158. |
[26] | YAGI M, KABATA M, TANAKA A, et al.Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development[J].Nat Commun, 2020, 11(1):3199. |
[27] | LI Y L, CHEN X, LU C.The interplay between DNA and histone methylation:molecular mechanisms and disease implications[J].EMBO Rep, 2021, 22(5):e51803. |
[28] | BARAU J, TEISSANDIER A, ZAMUDIO N, et al.The DNA methyltransferase DNMT3C protects male germ cells from transposon activity[J].Science, 2016, 354(6314):909-912. |
[29] | UYSAL F, AKKOYUNLU G, OZTURK S.Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos[J].Biochimie, 2015, 116:103-113. |
[30] | ZHAO X B, CHEN Y P, TAN M, et al.Extracellular matrix stiffness regulates DNA methylation by PKCα-dependent nuclear transport of DNMT3L[J].Adv Healthc Mater, 2021, 10(16):2100821. |
[31] | TOMIZAWA S I, NOWACKA-WOSZUK J, KELSEY G.DNA methylation establishment during oocyte growth:mechanisms and significance[J].Int J Dev Biol, 2012, 56(10-12):867-875. |
[32] | GREENBERG M V C.Get out and stay out:new insights into DNA methylation reprogramming in mammals[J].Front Cell Dev Biol, 2021, 8:629068. |
[33] | WU X J, ZHANG Y.TET-mediated active DNA demethylation:mechanism, function and beyond[J].Nat Rev Genet, 2017, 18(9):517-534. |
[34] | FICZ G, BRANCO M R, SEISENBERGER S, et al.Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation[J].Nature, 2011, 473(7347):398-402. |
[35] | CAO J Z, LIU H, WICKREMA A, et al.HIF-1 directly induces TET3 expression to enhance 5-hmC density and induce erythroid gene expression in hypoxia[J].Blood Adv, 2020, 4(13):3053-3062. |
[36] | MATULEVICIUTE R, CUNHA P P, JOHNSON R S, et al.Oxygen regulation of TET enzymes[J].FEBS J, 2021, 288(24):7143-7161. |
[37] | GU T P, GUO F, YANG H, et al.The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes[J].Nature, 2011, 477(7366):606-610. |
[38] | CHENG H, ZHANG J, ZHANG S, et al.Tet3 is required for normal in vitro fertilization preimplantation embryos development of bovine[J].Mol Reprod Dev, 2019, 86(3):298-307. |
[39] | YAMAZAKI T, HATANO Y, TANIGUCHI R, et al.Editing DNA methylation in mammalian embryos[J].Int J Mol Sci, 2020, 21(2):637. |
[40] | SAITOU M, KAGIWADA S, KURIMOTO K.Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells[J]. Development, 2012, 139(1):15-31. |
[41] | BRANCO M R, ODA M, REIK W.Safeguarding parental identity:Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis[J].Genes Dev, 2008, 22(12):1567-1571. |
[42] | WU H, ZHANG Y.Reversing DNA methylation:mechanisms, genomics, and biological functions[J].Cell, 2014, 156(1-2):45-68. |
[43] | SEISENBERGER S, PEAT J R, REIK W.Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells[J].Curr Opin Cell Biol, 2013, 25(3):281-288. |
[44] | YAKOVLEV A F.Epigenetic effects in livestock breeding[J].Russ J Genet, 2018, 54(8):897-909. |
[45] | DE FELICI M.Nuclear reprogramming in mouse primordial germ cells:epigenetic contribution[J].Stem Cells Int, 2011, 2011:425863. |
[46] | HIURA H, OBATA Y, KOMIYAMA J, et al.Oocyte growth-dependent progression of maternal imprinting in mice[J].Genes Cells, 2006, 11(4):353-361. |
[47] | LUCIFERO D, MANN M R W, BARTOLOMEI M S, et al.Gene-specific timing and epigenetic memory in oocyte imprinting[J]. Hum Mol Genet, 2004, 13(8):839-849. |
[48] | SWALES A K E, SPEARS N.Genomic imprinting and reproduction[J].Reproduction, 2005, 130(4):389-399. |
[49] | SMALLWOOD S A, TOMIZAWA S I, KRUEGER F, et al.Dynamic CpG island methylation landscape in oocytes and preimplantation embryos[J].Nat Genet, 2011, 43(8):811-814. |
[50] | SEISENBERGER S, ANDREWS S, KRUEGER F, et al.The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells[J].Mol Cell, 2012, 48(6):849-862. |
[51] | UYSAL F, OZTURK S, AKKOYUNLU G.DNMT1, DNMT3A and DNMT3B proteins are differently expressed in mouse oocytes and early embryos[J].J Mol Histol, 2017, 48(5-6):417-426. |
[52] | KOBAYASHI H, SAKURAI T, IMAI M, et al.Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks[J].PLoS Genet, 2012, 8(1):e1002440. |
[53] | OKAE H, CHIBA H, HIURA H, et al.Genome-wide analysis of DNA methylation dynamics during early human development[J]. PLoS Genet, 2014, 10(12):e1004868. |
[54] | VESELOVSKA L, SMALLWOOD S A, SAADEH H, et al.Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape[J].Genome Biol, 2015, 16:209. |
[55] | SINGH V B, SRIBENJA S, WILSON K E, et al.Blocked transcription through KvDMR1 results in absence of methylation and gene silencing resembling Beckwith-Wiedemann syndrome[J].Development, 2017, 144(10):1820-1830. |
[56] | GREENBERG M V C, BOURC'HIS D.The diverse roles of DNA methylation in mammalian development and disease[J].Nat Rev Mol Cell Biol, 2019, 20(10):590-607. |
[57] | RACEDO S E, WRENZYCKI C, LEPIKHOV K, et al.Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation[J].Reprod Fertil Dev, 2009, 21(6):738-748. |
[58] | LIANG Y, FU X W, LI J J, et al.DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos:effect of oocyte vitrification[J].Zygote, 2014, 22(2):138-145. |
[59] | CANOVAS S, IVANOVA E, HAMDI M, et al.Culture medium and sex drive epigenetic reprogramming in preimplantation bovine embryos[J].Int J Mol Sci, 2021, 22(12):6426. |
[60] | XU Q H, XIE W.Epigenome in early mammalian development:inheritance, reprogramming and establishment[J].Trends Cell Biol, 2018, 28(3):237-253. |
[61] | WANG X G, BHANDARI R K.DNA methylation dynamics during epigenetic reprogramming of medaka embryo[J]. Epigenetics, 2019, 14(6):611-622. |
[62] | SHEN L, INOUE A, HE J, et al.Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes[J].Cell Stem Cell, 2014, 15(4):459-471. |
[63] | 刘青青, 郑丽明, 刘红亮, 等.小鼠早期胚胎发育过程中的DNA去甲基化[J].畜牧兽医学报, 2013, 44(4):501-507.LIU Q Q, ZHENG L M, LIU H L, et al.DNA demethylation in mouse pre-implantation embryos[J].Acta Veterinaria et Zootechnica Sinica, 2013, 44(4):501-507.(in Chinese) |
[64] | ZHU P, GUO H S, REN Y X, et al.Single-cell DNA methylome sequencing of human preimplantation embryos[J].Nat Genet, 2018, 50(1):12-19. |
[65] | GUO F, LI X L, LIANG D, et al.Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote[J].Cell Stem Cell, 2014, 15(4):447-459. |
[66] | ARAND J, REIJO PERA R A, WOSSIDLO M.Reprogramming of DNA methylation is linked to successful human preimplantation development[J].Histochem Cell Biol, 2021, 156(3):197-207. |
[67] | IVANOVA E, CANOVAS S, GARCIA-MARTÍNEZ S, et al.DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes[J].Clin Epigenet, 2020, 12(1):64. |
[68] | 甘建宇, 张 芯, 蔡更元, 等.DNA甲基化在猪胚胎发育过程中的研究进展[J].畜牧兽医学报, 2022, 53(10):3287-3295.GAN J Y, ZHANG X, CAI G Y, et al.Research progress of DNA methylation during porcine embryonic development[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(10):3287-3295.(in Chinese) |
[69] | XIONG X R, FU M, LAN D L, et al.Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors[J].Anim Biotechnol, 2015, 26(3):222-229. |
[70] | KAPITSINOU P P, LIU Q D, UNGER T L, et al.Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia[J]. Blood, 2010, 116(16):3039-3048. |
[71] | BENNEMANN J, GROTHMANN H, WRENZYCKI C.Reduced oxygen concentration during in vitro oocyte maturation alters global DNA methylation in the maternal pronucleus of subsequent zygotes in cattle[J].Mol Reprod Dev, 2018, 85(11):849-857. |
[72] | CAO Y M, LI M R, LIU F, et al.Deletion of maternal UHRF1 severely reduces mouse oocyte quality and causes developmental defects in preimplantation embryos[J].FASEB J, 2019, 33(7):8294-8305. |
[73] | BAKHTARI A, ROSS P J.DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos[J].Epigenetics, 2014, 9(9):1271-1279. |
[74] | HAN L S, REN C, ZHANG J, et al.Differential roles of Stella in the modulation of DNA methylation during oocyte and zygotic development[J].Cell Discov, 2019, 5:9. |
[75] | FUNAKI S, NAKAMURA T, NAKATANI T, et al.Inhibition of maintenance DNA methylation by Stella[J].Biochem Biophys Res Commun, 2014, 453(3):455-460. |
[1] | 张为, 潘志豪, 方富贵. 表观遗传学调控雌性动物初情期启动的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1875-1882. |
[2] | 李婉君, 徐皆欢, 何孟纤, 孔钰婷, 张德福, 戴建军. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55(5): 1999-2010. |
[3] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[4] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[5] | 申琦, 王凯, 赵真坚, 陈栋, 余杨, 崔晟頔, 王俊戈, 陈子旸, 吴平先, 唐国庆. NOS2基因DNA甲基化编辑调节NO浓度影响肌肉发育通路基因的表达[J]. 畜牧兽医学报, 2024, 55(3): 984-994. |
[6] | 茹盟, 曾文惠, 彭剑玲, 曾庆节, 殷超, 崔勇, 魏庆, 梁海平, 谢贤华, 黄建珍. 蛋鸡卵泡发育及其表观遗传调控机制研究进展[J]. 畜牧兽医学报, 2023, 54(9): 3613-3622. |
[7] | 神英超, 陶力, 任宏, 王希生, 田书岳, 杜明, 芒来, 格日乐其木格. 卵母细胞成熟相关激素和生长因子受体在马扩展型和紧凑型卵丘-卵母细胞复合体表达的研究[J]. 畜牧兽医学报, 2023, 54(9): 3735-3744. |
[8] | 徐茜, 杨柏高, 张航, 冯肖艺, 郝海生, 杜卫华, 朱化彬, 张培培, 赵学明. β-烟酰胺单核苷酸对牛卵母细胞脂滴含量及冷冻效果的影响[J]. 畜牧兽医学报, 2023, 54(8): 3348-3357. |
[9] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[10] | 朱家桥, 程来洋, 曹江琴, 朱闽, 李军伟, 鞠辉明, 刘宗平. XRCC1在卵子和早期胚胎中的定位与功能的初步分析[J]. 畜牧兽医学报, 2023, 54(5): 2126-2133. |
[11] | 张培培, 郝海生, 杜卫华, 朱化彬, 李树静, 余文莉, 赵学明. OPU卵母细胞体外成熟体系的优化研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1359-1369. |
[12] | 金美林, 李桃桃, 孙东晓, 魏彩虹. 表观遗传调控在畜禽脂肪沉积机制中的研究进展[J]. 畜牧兽医学报, 2023, 54(3): 855-867. |
[13] | 肖十雨, 卢畅, 马娟, 王闯, 亓美玉, 姚玉昌. N-乙酰半胱氨酸对不同直径卵泡来源猪卵母细胞体外成熟效果的影响[J]. 畜牧兽医学报, 2023, 54(3): 1046-1057. |
[14] | 陈思颍, 孙雅雯, 李伉, 刘硕, 郝海生, 杜卫华, 邹惠影, 朱化彬, 庞云渭. 微流体技术在家畜体外胚胎生产中的应用进展[J]. 畜牧兽医学报, 2023, 54(12): 4889-4897. |
[15] | 张宸艺博, 余彤, 任斌斌, 郑睿智, 朱文治, 苏建民. 动物早期胚胎发育中表观重编程的机制[J]. 畜牧兽医学报, 2023, 54(12): 4898-4909. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||