畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3666-3677.doi: 10.11843/j.issn.0366-6964.2025.08.011
温雪(), 许琬雪, 付壹彤, 杨洁, 付红玉, 樊瑞锋*(
)
收稿日期:
2024-07-26
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
樊瑞锋
E-mail:17860815321@163.com;fanruifeng@sdau.edu.cn
作者简介:
温雪(2000-),女,山东滨州人,硕士生,主要从事动物营养代谢病与中毒病研究,E-mail:17860815321@163.com
基金资助:
WEN Xue(), XU Wanxue, FU Yitong, YANG Jie, FU Hongyu, FAN Ruifeng*(
)
Received:
2024-07-26
Online:
2025-08-23
Published:
2025-08-28
Contact:
FAN Ruifeng
E-mail:17860815321@163.com;fanruifeng@sdau.edu.cn
摘要:
铁死亡是一种由铁超载、脂质过氧化和质膜损伤所触发的程序性细胞死亡方式,与机体内铁稳态、氧化还原系统等生理过程密切相关。炎症是机体重要的生理过程,对各种损伤刺激引发的防御性反应至关重要。最新研究表明,铁死亡与炎症反应过程密切相关,二者并不是简单的单向关系。铁死亡可以通过释放损伤相关分子模式(damage-associated molecular patterns,DAMPs)、脂质氧化产物和趋化因子等分子促进炎症反应,而炎症反应过程中激活的炎症通路(如JAK/STAT、NF-κB、炎症小体、cGAS-STING和MAPK)和分泌的细胞因子(如TNF-α、IL-1β和IL-10等)可以触发细胞铁死亡。本文重点介绍了铁死亡的分子机制及炎症反应过程中激活的常见炎症通路和分泌的细胞因子,并详细分析了铁死亡与炎症反应的相互作用及调控机制,为炎症性疾病提供新的治疗策略。
中图分类号:
温雪, 许琬雪, 付壹彤, 杨洁, 付红玉, 樊瑞锋. 铁死亡与炎症相关性研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3666-3677.
WEN Xue, XU Wanxue, FU Yitong, YANG Jie, FU Hongyu, FAN Ruifeng. Research Progress on the Relationship between Ferroptosis and Inflammation[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3666-3677.
1 |
YU H , GUO P , XIE X , et al. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases[J]. J Cell Mol Med, 2017, 21 (4): 648- 657.
doi: 10.1111/jcmm.13008 |
2 |
BOLÍVAR B E , VOGEL T P , BOUCHIER-HAYES L . Inflammatory caspase regulation: maintaining balance between inflammation and cell death in health and disease[J]. FEBS J, 2019, 286 (14): 2628- 2644.
doi: 10.1111/febs.14926 |
3 |
TSURUSAKI S , TSUCHIYA Y , KOUMURA T , et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10 (6): 449.
doi: 10.1038/s41419-019-1678-y |
4 |
陈敬宜, 于淼, 张金洋, 等. 铁死亡参与镉暴露鸡肝损伤的研究[J]. 畜牧兽医学报, 2023, 54 (2): 787- 802.
doi: 10.11843/j.issn.0366-6964.2023.02.035 |
CHEN J Y , YU M , ZHANG J Y , et al. Study on the involvement of ferroptosis in liver injury of cadmium-exposed chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 787- 802.
doi: 10.11843/j.issn.0366-6964.2023.02.035 |
|
5 |
DIXON S J , LEMBERG K M , LAMPRECHT M R , et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149 (5): 1060- 1072.
doi: 10.1016/j.cell.2012.03.042 |
6 |
LIANG D , MINIKES A M , JIANG X . Ferroptosis at the intersection of lipid metabolism and cellular signaling[J]. Mol Cell, 2022, 82 (12): 2215- 2227.
doi: 10.1016/j.molcel.2022.03.022 |
7 |
TANG D , CHEN X , KANG R , et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31 (2): 107- 125.
doi: 10.1038/s41422-020-00441-1 |
8 |
ROCHETTE L , DOGON G , RIGAL E , et al. Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis[J]. Int J Mol Sci, 2022, 24 (1): 449.
doi: 10.3390/ijms24010449 |
9 |
BOGDAN A R , MIYAZAWA M , HASHIMOTO K , et al. Regulators of iron homeostasis: New players in metabolism, cell death, and disease[J]. Trends Biochem Sci, 2016, 41 (3): 274- 286.
doi: 10.1016/j.tibs.2015.11.012 |
10 |
LI D , LI Y . The interaction between ferroptosis and lipid metabolism in cancer[J]. Signal Transduct Target Ther, 2020, 5 (1): 108.
doi: 10.1038/s41392-020-00216-5 |
11 |
JIANG L , WANG J , WANG K , et al. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation[J]. Blood, 2021, 138 (8): 689- 705.
doi: 10.1182/blood.2020008986 |
12 |
CHEN B Y , PATHAK J L , LIN H Y , et al. Inflammation triggers chondrocyte ferroptosis in TMJOA via HIF-1α/TFRC[J]. J Dent Res, 2024, 103 (7): 712- 722.
doi: 10.1177/00220345241242389 |
13 |
ROEMHILD K , VON MALTZAHN F , WEISKIRCHEN R , et al. Iron metabolism: pathophysiology and pharmacology[J]. Trends Pharmacol Sci, 2021, 42 (8): 640- 656.
doi: 10.1016/j.tips.2021.05.001 |
14 |
TANG M , CHEN Z , WU D , et al. Ferritinophagy/ferroptosis: Iron-related newcomers in human diseases[J]. J Cell Physiol, 2018, 233 (12): 9179- 9190.
doi: 10.1002/jcp.26954 |
15 |
GAO M , MONIAN P , PAN Q , et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26 (9): 1021- 1032.
doi: 10.1038/cr.2016.95 |
16 |
CHEN X , YU C , KANG R , et al. Iron metabolism in ferroptosis[J]. Front Cell Dev Biol, 2020, 8, 590226.
doi: 10.3389/fcell.2020.590226 |
17 |
WANG K , CHEN X Z , WANG Y H , et al. Emerging roles of ferroptosis in cardiovascular diseases[J]. Cell Death Discov, 2022, 8 (1): 394.
doi: 10.1038/s41420-022-01183-2 |
18 |
CHEN X , LI J , KANG R , et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17 (9): 2054- 2081.
doi: 10.1080/15548627.2020.1810918 |
19 |
INGOLD I , BERNDT C , SCHMITT S , et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172 (3): 409- 422. e21.
doi: 10.1016/j.cell.2017.11.048 |
20 |
YANG Y , CHEN Y , FENG D , et al. Ficus hirta Vahl. ameliorates liver fibrosis by triggering hepatic stellate cell ferroptosis through GSH/GPX4 pathway[J]. Ethnopharmacol, 2024, 334, 118557.
doi: 10.1016/j.jep.2024.118557 |
21 |
LIU D S , DUONG C P , HAUPT S , et al. Inhibiting the system xC-/glutathione axis selectively targets cancers with mutant-p53 accumulation[J]. Nat Commun, 2017, 8, 14844.
doi: 10.1038/ncomms14844 |
22 |
JI X , QIAN J , RAHMAN S M J , et al. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression[J]. Oncogene, 2018, 37 (36): 5007- 5019.
doi: 10.1038/s41388-018-0307-z |
23 |
SUN Y , CHEN P , ZHAI B , et al. The emerging role of ferroptosis in inflammation[J]. Biomed Pharmacother, 2020, 127, 110108.
doi: 10.1016/j.biopha.2020.110108 |
24 |
DIXON S J , PATEL D N , WELSCH M , et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J]. Elife, 2014, 3, e02523.
doi: 10.7554/eLife.02523 |
25 |
LONG Z , LUO Y , YU M , et al. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases[J]. Front Immunol, 2024, 15, 1435139.
doi: 10.3389/fimmu.2024.1435139 |
26 |
STOCKWELL B R , FRIEDMANN ANGELI J P , BAYIR H , et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171 (2): 273- 285.
doi: 10.1016/j.cell.2017.09.021 |
27 |
YAN B , AI Y , SUN Q , et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Mol Cell, 2021, 81 (2): 355- 369. e10.
doi: 10.1016/j.molcel.2020.11.024 |
28 |
DOLL S , FREITAS F P , SHAH R , et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575 (7784): 693- 698.
doi: 10.1038/s41586-019-1707-0 |
29 |
KRAFT V A N , BEZJIAN C T , PFEIFFER S , et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6 (1): 41- 53.
doi: 10.1021/acscentsci.9b01063 |
30 | YANG W S , KIM K J , GASCHLER M M , et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016, 113 (34): E4966- 75. |
31 |
HASSANNIA B , VANDENABEELE P , VANDEN BERGHE T . Targeting ferroptosis to iron out cancer[J]. Cancer Cell, 2019, 35 (6): 830- 849.
doi: 10.1016/j.ccell.2019.04.002 |
32 |
KAGAN V E , MAO G , QU F , et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13 (1): 81- 90.
doi: 10.1038/nchembio.2238 |
33 |
LI N , WANG Y , WANG X , et al. Pathway network of pyroptosis and its potential inhibitors in acute kidney injury[J]. Pharmacol Res, 2022, 175, 106033.
doi: 10.1016/j.phrs.2021.106033 |
34 |
ZHAO Y , DING W , CAI Y , et al. The m6 A eraser FTO suppresses ferroptosis via mediating ACSL4 in LPS-induced macrophage inflammation[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870 (7): 167354.
doi: 10.1016/j.bbadis.2024.167354 |
35 |
BAI Y , MENG L , HAN L , et al. Lipid storage and lipophagy regulates ferroptosis[J]. Biochem Biophys Res Commun, 2019, 508 (4): 997- 1003.
doi: 10.1016/j.bbrc.2018.12.039 |
36 |
ZOU Y , LI H , GRAHAM E T , et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis[J]. Nat Chem Biol, 2020, 16 (3): 302- 309.
doi: 10.1038/s41589-020-0472-6 |
37 |
POPE L E , DIXON S J . Regulation of ferroptosis by lipid metabolism[J]. Trends Cell Biol, 2023, 33 (12): 1077- 1087.
doi: 10.1016/j.tcb.2023.05.003 |
38 |
EVANS D R , GUY H I . Mammalian pyrimidine biosynthesis: Fresh insights into an ancient pathway[J]. J Biol Chem, 2004, 279 (32): 33035- 33038.
doi: 10.1074/jbc.R400007200 |
39 |
HANSEN M , LE NOURS J , JOHANSSON E , et al. Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane-associated N-terminal domain[J]. Protein Sci, 2004, 13 (4): 1031- 1042.
doi: 10.1110/ps.03533004 |
40 |
DENG L , HE S , GUO N , et al. Molecular mechanisms of ferroptosis and relevance to inflammation[J]. Inflamm Res, 2023, 72 (2): 281- 299.
doi: 10.1007/s00011-022-01672-1 |
41 |
COOKE J P . Inflammation and its role in regeneration and repair[J]. Circ Res, 2019, 124 (8): 1166- 1168.
doi: 10.1161/CIRCRESAHA.118.314669 |
42 |
CHEN X , KANG R , KROEMER G , et al. Ferroptosis in infection, inflammation, and immunity[J]. J Exp Med, 2021, 218 (6): e20210518.
doi: 10.1084/jem.20210518 |
43 |
CHEN Y , FANG Z M , YI X , et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023, 14 (3): 205.
doi: 10.1038/s41419-023-05716-0 |
44 |
HU X , LI J , FU M , et al. The JAK/STAT signaling pathway: from bench to clinic[J]. Signal Transduct Target Ther, 2021, 6 (1): 402.
doi: 10.1038/s41392-021-00791-1 |
45 |
AWASTHI N , LIONGUE C , WARD A C . STAT proteins: A kaleidoscope of canonical and non-canonical functions in immunity and cancer[J]. J Hematol Oncol, 2021, 14 (1): 198.
doi: 10.1186/s13045-021-01214-y |
46 |
GUO W , ZHANG J , ZHANG X , et al. Environmental cadmium exposure perturbs systemic iron homeostasis via hemolysis and inflammation, leading to hepatic ferroptosis in common carp (Cyprinus carpio L.)[J]. Ecotoxicol Environ Saf, 2024, 275, 116246.
doi: 10.1016/j.ecoenv.2024.116246 |
47 |
DONG X Q , CHU L K , CAO X , et al. Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis[J]. Redox Rep, 2023, 28 (1): 2152607.
doi: 10.1080/13510002.2022.2152607 |
48 |
YU H , LIN L , ZHANG Z , et al. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study[J]. Signal Transduct Target Ther, 2020, 5 (1): 209.
doi: 10.1038/s41392-020-00312-6 |
49 |
SUN S C . The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17 (9): 545- 558.
doi: 10.1038/nri.2017.52 |
50 |
YAN N , XU Z , QU C , et al. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway[J]. Int Immunopharmacol, 2021, 98, 107844.
doi: 10.1016/j.intimp.2021.107844 |
51 |
LI X , QIAN J , XU J , et al. NRF2 inhibits RSL3 induced ferroptosis in gastric cancer through regulation of AKR1B1[J]. Exp Cell Res, 2024, 442 (1): 114210.
doi: 10.1016/j.yexcr.2024.114210 |
52 |
STOCKWELL B R . Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185 (14): 2401- 2421.
doi: 10.1016/j.cell.2022.06.003 |
53 |
SCHNAPPAUF O , CHAE J J , KASTNER D L , et al. The pyrin inflammasome in health and disease[J]. Front Immunol, 2019, 10, 1745.
doi: 10.3389/fimmu.2019.01745 |
54 |
HU Y , TANG J , XIE Y , et al. Gegen Qinlian decoction ameliorates TNBS-induced ulcerative colitis by regulating Th2/Th1 and Tregs/Th17 cells balance, inhibiting NLRP3 inflammasome activation and reshaping gut microbiota[J]. J Ethnopharmacol, 2024, 328, 117956.
doi: 10.1016/j.jep.2024.117956 |
55 |
KANG R , ZENG L , ZHU S , et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis[J]. Cell Host Microbe, 2018, 24 (1): 97- 108. e4.
doi: 10.1016/j.chom.2018.05.009 |
56 |
ZHANG D , WU C , BA D , et al. Ferroptosis contribute to neonicotinoid imidacloprid-evoked pyroptosis by activating the HMGB1-RAGE/TLR4-NF-κB signaling pathway[J]. Ecotoxicol Environ Saf, 2023, 253, 114655.
doi: 10.1016/j.ecoenv.2023.114655 |
57 |
DECOUT A , KATZ J D , VENKATRAMAN S , et al. The cGAS-STING pathway as a therapeutic target in inflammatory diseases[J]. Nat Rev Immuno, 2021, 21 (9): 548- 569.
doi: 10.1038/s41577-021-00524-z |
58 |
CHENG Z , DAI T , HE X , et al. The interactions between cGAS-STING pathway and pathogens[J]. Signal Transduct Target Ther, 2020, 5 (1): 91.
doi: 10.1038/s41392-020-0198-7 |
59 |
ARTHUR J S , LEY S C . Mitogen-activated protein kinases in innate immunity[J]. Nat Rev Immunol, 2013, 13 (9): 679- 692.
doi: 10.1038/nri3495 |
60 |
ZHOU J R , ZHANG L D , WEI H F , et al. Neuropeptide Y induces secretion of high-mobility group box 1 protein in mouse macrophage via PKC/ERK dependent pathway[J]. J Neuroimmunol, 2013, 260 (1-2): 55- 59.
doi: 10.1016/j.jneuroim.2013.04.005 |
61 |
MARTÍNEZ-LIMÓN A , JOAQUIN M , CABALLERO M , et al. The p38 Pathway: From biology to cancer therapy[J]. Int J Mol Sci, 2020, 21 (6): 1913.
doi: 10.3390/ijms21061913 |
62 |
ZHANG Y , CONG Y , DU J , et al. Lif-deficiency promote systemic iron metabolism disorders and increases the susceptibility of osteoblasts to ferroptosis[J]. Bone, 2024, 189, 117266.
doi: 10.1016/j.bone.2024.117266 |
63 |
LEE H N , NA H K , SURH Y J . Resolution of inflammation as a novel chemopreventive strategy[J]. Semin Immunopathol, 2013, 35 (2): 151- 161.
doi: 10.1007/s00281-013-0363-y |
64 |
MEDZHITOV R . Origin and physiological roles of inflammation[J]. Nature, 2008, 454 (7203): 428- 435.
doi: 10.1038/nature07201 |
65 |
DURHAM G A , WILLIAMS J J L , NASIM M T , et al. Targeting SOCS proteins to control JAK-STAT signalling in disease[J]. Trends Pharmacol Sci, 2019, 40 (5): 298- 308.
doi: 10.1016/j.tips.2019.03.001 |
66 |
WILTING J , BECKER J , BUTTLER K , et al. Lymphatics and inflammation[J]. Curr Med Chem, 2009, 16 (34): 4581- 4592.
doi: 10.2174/092986709789760751 |
67 |
KENNEDY A D , DELEO F R . Neutrophil apoptosis and the resolution of infection[J]. Immunol Res, 2009, 43 (1-3): 25- 61.
doi: 10.1007/s12026-008-8049-6 |
68 |
HUYNH M L , FADOK V A , HENSON P M . Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation[J]. J Clin Invest, 2002, 109 (1): 41- 50.
doi: 10.1172/JCI0211638 |
69 | WOJDASIEWICZ P , PONIATOWSKI Ł A , SZUKIEWICZ D . The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis[J]. Mediators Inflamm, 2014, 2014, 561459. |
70 |
KIM E H , WONG S W , MARTINEZ J . Programmed necrosis and disease: We interrupt your regular programming to bring you necroinflammation[J]. Cell Death Differ, 2019, 26 (1): 25- 40.
doi: 10.1038/s41418-018-0179-3 |
71 |
HOU H , QIN X , LI G , et al. Nrf2-mediated redox balance alleviates LPS-induced vascular endothelial cell inflammation by inhibiting endothelial cell ferroptosis[J]. Sci Rep, 2024, 14 (1): 3335.
doi: 10.1038/s41598-024-53976-3 |
72 |
JING X , CHEN Z , ZHANG M , et al. Melatonin mitigates the lipopolysaccharide-induced myocardial injury in rats by blocking the p53/xCT pathway-mediated ferroptosis[J]. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398 (2): 1653- 1663.
doi: 10.1007/s00210-024-03367-2 |
73 |
LIU L , WEN T , XIAO Y , et al. Sea buckthorn extract mitigates chronic obstructive pulmonary disease by suppression of ferroptosis via scavenging ROS and blocking p53/MAPK pathways[J]. J Ethnopharmacol, 2025, 336, 118726.
doi: 10.1016/j.jep.2024.118726 |
74 |
HUANG J , CHEN X , LV Y . HMGB1 mediated inflammation and autophagy contribute to Endometriosis[J]. Front Endocrinol (Lausanne), 2021, 12, 616696.
doi: 10.3389/fendo.2021.616696 |
75 |
XING D , XIA G , TANG X , et al. A Multifunctional nanocomposite hydrogel delivery system based on dual-loaded liposomes for scarless wound healing[J]. Adv Healthc Mater, 2024, 13 (28): e2401619.
doi: 10.1002/adhm.202401619 |
76 |
LIU P , CHEN W , KANG Y , et al. Silibinin ameliorates STING-mediated neuroinflammation via downregulation of ferroptotic damage in a sporadic Alzheimer's disease model[J]. Arch Biochem Biophys, 2023, 744, 109691.
doi: 10.1016/j.abb.2023.109691 |
77 |
SU C , LIU Z , LIU L , et al. Protective effects of nodosin against lipopolysaccharide-induced acute kidney injury through regulation of oxidative stress, inflammation, and ferroptosis in rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2024, 397 (10): 8009- 8022.
doi: 10.1007/s00210-024-03148-x |
78 |
FENG Z , MENG F Y , HUO F , et al. Inhibition of ferroptosis rescues M2 macrophages and alleviates arthritis by suppressing the HMGB1/TLR4/STATS axis in M1 macrophages[J]. Redox Biol, 2024, 75, 103255.
doi: 10.1016/j.redox.2024.103255 |
79 |
ZHANG Y , YE P , ZHU H , et al. Neutral polysaccharide from Gastrodia elata alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis-mediated neuroinflammation via the NRF2/HO-1 signaling pathway[J]. CNS Neurosci Ther, 2024, 30 (3): e14456.
doi: 10.1111/cns.14456 |
80 |
WANG F , QI Y , GAO Y , et al. Syringic acid suppresses ferroptosis of skeletal muscle cells to alleviate lower limb ischemia/reperfusion injury in mice via the HMGB1 pathway[J]. Chem Biol Drug Des, 2023, 102 (6): 1387- 1398.
doi: 10.1111/cbdd.14326 |
81 |
GUO L , ZHANG D , REN X , et al. SYVN1 attenuates ferroptosis and alleviates spinal cord ischemia-reperfusion injury in rats by regulating the HMGB1/NRF2/HO-1 axis[J]. Int Immunopharmacol, 2023, 123, 110802.
doi: 10.1016/j.intimp.2023.110802 |
82 |
UEDA N , TAKASAWA K . Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease[J]. Nutrients, 2018, 10 (9): 1173.
doi: 10.3390/nu10091173 |
83 |
CHEN Y , YI X , HUO B , et al. BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection[J]. Pharmacol Res, 2022, 177, 106122.
doi: 10.1016/j.phrs.2022.106122 |
84 |
YANG L , WANG H , YANG X , et al. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms[J]. Signal Transduct Target Ther, 2020, 5 (1): 138.
doi: 10.1038/s41392-020-00253-0 |
85 |
LIU Y P , QIU Z Z , LI X H , et al. Propofol induces ferroptosis and inhibits malignant phenotypes of gastric cancer cells by regulating miR-125b-5p/STAT3 axis[J]. World J Gastrointest Oncol, 2021, 13 (12): 2114- 2128.
doi: 10.4251/wjgo.v13.i12.2114 |
86 |
ZHAO X , CHEN F . Propofol induces the ferroptosis of colorectal cancer cells by downregulating STAT3 expression[J]. Oncol Lett, 2021, 22 (5): 767.
doi: 10.3892/ol.2021.13028 |
87 |
KONG R , WANG N , HAN W , et al. IFNγ-mediated repression of system xc- drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells[J]. J Leukoc Biol, 2021, 110 (2): 301- 314.
doi: 10.1002/JLB.3MA1220-815RRR |
88 |
YAO F , DENG Y , ZHAO Y , et al. A targetable LIFR-NF-κB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis[J]. Nat Commun, 2021, 12 (1): 7333.
doi: 10.1038/s41467-021-27452-9 |
89 |
ZHONG X , ZHANG Z , SHEN H , et al. Hepatic NF-κB-Inducing Kinase and Inhibitor of NF-κB Kinase Subunit α Promote Liver Oxidative Stress, Ferroptosis, and Liver Injury[J]. Hepatol Commun, 2021, 5 (10): 1704- 1720.
doi: 10.1002/hep4.1757 |
90 |
HU X , ZHANG H , ZHANG Q , et al. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis[J]. J Neuroinflammation, 2022, 19 (1): 242.
doi: 10.1186/s12974-022-02602-y |
91 |
LI C , LIU J , HOU W , et al. STING1 Promotes ferroptosis through MFN1/2-dependent mitochondrial fusion[J]. Front Cell Dev Biol, 2021, 9, 698679.
doi: 10.3389/fcell.2021.698679 |
92 |
SHI P , SONG C , QI H , et al. Up-regulation of IRF3 is required for docosahexaenoic acid suppressing ferroptosis of cardiac microvascular endothelial cells in cardiac hypertrophy rat[J]. J Nutr Biochem, 2022, 104, 108972.
doi: 10.1016/j.jnutbio.2022.108972 |
93 |
GUPTA U , GHOSH S , WALLACE C T , et al. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD[J]. Autophagy, 2023, 19 (1): 92- 111.
doi: 10.1080/15548627.2022.2062887 |
94 |
MEIHE L , SHAN G , MINCHAO K , et al. The ferroptosis-NLRP1 inflammasome: The vicious cycle of an adverse pregnancy[J]. Front Cell Dev Biol, 2021, 9, 707959.
doi: 10.3389/fcell.2021.707959 |
95 |
ZHENG Y , SONG J , QIAN Q , et al. Silver nanoparticles induce liver inflammation through ferroptosis in zebrafish[J]. Chemosphere, 2024, 362, 142673.
doi: 10.1016/j.chemosphere.2024.142673 |
96 |
ZHOU D , SUN L , LI J , et al. Schisandrin B inhibits inflammation and ferroptosis in S.aureus-induced mastitis through regulating SIRT1/p53/SLC7A11 signaling pathway[J]. Int Immunopharmacol, 2024, 137, 112430.
doi: 10.1016/j.intimp.2024.112430 |
97 |
ZHU K , ZHU X , SUN S , et al. Inhibition of TLR4 prevents hippocampal hypoxic-ischemic injury by regulating ferroptosis in neonatal rats[J]. Exp Neurol, 2021, 345, 113828.
doi: 10.1016/j.expneurol.2021.113828 |
[1] | 彭文文, 张美婷, 徐灏铖, 徐保阳, 张玲玲, 杨彩梅. 地衣芽孢杆菌对大肠杆菌攻毒感染肉鸡免疫、抗氧化性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(7): 3344-3356. |
[2] | 李志强, 陈雪清, 张源淑. 猪流行性腹泻病毒临床感染仔猪肠道组织中血管紧张素转化酶2的检测及其与肠道病理变化的关系分析[J]. 畜牧兽医学报, 2025, 56(7): 3463-3473. |
[3] | 陈云, 陈丽圆, 宋文静, 张新科, 徐菡, 吴嘉仪, 赵翠燕, 张守全. T-2毒素对雄性动物生殖系统毒害机制的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2038-2046. |
[4] | 罗诗师, 陈蓓蕾, 张蕾, 冯启贤, 吴瑞森, 陈佳祺, 王媛, 简子昕, 许丽惠, 陈秋勇, 马玉芳, 王全溪. 太子参多糖经Let-7d-3p下调伪狂犬病病毒感染小鼠的炎症基因转录水平[J]. 畜牧兽医学报, 2025, 56(5): 2438-2450. |
[5] | 王志浩, 郭龙, 王培莉, 李建基, 王亨. 细胞焦亡及其在角膜炎疾病中的作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1089-1099. |
[6] | 张喜闻, 尹月, 李响, 王敏, 王永芳, 靳舒宁, 冯鑫辉, 赵玉蓉. 熊果酸对肉鸡胸肌肉品质和木质化鸡胸肉的影响[J]. 畜牧兽医学报, 2025, 56(2): 711-721. |
[7] | 李璠, 孙海凤, 孙萌, 高雁怩, 孙杨杨, 张路捷, 白娟, 姜平. 猪IL-1β单克隆抗体制备及其抗炎症反应活性[J]. 畜牧兽医学报, 2025, 56(2): 890-899. |
[8] | 顾雅怡, 夏苏干, 刘鹏利, 邹辉, 顾建红, 袁燕, 刘学忠, 刘宗平, 卞建春. 聚苯乙烯纳米塑料对公鸭睾丸的损伤作用[J]. 畜牧兽医学报, 2025, 56(2): 925-933. |
[9] | 王艺, 侯露露, 方菲, 高林英, 谢淑敏, 王雨. 氟通过自噬和铁死亡途径诱发肉鸡小肠氧化损伤[J]. 畜牧兽医学报, 2025, 56(1): 442-454. |
[10] | 付红玉, 李玥, 崔晗, 李玖芝, 许琬雪, 王曦, 樊瑞锋. 长链酯酰辅酶A合成酶4介导铁死亡的发生机制[J]. 畜牧兽医学报, 2024, 55(9): 3792-3801. |
[11] | 袁紫金, 王婉昕, 邢娅, 李家惠, 薛颖, 葛晶, 赵敏孟, 刘龙, 龚道清, 耿拓宇. HDLBP通过调控氧化应激水平和炎性因子表达参与鹅肥肝的形成[J]. 畜牧兽医学报, 2024, 55(9): 3897-3913. |
[12] | 杨小峰, 秦小伟, 吕丽华. MNQ的一种衍生物对LPS体外诱导的牛卵巢卵泡颗粒细胞炎性损伤的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2032-2041. |
[13] | 刘思弟, 马贲, 郑言, 邱云桥, 姚泽龙, 曹中赞, 栾新红. 肠道菌群调控动物肠道黏膜免疫和炎症的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1423-1431. |
[14] | 李菲菲, 张晨淼, 童津津, 蒋林树. 线粒体自噬调节NLRP3炎症小体活性改善动物健康的作用机制[J]. 畜牧兽医学报, 2024, 55(4): 1446-1455. |
[15] | 戴帆, 刘占有, 张旭阳, 李武. 乌头酸脱羧酶1对BCG诱导巨噬细胞炎症反应的调控作用研究[J]. 畜牧兽医学报, 2024, 55(4): 1696-1706. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||