畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3678-3689.doi: 10.11843/j.issn.0366-6964.2025.08.012
陶丽寒1(), 林翠2, 吴诚诚2, 康昭风2, 黄建珍1,*(
)
收稿日期:
2024-09-30
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
黄建珍
E-mail:tlh15295790731@126.com;huang813813@163.com
作者简介:
陶丽寒(1990-),女,安徽望江人,博士,主要从事动物病毒致病机制研究,E-mail:tlh15295790731@126.com
基金资助:
TAO Lihan1(), LIN Cui2, WU Chengcheng2, KANG Zhaofeng2, HUANG Jianzhen1,*(
)
Received:
2024-09-30
Online:
2025-08-23
Published:
2025-08-28
Contact:
HUANG Jianzhen
E-mail:tlh15295790731@126.com;huang813813@163.com
摘要:
猪丁型冠状病毒(PDCoV)是一种新型猪肠道致病性冠状病毒,引起哺乳仔猪水样腹泻、呕吐和脱水性死亡,给养猪业造成重大经济损失。研发有效的疫苗和药物成为防控PDCoV的重要策略。PDCoV基因组编码多种类型的蛋白,它们在调控病毒复制和宿主抗病毒免疫中发挥着重要作用,研究PDCoV的编码蛋白有利于揭示病毒入侵宿主的分子机制。本文现结合国内外最新文献进展,对PDCoV编码的结构蛋白、非结构蛋白和辅助蛋白的结构特征与具体功能等进行综述,为抗冠状病毒药物和疫苗的研发提供参考。
中图分类号:
陶丽寒, 林翠, 吴诚诚, 康昭风, 黄建珍. 猪丁型冠状病毒编码蛋白结构与功能研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3678-3689.
TAO Lihan, LIN Cui, WU Chengcheng, KANG Zhaofeng, HUANG Jianzhen. Research Progress on the Structure and Function of Proteins Encoded by Porcine Deltacoronavirus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3678-3689.
1 |
YANQ,LIUX,SUNY,et al.Swine enteric coronavirus: diverse pathogen-host interactions[J].Int J Mol Sci,2022,23(7):3953.
doi: 10.3390/ijms23073953 |
2 |
LIZ,CHENY,LIL,et al.Different infectivity of swine enteric coronaviruses in cells of various species[J].Pathogens,2024,13(2):174.
doi: 10.3390/pathogens13020174 |
3 |
LIB,GAOY H,MAY,et al.Genetic and evolutionary analysis of porcine deltacoronavirus in Guangxi province, Southern China, from 2020 to 2023[J].Microorganisms,2024,12(2):416.
doi: 10.3390/microorganisms12020416 |
4 |
WOOP C,LAUS K,LAMC S,et al.Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus[J].J Virol,2012,86(7):3995-4008.
doi: 10.1128/JVI.06540-11 |
5 | WANGL,BYRUMB,ZHANGY.Detection and genetic characterization of deltacoronavirus in pigs, Ohio, USA, 2014[J].Emerg Infect Dis,2014,20(7):1227-1230. |
6 |
LEEJ H,CHUNGH C,NGUYENV G,et al.Detection and phylogenetic analysis of porcine deltacoronavirus in Korean swine farms, 2015[J].Transbound Emerg Dis,2016,63(3):248-252.
doi: 10.1111/tbed.12490 |
7 |
DUANC.An updated review of porcine deltacoronavirus in terms of prevalence, pathogenicity, pathogenesis and antiviral strategy[J].Front Vet Sci,2022,8,811187.
doi: 10.3389/fvets.2021.811187 |
8 |
JUNGK,HUH,SAIFL J.Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus[J].Arch Virol,2017,162(8):2357-2362.
doi: 10.1007/s00705-017-3351-z |
9 |
BOLEYP A,ALHAMOA,LOSSIEG,et al.Porcine deltacoronavirus infection and transmission in poultry, United States[J].Emerg Infect Dis,2020,26(2):255-265.
doi: 10.3201/eid2602.190346 |
10 |
LEDNICKYJ A,TAGLIAMONTEM S,WHITES K,et al.Independent infections of porcine deltacoronavirus among Haitian children[J].Nature,2021,600(7887):133-137.
doi: 10.1038/s41586-021-04111-z |
11 | 纪立凯,李莎莎,严亚贤.猪δ冠状病毒感染及其对宿主先天免疫功能的影响[J].微生物学报,2020,60(3):431-440. |
JIL K,LIS S,YANY X,et al.Porcine deltacoronavirus infection and its effects on host innate immunity[J].Acta Microbiologica Sinica,2020,60(3):431-440. | |
12 |
FANGP,HONGY,XIAS,et al.Porcine deltacoronavirus nsp10 antagonizes interferon-β production independently of its zinc finger domains[J].Virology,2021,559,46-56.
doi: 10.1016/j.virol.2021.03.015 |
13 | 董建国,饶丹,覃燕灵,等.猪德尔塔冠状病毒研究进展[J].广东农业科学,2019,46(3):113-118. |
DONGJ G,RAOD,QINY L,et al.Research progress on porcine deltacoronavirus[J].Guangdong Agricultural Sciences,2019,46(3):113-118. | |
14 |
HOFFMANNM,KLEINE-WEBERH,PÖHLMANNS.A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells[J].Mol Cell,2020,78(4):779-784.
doi: 10.1016/j.molcel.2020.04.022 |
15 | JACKSONC B,FARZANM,CHENB,et al.Mechanisms of SARS-CoV-2 entry into cells[J].Nat Rev Mol Cell Biol,2022,23(1):3-20. |
16 |
YENL,MAGTOTOR,MORA-DÍAZJ C,et al.The N-terminal subunit of the porcine deltacoronavirus spike recombinant protein (S1) does not serologically cross-react with other porcine coronaviruses[J].Pathogens,2022,11(8):910.
doi: 10.3390/pathogens11080910 |
17 | XIONGX,TORTORICIM A,SNIJDERJ,et al.Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections[J].J Virol,2018,92(4):e01628-17. |
18 | SHANGJ,ZHENGY,YANGY,et al.Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state[J].J Virol,2018,92(4):e01556-17. |
19 |
汤荣锋,范前进,郭龙军,等.猪丁型冠状病毒S1-CTD相互作用宿主蛋白的筛选和鉴定[J].畜牧兽医学报,2022,53(7):2260-2267.
doi: 10.11843/j.issn.0366-6964.2022.07.022 |
TANGR F,FANQ J,GUOL J,et al.Screening and identification of host proteins interacting with PDCoV S1-CTD[J].Acta Veterinaria et Zootechnica Sinica,2022,53(7):2260-2267.
doi: 10.11843/j.issn.0366-6964.2022.07.022 |
|
20 |
YUR,ZHANGL,ZHOUP,et al.Evaluation of the immunoprotective effects of porcine deltacoronavirus subunit vaccines[J].Virology,2024,590,109955.
doi: 10.1016/j.virol.2023.109955 |
21 | LIW,HULSWITR J G,KENNEYS P,et al.Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility[J].Proc Natl Acad Sci U S A,2018,115(22):E5135-E5143. |
22 |
JIW,PENGQ,FANGX,et al.Structures of a deltacoronavirus spike protein bound to porcine and human receptors[J].Nat Commun,2022,13(1):1467.
doi: 10.1038/s41467-022-29062-5 |
23 |
LIZ,HAOP,ZHAOZ,et al.The E3 ligase RNF5 restricts SARS-CoV-2 replication by targeting its envelope protein for degradation[J].Signal Transduct Target Ther,2023,8(1):85.
doi: 10.1038/s41392-023-01374-y |
24 |
WUY,SHIZ,CHENJ,et al.Porcine deltacoronavirus E protein induces interleukin-8 production via NF-κB and AP-1 activation[J].Vet Microbiol,2022,274,109553.
doi: 10.1016/j.vetmic.2022.109553 |
25 |
LIUY,SOHW T,KISHIKAWAJ I,et al.An infectivity-enhancing site on the SARS-CoV-2 spike protein targeted by antibodies[J].Cell,2021,184(13):3452-3466.
doi: 10.1016/j.cell.2021.05.032 |
26 |
ZHANGZ,NOMURAN,MURAMOTOY,et al.Structure of SARS-CoV-2 membrane protein essential for virus assembly[J].Nat Commun,2022,13(1):4399.
doi: 10.1038/s41467-022-32019-3 |
27 |
SHENL,BARDJ D,TRICHET J,et al.Emerging variants of concern in SARS-CoV-2 membrane protein: a highly conserved target with potential pathological and therapeutic implications[J].Emerg Microbes Infect,2021,10(1):885-893.
doi: 10.1080/22221751.2021.1922097 |
28 |
ARNDTA L,LARSONB J,HOGUEB G.A conserved domain in the coronavirus membrane protein tail is important for virus assembly[J].J Virol,2010,84(21):11418-28.
doi: 10.1128/JVI.01131-10 |
29 |
WUH,LIC,SUNX,et al.Identification of a monoclonal antibody against porcine deltacoronavirus membrane protein[J].Int J Mol Sci,2023,24(18):13934.
doi: 10.3390/ijms241813934 |
30 |
CASTAÑEDA-MONTESF J,CERRITEÑO-SÁNCHEZJ L,CASTAÑEDA-MONTESM A,et al.A candidate antigen of the recombinant membrane protein derived from the porcine deltacoronavirus synthetic gene to detect seropositive pigs[J].Viruses,2023,15(5):1049.
doi: 10.3390/v15051049 |
31 | 石照蓉,陈建飞,张洪玲,等.猪δ冠状病毒M蛋白参与病毒诱导IL-8产生的研究[J].中国预防兽医学报,2022,44(4):435-438. |
SHIZ R,CHENJ F,ZHANGH L,et al.PDCoV M protein is involved in virus infection-induced IL-8 production[J].Chinese Journal of Preventive Veterinary Medicine,2022,44(4):435-438. | |
32 |
WUW,CHENGY,ZHOUH,et al.The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics[J].Virol J,2023,20(1):6.
doi: 10.1186/s12985-023-01968-6 |
33 |
PENGY,DUN,LEIY,et al.Structures of the SARS-CoV-2 nucleocapsid and their perspectives for drug design[J].EMBO J,2020,39(20):e105938.
doi: 10.15252/embj.2020105938 |
34 |
CUBUKJ,ALSTONJ J,INCICCOJ J,et al.The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA[J].Nat Commun,2021,12(1):1936.
doi: 10.1038/s41467-021-21953-3 |
35 |
MCBRIDER,VAN ZYLM,FIELDINGB C.The coronavirus nucleocapsid is a multifunctional protein[J].Viruses,2014,6(8):2991-3018.
doi: 10.3390/v6082991 |
36 |
LEES,LEEC.Functional characterization and proteomic analysis of the nucleocapsid protein of porcine deltacoronavirus[J].Virus Res,2015,208,136-45.
doi: 10.1016/j.virusres.2015.06.013 |
37 |
DINGZ,LUOS,GONGW,et al.Subcellular localization of the porcine deltacoronavirus nucleocapsid protein[J].Virus Genes,2020,56(6):687-695.
doi: 10.1007/s11262-020-01790-0 |
38 |
CHENJ,FANGP,WANGM,et al.Porcine deltacoronavirus nucleocapsid protein antagonizes IFN-β production by impairing dsRNA and PACT binding to RIG-Ⅰ[J].Virus Genes,2019,55(4):520-531.
doi: 10.1007/s11262-019-01673-z |
39 |
LIKAIJ,SHASHAL,WENXIANZ,et al.Porcine deltacoronavirus nucleocapsid protein suppressed IFN-β production by interfering porcine RIG-Ⅰ dsRNA-binding and K63-linked polyubiquitination[J].Front Immunol,2019,10,1024.
doi: 10.3389/fimmu.2019.01024 |
40 |
HUY,HAOC,WANGD,et al.Porcine deltacoronavirus nucleocapsid protein antagonizes JAK-STAT signaling pathway by targeting STAT1 through KPNA2 degradation[J].J Virol,2024,98(7):e0033424.
doi: 10.1128/jvi.00334-24 |
41 |
YANGX,KONGN,QINW,et al.PGAM5 degrades PDCoV N protein and activates type Ⅰ interferon to antagonize viral replication[J].J Virol,2023,97(11):e0147023.
doi: 10.1128/jvi.01470-23 |
42 | ANGELINIM M,AKHLAGHPOURM,NEUMANB W,et al.Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles[J].mBio,2013,4(4):e00524-13. |
43 |
LIM,YEG,SIY,et al.Structure of the multiple functional domains from coronavirus nonstructural protein 3[J].Emerg Microbes Infect,2021,10(1):66-80.
doi: 10.1080/22221751.2020.1865840 |
44 |
ZHUX,FANGL,WANGD,et al.Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO[J].Virology,2017,502,33-38.
doi: 10.1016/j.virol.2016.12.005 |
45 | ZHUX,WANGD,ZHOUJ,et al.Porcine deltacoronavirus nsp5 antagonizes type Ⅰ interferon signaling by cleaving STAT2[J].J Virol,2017,91(10):e00003-17. |
46 | ZHUX,CHENJ,TIANL,et al.Porcine deltacoronavirus nsp5 cleaves DCP1A to decrease its antiviral activity[J].J Virol,2020,94(15):e02162-19. |
47 |
GAOY,YANL,HUANGY,et al.Structure of the RNA-dependent RNA polymerase from COVID-19 virus[J].Science,2020,368(6492):779-782.
doi: 10.1126/science.abb7498 |
48 |
KIRCHDOERFERR N,WARDA B.Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors[J].Nat Commun,2019,10(1):2342.
doi: 10.1038/s41467-019-10280-3 |
49 |
LIZ,DUANP,QIUR,et al.HDAC6 Degrades nsp8 of porcine deltacoronavirus through deacetylation and ubiquitination to inhibit viral replication[J].J Virol,2023,97(5):e0037523.
doi: 10.1128/jvi.00375-23 |
50 |
DE O ARAÚJOJ,PINHEIROS,ZAMORAW J,et al.Structural, energetic and lipophilic analysis of SARS-CoV-2 non-structural protein 9 (NSP9)[J].Sci Rep,2021,11(1):23003.
doi: 10.1038/s41598-021-02366-0 |
51 | ZENGZ,DENGF,SHIK,et al.Dimerization of coronavirus nsp9 with diverse modes enhances its nucleic acid binding affinity[J].J Virol,2018,92(17):e00692-18. |
52 |
ROGSTAMA,NYBLOMM,CHRISTENSENS,et al.Crystal structure of non-structural protein 10 from severe acute respiratory syndrome coronavirus-2[J].Int J Mol Sci,2020,21(19):7375.
doi: 10.3390/ijms21197375 |
53 | MINKOFFJ M,TENOEVERB.Innate immune evasion strategies of SARS-CoV-2[J].Nat Rev Microbiol,2023,21(3):178-194. |
54 |
JIAX,CHENJ,QIAOC,et al.Porcine epidemic diarrhea virus nsp13 protein downregulates neonatal Fc receptor expression by causing promoter hypermethylation through the NF-κB signaling pathway[J].J Immunol,2023,210(4):475-485.
doi: 10.4049/jimmunol.2200291 |
55 |
MEHYARN.Coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 helicase inhibitors: a systematic review of in vitro studies[J].J Virus Erad,2023,9(2):100327.
doi: 10.1016/j.jve.2023.100327 |
56 |
GrimesSL,DenisonMR.The Coronavirus helicase in replication[J].Virus Res,2024,346,199401.
doi: 10.1016/j.virusres.2024.199401 |
57 | 陶丽寒,吴诚诚,林翠,等.猪德尔塔冠状病毒NSP13蛋白原核表达与解旋活性分析[J].生物工程学报,2024,40(12):4573-4585. |
TAOL H,WUC C,LINC,et al.Prokaryotic expression and helicase activity analysis of PDCoV NSP13[J].Chinese Journal of Biotechnology,2024,40(12):4573-4585. | |
58 |
FRAZIERM N,DILLARDL B,KRAHNJ M,et al.Characterization of SARS2 Nsp15 nuclease activity reveals it's mad about U[J].Nucleic Acids Res,2021,49(17):10136-10149.
doi: 10.1093/nar/gkab719 |
59 |
ZHENGA,SHIY,SHENZ,et al.Insight into the evolution of nidovirus endoribonuclease based on the finding that nsp15 from porcine deltacoronavirus functions as a dimer[J].J Biol Chem,2018,293(31):12054-12067.
doi: 10.1074/jbc.RA118.003756 |
60 |
LIUX,FANGP,FANGL,et al.Porcine deltacoronavirus nsp15 antagonizes interferon-β production independently of its endoribonuclease activity[J].Mol Immunol,2019,114,100-107.
doi: 10.1016/j.molimm.2019.07.003 |
61 | ABDALLAAE,XIEJ,JUNAIDK,et al.Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense[J].Bosn J Basic Med Sci,2021,21(5):515-527. |
62 |
ZANDIM,SHAFAATIM,KALANTAR-NEYESTANAKID,et al.The role of SARS-CoV-2 accessory proteins in immune evasion[J].Biomed Pharmacother,2022,156,113889.
doi: 10.1016/j.biopha.2022.113889 |
63 |
WONGH H,FUNGT S,FANGS,et al.Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3[J].Virology,2018,515,165-175.
doi: 10.1016/j.virol.2017.12.028 |
64 |
LIUQ,WUJ,GAON,et al.A novel antigenic epitope identified on the accessory protein NS6 of porcine deltacoronavirus[J].Virus Res,2024,341,199329.
doi: 10.1016/j.virusres.2024.199329 |
65 |
FANGP,ZHANGH,CHENGT,et al.Porcine deltacoronavirus accessory protein NS6 harnesses VPS35-mediated retrograde trafficking to facilitate efficient viral infection[J].J Virol,2023,97(10):e0095723.
doi: 10.1128/jvi.00957-23 |
66 | FANGP,FANGL,RENJ,et al.Porcine deltacoronavirus accessory protein NS6 antagonizes interferon beta production by interfering with the binding of RIG-Ⅰ/MDA5 to double-stranded RNA[J].J Virol,2018,92(15):e00712-18. |
67 |
FANGP,FANGL,LIUX,et al.Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6[J].Virology,2016,499,170-177.
doi: 10.1016/j.virol.2016.09.015 |
68 | ZHANGM,LIW,ZHOUP,et al.Genetic manipulation of porcine deltacoronavirus reveals insights into NS6 and NS7 functions: a novel strategy for vaccine design[J].Emerg Microbes Infect,2019,9(1):20-31. |
69 |
QINP,LUOW T,SUQ,et al.The porcine deltacoronavirus accessory protein NS6 is expressed in vivo and incorporated into virions[J].Virology,2021,556,1-8.
doi: 10.1016/j.virol.2021.01.011 |
70 |
QINP,DUE Z,LUOW T,et al.Characteristics of the life cycle of porcine deltacoronavirus (PDCoV) in vitro: replication kinetics, cellular ultrastructure and virion morphology, and evidence of inducing autophagy[J].Viruses,2019,11(5):455.
doi: 10.3390/v11050455 |
71 |
CHOIS,LEEC.Functional characterization and proteomic analysis of porcine deltacoronavirus accessory protein NS7[J].J Microbiol Biotechnol,2019,29(11):1817-1829.
doi: 10.4014/jmb.1908.08013 |
72 |
FANGP,FANGL,HONGY,et al.Discovery of a novel accessory protein NS7a encoded by porcine deltacoronavirus[J].J Gen Virol,2017,98(2):173-178.
doi: 10.1099/jgv.0.000690 |
73 |
FANGP,FANGL,XIAS,et al.Porcine deltacoronavirus accessory protein NS7a antagonizes IFN-β production by competing with TRAF3 and IRF3 for binding to IKKε[J].Front Cell Infect Microbiol,2020,10,257.
doi: 10.3389/fcimb.2020.00257 |
74 |
XIAS,FANGP,PANT,et al.Porcine deltacoronavirus accessory protein NS7a possesses the functional characteristics of a viroporin[J].Vet Microbiol,2022,274,109551.
doi: 10.1016/j.vetmic.2022.109551 |
75 |
HUANGZ,CAOM,FANH,et al.Porcine delta coronavirus inhibits NHE3 activity of porcine intestinal epithelial cells through miR-361-3p/NHE3 regulatory axis[J].Vet Microbiol,2024,289,109916.
doi: 10.1016/j.vetmic.2023.109916 |
76 |
胡泽奇,李润成,谭祖明,等.PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J].畜牧兽医学报,2024,55(5):2267-2272.
doi: 10.11843/j.issn.0366-6964.2024.05.044 |
HUZ Q,LIR C,TANZ M,et al.Establishment and preliminary application of PEDV, PoRVA and PDCoV TaqMan triple RT-qPCR assay[J].Acta Veterinaria et Zootechnica Sinica,2024,55(5):2267-2272.
doi: 10.11843/j.issn.0366-6964.2024.05.044 |
|
77 | 徐宁. 基于N蛋白间接ELISA检测猪德尔塔冠状病毒抗体方法的建立[D]. 长沙: 湖南农业大学, 2022. |
XU N. Development of N protein-based indirect ELISA for diagnosis of porcine deltacoronavirus antibody[D]. Changsha: Hunan Agricultrual University, 2022. (in chinese) | |
78 | 范前进,刘秋歌,石达,等.猪德尔塔冠状病毒S蛋白单克隆抗体的制备与鉴定[J].中国动物传染病学报,2021,29(3):64-70. |
FANQ J,LIUQ G,SHID,et al.Generation of monoclonal antibodies against S protein of porcine deltacoronavirus[J].Chinese Journal of Animal Infectious Diseases,2021,29(3):64-70. | |
79 |
IFTIKHARH,ALIH N,FAROOQS,et al.Identification of potential inhibitors of three key enzymes of SARS-CoV2 using computational approach[J].Comput Biol Med,2020,122,103848.
doi: 10.1016/j.compbiomed.2020.103848 |
80 |
FREIDELM R,ARMENR S.Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening: identification of an allosteric small-molecule binding site on the Nsp13 helicase[J].PLoS One,2021,16(2):e0246181.
doi: 10.1371/journal.pone.0246181 |
81 |
PEREZ-LEMUSG R,MENÉNDEZC A,ALVARADOW,et al.Toward wide-spectrum antivirals against coronaviruses: molecular characterization of SARS-CoV-2 NSP13 helicase inhibitors[J].Sci Adv,2022,8(1):eabj4526.
doi: 10.1126/sciadv.abj4526 |
[1] | 王慧, 王悦尚, 胡希怡, 韩成全, 李富宽, 杨燕, 吕慎金. 环境富集对哺乳期母子分离子代行为异常的缓解及其分子机制研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1527-1539. |
[2] | 汪芳洲, 谭凌云, 李燕, 谷宏婧, 王慧. 亨尼帕病毒编码蛋白的特征及致病机制[J]. 畜牧兽医学报, 2024, 55(9): 3802-3811. |
[3] | 呙会会, 张浩, 杨丹, 旷燕, 李亚菲, 刘绍蒙, 刘青芸, 王湘如. 伪狂犬病病毒荧光标签毒株构建及其在抗病毒药物筛选中的初步应用[J]. 畜牧兽医学报, 2024, 55(8): 3600-3611. |
[4] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
[5] | 王潇, 张昊, 栾庆江, 李慧, 杨鼎, 王婷月, 田菁, 赵濛, 陈陆, 田如刚. 冷热应激对肉牛生理指标及基因表达影响的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 894-904. |
[6] | 王浩, 肖金龙, 沈珏, 赵金刚, 王帅, 刘根, 赵汝, 肖鹏, 高洪. 细胞死亡的新方式——铁死亡与铜死亡[J]. 畜牧兽医学报, 2024, 55(2): 461-470. |
[7] | 王姿月, 张子卉, 吴文学, 彭辰. 猴痘的诊断、预防和治疗[J]. 畜牧兽医学报, 2023, 54(8): 3195-3205. |
[8] | 冯伟民, 刘潇, 黄腾. 畜禽疱疹病毒逃避CTL识别的策略:干扰MHC-Ⅰ分子抗原递呈途径[J]. 畜牧兽医学报, 2023, 54(6): 2241-2251. |
[9] | 王子, 王年祥, 田长明, 赵福杰, 刘林涛, 马梦瑶, 贾鑫浩, 刘国星, 郑兰兰. 桥连双苯丙氨酸二肽增强灭活猪丁型冠状病毒在小鼠上的免疫效果分析[J]. 畜牧兽医学报, 2023, 54(4): 1590-1597. |
[10] | 汤荣锋, 范前进, 郭龙军, 张鑫, 石达, 时洪艳, 陈建飞, 冯力. 猪丁型冠状病毒S1-CTD相互作用宿主蛋白的筛选和鉴定[J]. 畜牧兽医学报, 2022, 53(7): 2260-2267. |
[11] | 李厚伟, 王蕾, 张先锋, 胡慧, 张真真, 张云飞, 刘林涛, 姬星宇, 胡永浩. 猪丁型冠状病毒在悬浮培养猪肾细胞LLC-PK1上的增殖特性分析[J]. 畜牧兽医学报, 2022, 53(6): 2024-2028. |
[12] | 赵玉佳, 陈汭, 宋代丽, 张路文, 肖黛, 李施倩, 文翼平, 伍锐, 赵勤, 杜森焱, 颜其贵, 文心田, 曹三杰, 黄小波. 人氨基肽酶N在猪丁型冠状病毒感染HEK293细胞中的作用[J]. 畜牧兽医学报, 2022, 53(5): 1587-1597. |
[13] | 刘贺娟, 史晨曦, 王静, 王美乐, 王栋涵, 魏战勇, 尹素改. 基于网络药理学探讨黄芩素对猪丁型冠状病毒感染的潜在作用机制[J]. 畜牧兽医学报, 2022, 53(11): 4097-4109. |
[14] | 张晓战, 杨磊, 邓同炜, 赵攀登, 彭志锋, 陈露露, 郭懿文, 夏艳勋, 乔宏兴, 边传周, 王增. 表达绿色荧光蛋白重组猪塞内卡病毒的构建及初步应用[J]. 畜牧兽医学报, 2021, 52(10): 2978-2985. |
[15] | 张天留, 高雪, 徐凌洋, 陈燕, 张路培, 朱波, 高会江, 李俊雅. 高原家养动物环境适应性的研究进展[J]. 畜牧兽医学报, 2020, 51(7): 1475-1487. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||