畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2685-2700.doi: 10.11843/j.issn.0366-6964.2025.06.014
收稿日期:
2024-11-18
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
曹素英
E-mail:2587714111@qq.com;20137602@bua.edu.cn
作者简介:
罗睿杰(1999-),男,北京人,硕士生,主要从事动物繁殖学研究,E-mail:2587714111@qq.com
基金资助:
LUO Ruijie1(), WANG Jiankui2, CAO Suying1,*(
)
Received:
2024-11-18
Online:
2025-06-23
Published:
2025-06-25
Contact:
CAO Suying
E-mail:2587714111@qq.com;20137602@bua.edu.cn
摘要:
本研究从长链非编码RNA (long non-coding RNA, lncRNA)切入,旨在探究敖汉细毛羊群体中粗毛返祖(ancestral-like coarse, ALC)个体的转录组特性。本研究采集了3只30日龄ALC羔羊和3只30日龄非返祖(称为MF)细毛羔羊的皮肤样本,进行RNA测序(RNA-seq),挖掘与细毛羊“返祖”现象存在潜在关联的mRNA和lncRNA,通过生物信息学分析探究lncRNA在细毛羊毛囊发育中的作用,并进行lncRNA与mRNA的联合分析。本研究筛选出1 540个差异表达lncRNA (differentially expressed lncRNA, DE-lncRNA)和513个差异表达基因(differentially expressed genes, DEGs),富集到Wnt、PPAR、MAPK等多个与毛囊发育相关的信号通路中,均存在显著下调。对差异显著(P < 0.05)的DE-lncRNA进行分析,其中包含被认为与初级毛囊早期发育密切相关的lncRNA,如GTL2等。对DE-lncRNA靶向基因和DEGs进行GO和KEGG富集分析,DE-lncRNA靶基因和DEGs富集到WNT、PPAR、MAPK等多个与毛囊发育相关的信号通路,以及与TGF-β负调控相关的生物学过程。此外,DE-lncRNA和DEGs富集分析都显示,ALC羔羊有多个物质和能量代谢通路上调。DEGs与DE-lncRNA相关性分析筛选出90个可能受DE-lncRNA调控的基因,ADIPOQ、BRCA1、CCAR2、KIF20B、SOAT1等基因涉及与细胞增殖、细胞命运决定、细胞周期调节、物质结合、催化活性等有关的过程。结果显示,ALC羔羊在毛囊相关的lncRNA方面与MF羔羊存在显著差异,ALC羔羊的初级毛囊可能处在全面退化的初始阶段;MAPK和PI3K/AKT信号通路在ALC绵羊幼龄返祖现象比较重要;ALC羔羊代谢相较于MF羔羊更旺盛,GTL2等DE-lncRNA可能与ALC羊较强的适应性存在关联。本研究通过挖掘细毛羊ALC性状相关的lncRNA,为后期深入研究细毛羊毛囊发育机制提供参考线索,对细毛羊抗逆育种有重要参考价值。
中图分类号:
罗睿杰, 王建魁, 曹素英. 敖汉细毛羊的粗毛返祖性状相关lncRNA-mRNA的联合测序分析[J]. 畜牧兽医学报, 2025, 56(6): 2685-2700.
LUO Ruijie, WANG Jiankui, CAO Suying. Integrated Sequencing Analysis of lncRNA and mRNA Related to Ancestral-like Coarse in Aohan Fine Wool Sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2685-2700.
表 1
Cuffcompare软件中的字符标记含义"
标记 Code | 软件中的描述 Description | 可能的lncRNA类型 Potential lncRNA type |
= | Complete match of intron chain | |
c | Contained | |
j | Potentially novel isoform (fragment): at least one splice junction is shared with a reference transcript | |
e | Single exon transfrag overlapping a reference exon and at least 10 bp of a reference intron, indicating a possible pre-mRNA fragment | |
i | A transfrag falling entirely within a reference intron | intronic lncRNA[ |
o | Generic exonic overlap with a reference intron | sense lncRNA[ |
p | Possible polymerase run-on fragment (within 2 kb of a reference transcript) | |
r | Repeat. Currently determined by looking at the soft-masked reference sequence and applied to transcripts where at least 50% of the bases are lower case | |
u | Unknown, intergenic transcript | intergenic lncRNA[ |
x | Exonic overlap with reference on the opposite strand | anti-sense lncRNA[ |
s | An intron of the transfrag overlaps a reference intron on the opposite strand (likely due to read mapping errors) | |
. | Tracking file only, indicates multiple classifications |
表 2
质量预处理前后数据结果统计"
样本 Sample | 原始序列 Raw reads | 过滤后序列 Clean reads | Q30/% | GC含量/% GC content |
15180 | 90 832 836 | 89 431 798 | 97.06 | 50.00 |
15188 | 93 026 342 | 91 784 550 | 97.25 | 49.00 |
15190 | 92 599 986 | 91 039 240 | 96.85 | 49.50 |
15264 | 95 508 670 | 94 033 082 | 97.05 | 49.00 |
15268 | 88 211 386 | 86 928 822 | 97.17 | 48.50 |
15270 | 90 455 404 | 89 110 872 | 97.18 | 48.50 |
表 3
Reads与参考基因组比对"
样本 Sample | 过滤后序列总数 Total clean reads | 比对到参考基因组上的Reads数 Total mapped reads | 在参考基因组上比对到多个位置的Reads数 Multiple mapped reads | 在参考基因组上比对到唯一位置的Reads数 Uniquely mapped reads |
15180 | 89 431 798 | 76 136 143 (85.13%) | 7 542 762 (8.43%) | 68 593 381 (76.70%) |
15188 | 91 784 550 | 77 309 464 (84.23%) | 6 219 587 (6.78%) | 71 089 877 (77.45%) |
15190 | 91 039 240 | 75 357 994 (82.78%) | 5 924 476 (6.51%) | 69 433 518 (76.27%) |
15264 | 94 033 082 | 79 377 054 (84.41%) | 6 917 846 (7.36%) | 72 459 208 (77.06%) |
15268 | 86 928 822 | 71 416 612 (82.16%) | 5 356 182 (6.16%) | 66 060 430 (75.99%) |
15270 | 89 110 872 | 75 382 070 (84.59%) | 6 598 558 (7.40%) | 68 783 512 (77.19%) |
1 |
胡姗, 苗晓茸, 霍永智, 等. 羊绒、羊毛品质相关基因研究进展[J]. 家畜生态学报, 2024, 45 (1): 91- 96.
doi: 10.3969/j.issn.1673-1182.2024.01.014 |
HU S , MIAO X R , HUO Y Z , et al. Advances of genes related to cashmere and wool quality[J]. Journal Of Domestic Animal Ecology, 2024, 45 (1): 91- 96.
doi: 10.3969/j.issn.1673-1182.2024.01.014 |
|
2 |
PANTELEYEV A A . Functional anatomy of the hair follicle: The secondary hair germ[J]. Exp Dermatol, 2018, 27 (7): 701- 720.
doi: 10.1111/exd.13666 |
3 | 赵艳丽, 张世伟, 姜怀志. 辽宁绒山羊2品系皮肤毛囊结构及其活性变化规律的比较[J]. 吉林农业大学学报, 2009, 31 (6): 746-751, 758. |
ZHAO Y L , ZHANG S W , JIANG H Z . Comparative study on hair follicles stucture and cycling between two strains of liaoning Cashmere goats[J]. Journal of Jilin Agricultural University, 2009, 31 (6): 746-751, 758. | |
4 |
YANG C H , XU J H , REN Q C , et al. Melatonin promotes secondary hair follicle development of early postnatal cashmere goat and improves cashmere quantity and quality by enhancing antioxidant capacity and suppressing apoptosis[J]. J Pineal Res, 2019, 67 (1): e12569.
doi: 10.1111/jpi.1256963 |
5 |
WANG M , DAI H , SHENG S , et al. Discovery and functional analysis of secondary hair follicle mirnas during annual cashmere growth[J]. Int J Mol Sci, 2023, 24 (2): 1063.
doi: 10.3390/ijms24021063 |
6 | GOOT H . Evolution of the fleece of the sheep[J]. Nature, 1941, 148 (3759): 596- 597. |
7 | RYDER M L. The evolution of the fleece[Z]. New York: Scientific American, Incorporated, 1987, 256: 112-119. |
8 | MORTIMER S I , HATCHER S , FOGARTY N M , et al. Genetic parameters for wool traits, live weight, and ultrasound carcass traits in Merino sheep[J]. J Anim Sci, 2017, 95 (5): 1879- 1891. |
9 |
WANG J , HUA G , CHEN J , et al. Epigenetic mechanism of Gtl2-miRNAs causes the primitive sheep characteristics found in purebred Merino sheep[J]. Cell Biosci, 2023, 13 (1): 190.
doi: 10.1186/s13578-023-01142-z |
10 |
JACKSON N , MADDOCKS I G , WATTS J E , et al. Evolution of the sheep coat: the impact of domestication on its structure and development[J]. Genet Res, 2020, 102, e4.
doi: 10.1017/S0016672320000063 |
11 | 王东梅, 李宝栋, 李海娟, 等. 培育敖汉细毛羊高繁品系及产肉性能的育种实践探索[J]. 畜牧业环境, 2023 (7): 5- 9. |
WANG D M , LI B D , LI H J , et al. Exploration of breeding practice for cultivating high reproductive strains and meat production performance of Aohan fine wool sheep[J]. Animal Industry and Environment, 2023 (7): 5- 9. | |
12 |
GRAMMATIKAKIS I , LAL A . Significance of lncRNA abundance to function[J]. Mamm Genome, 2022, 33 (2): 271- 280.
doi: 10.1007/s00335-021-09901-4 |
13 |
DING Y , CHEN Y , YANG X , et al. An integrative analysis of the lncRNA-miRNA-mRNA competitive endogenous RNA network reveals potential mechanisms in the murine hair follicle cycle[J]. Front Genet, 2022, 13, 931797.
doi: 10.3389/fgene.2022.931797 |
14 |
ZHAO B , CHEN Y , HU S , et al. Systematic analysis of non-coding RNAs involved in the Angora rabbit (Oryctolagus cuniculus) hair follicle cycle by RNA sequencing[J]. Front Genet, 2019, 10, 407.
doi: 10.3389/fgene.2019.00407 |
15 |
ZHANG Y , LI F , SHI Y , et al. Comprehensive transcriptome analysis of hair follicle morphogenesis reveals that lncRNA-H19 promotes dermal papilla cell proliferation through the Chi-miR-214-3p/beta-catenin axis in Cashmere goats[J]. Int J Mol Sci, 2022, 23 (17): 10006.
doi: 10.3390/ijms231710006 |
16 |
ZHU N , LIN E , ZHANG H , et al. LncRNA H19 overexpression activates Wnt signaling to maintain the hair follicle regeneration potential of dermal papilla cells[J]. Front Genet, 2020, 11, 694.
doi: 10.3389/fgene.2020.00694 |
17 |
LIN B J , LIN G Y , ZHU J Y , et al. LncRNA-PCAT1 maintains characteristics of dermal papilla cells and promotes hair follicle regeneration by regulating miR-329/Wnt10b axis[J]. Exp Cell Res, 2020, 394 (1): 112031.
doi: 10.1016/j.yexcr.2020.112031.3321/j.issn:0253-9772.2008.11.002 |
18 |
ZHU Y B , WANG Z Y , YIN R H , et al. A lncRNA-H19 transcript from secondary hair follicle of Liaoning cashmere goat: Identification, regulatory network and expression regulated potentially by its promoter methylation[J]. Gene, 2018, 641, 78- 85.
doi: 10.1016/j.gene.2017.10.028 |
19 | 赵帅. 细毛羊次级毛囊形态发生诱导期转录组差异表达分析[D]. 兰州: 甘肃农业大学, 2015. |
ZHAO S. Transcriptomic difference analysis in the skin of fine-wool sheep during secondary follicle initiation[D]. Lanzhou: Gansu Agricultural University, 2015. (in Chinese) | |
20 |
COCK P J , FIELDS C J , GOTO N , et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants[J]. Nucleic Acids Res, 2010, 38 (6): 1767- 1771.
doi: 10.1093/nar/gkp1137 |
21 |
HANSEN K D , BRENNER S E , DUDOIT S . Biases in Illumina transcriptome sequencing caused by random hexamer priming[J]. Nucleic Acids Res, 2010, 38 (12): e131.
doi: 10.1093/nar/gkq224 |
22 |
LANGMEAD B , SALZBERG S L . Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9 (4): 357- 359.
doi: 10.1038/nmeth.1923 |
23 |
KIM D , PERTEA G , TRAPNELL C , et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biol, 2013, 14 (4): R36.
doi: 10.1186/gb-2013-14-4-r36 |
24 |
TRAPNELL C , ROBERTS A , GOFF L , et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nat Protoc, 2012, 7 (3): 562- 578.
doi: 10.1038/nprot.2012.016 |
25 |
PACHTER L , TRAPNELL C , WILLIAMS B A , et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nat Biotechnol, 2010, 28 (5): 511- 515.
doi: 10.1038/nbt.1621 |
26 |
LIU X , ZHAO J , XUE L , et al. A comparison of transcriptome analysis methods with reference genome[J]. BMC Genomics, 2022, 23 (1): 232.
doi: 10.1186/s12864-022-08465-0 |
27 | KONG L , ZHANG Y , YE Z Q , et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine[J]. Nucleic Acids Res, 2007, 35 (Web Server issue): W345- W349. |
28 |
SUN L , LUO H , BU D , et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts[J]. Nucleic Acids Res, 2013, 41 (17): e166.
doi: 10.1093/nar/gkt646 |
29 |
VITALE R , BUGNON L A , FENOY E L , et al. Evaluating large language models for annotating proteins[J]. Brief Bioinform, 2024, 25 (3): bbae177.
doi: 10.1093/bib/bbae177 |
30 |
LI A , ZHOU H , XIONG S , et al. PLEKv2: predicting lncRNAs and mRNAs based on intrinsic sequence features and the coding-net model[J]. BMC Genomics, 2024, 25 (1): 710- 756.
doi: 10.1186/s12864-024-10630-6 |
31 |
CHAN S N , PEK J W . Stable intronic sequence RNAs (sisRNAs): an expanding universe[J]. Trends Biochem Sci, 2019, 44 (3): 258- 272.
doi: 10.1016/j.tibs.2018.09.016 |
32 |
WANG W , MIN L , QIU X , et al. Biological function of long non-coding RNA (LncRNA) xist[J]. Front Cell Dev Biol, 2021, 9, 645647.
doi: 10.3389/fcell.2021.645647 |
33 |
RANSOHOFF J D , WEI Y , KHAVARI P A . The functions and unique features of long intergenic non-coding RNA[J]. Nat Rev Mol Cell Biol, 2018, 19 (3): 143- 157.
doi: 10.1038/nrm.2017.104 |
34 | SALAMA S R . The complexity of the mammalian transcriptome[J]. Adv Exp Med Biol, 2022, 1363, 11- 22. |
35 |
LIU S , WANG Z , ZHU R , et al. Three differential expression analysis methods for RNA sequencing: limma, EdgeR, DESeq2[J]. J Vis Exp, 2021 (175)
doi: 10.3791/62528 |
36 |
SHANNON P , MARKIEL A , OZIER O , et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13 (11): 2498- 2504.
doi: 10.1101/gr.1239303 |
37 |
LIN X , ZHU L , HE J . Morphogenesis, growth cycle and molecular regulation of hair follicles[J]. Front Cell Dev Biol, 2022, 10, 899095.
doi: 10.3389/fcell.2022.899095 |
38 | 秦志云, 姜怀志. 羊胎儿期皮肤毛囊发育及调控机制的研究概述[J]. 中国畜牧兽医, 2023, 50 (2): 638- 646. |
QIN Z Y , JIANG H Z . An overview of research on skin hair follicle development and regulatory mechanism in sheep during the fetal period[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (2): 638- 646. | |
39 |
LORZ C , GARCIA-ESCUDERO R , SEGRELLES C , et al. A functional role of RB-dependent pathway in the control of quiescence in adult epidermal stem cells revealed by genomic profiling[J]. Stem Cell Rev Rep, 2010, 6 (2): 162- 177.
doi: 10.1007/s12015-010-9139-0 |
40 |
GRECO V , CHEN T , RENDL M , et al. A two-step mechanism for stem cell activation during hair regeneration[J]. Cell Stem Cell, 2009, 4 (2): 155- 169.
doi: 10.1016/j.stem.2008.12.009 |
41 |
MVLLER-RÖVER S , TOKURA Y , WELKER P , et al. E- and P-cadherin expression during murine hair follicle morphogenesis and cycling[J]. Exp Dermatol, 1999, 8 (4): 237- 246.
doi: 10.1111/j.1600-0625.1999.tb00377.x |
42 |
DEMARS J , CANO M , DROUILHET L , et al. Genome-wide identification of the mutation underlying fleece variation and discriminating ancestral hairy species from modern woolly sheep[J]. Mol Biol Evol, 2017, 34 (7): 1722- 1729.
doi: 10.1093/molbev/msx114 |
43 |
LV F H , CAO Y H , LIU G J , et al. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and agronomically important loci[J]. Mol Biol Evol, 2022, 39 (2): msab353.
doi: 10.1093/molbev/msab353 |
44 | 常永芳, 包鹏甲, 褚敏, 等. LncRNA在哺乳动物毛囊发育调控中的研究进展[J]. 生物技术通报, 2019, 35 (8): 205- 212. |
CHANG Y F , BAO P J , CHU M , et al. Research progress on the regulation of lncRNA in the development of mammalian hair follicle[J]. Biotechnology Bulletin, 2019, 35 (8): 205- 212. | |
45 |
ZHANG L , WANG J , CAI G , et al. Imprinted Dlk1-Gtl2 cluster miRNAs are potential epigenetic regulators of lamb fur quality[J]. BMC Genomics, 2023, 24 (1): 632.
doi: 10.1186/s12864-023-09741-3 |
46 |
FAN Y , REN C , DENG K , et al. The regulation of lncRNA GTL2 expression by DNA methylation during sheep skeletal muscle development[J]. Genomics, 2022, 114 (5): 110453.
doi: 10.1016/j.ygeno.2022.110453 |
47 |
CHEN Q , BAO J , ZHANG H , et al. LncRNA GTL2 regulates myoblast proliferation and differentiation via the PKA-CREB pathway in Duolang sheep[J]. Zool Res, 2024, 45 (6): 1261- 1275.
doi: 10.24272/j.issn.2095-8137.2024.125 |
48 |
LUO J , ZHANG Y , GUO Y , et al. TRIM28 regulates Igf2-H19 and Dlk1-Gtl2 imprinting by distinct mechanisms during sheep fibroblast proliferation[J]. Gene, 2017, 637, 152- 160.
doi: 10.1016/j.gene.2017.09.048 |
49 | 封洋. 毛囊发生过程及调控方式的研究进展[J]. 中国畜牧杂志, 2022, 58 (9): 26- 32. |
FENG Y . Advances in mammalian hair follicle genesis and its regulation[J]. Chinese Journal of Animal Science, 2022, 58 (9): 26- 32. | |
50 |
LIU Z , HU X , LIANG Y , et al. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche[J]. Nat Immunol, 2022, 23 (7): 1086- 1097.
doi: 10.1038/s41590-022-01244-9 |
51 |
SAXENA N , MOK K W , RENDL M . An updated classification of hair follicle morphogenesis[J]. Exp Dermatol, 2019, 28 (4): 332- 344.
doi: 10.1111/exd.13913 |
52 |
ZHAO B , LI J , ZHANG X , et al. Exosomal miRNA-181a-5p from the cells of the hair follicle dermal papilla promotes the hair follicle growth and development via the Wnt/beta-catenin signaling pathway[J]. Int J Biol Macromol, 2022, 207, 110- 120.
doi: 10.1016/j.ijbiomac.2022.02.177 |
53 |
HE M , LV X , CAO X , et al. SOX18 promotes the proliferation of dermal papilla cells via the Wnt/beta-catenin signaling pathway[J]. Int J Mol Sci, 2023, 24 (23): 16672.
doi: 10.3390/ijms242316672 |
54 |
ZHOU H , HUANG S , LV X , et al. Effect of CUX1 on the proliferation of Hu sheep dermal papilla cells and on the Wnt/beta-catenin signaling pathway[J]. Genes, 2023, 14 (2): 423.
doi: 10.3390/genes14020423 |
55 |
LIU S , LEASK A . CCN2 modulates hair follicle cycling in mice[J]. Mol Biol Cell, 2013, 24 (24): 3939- 3944.
doi: 10.1091/mbc.e13-08-0472 |
56 |
XIAO S , WANG J , CHEN Q , et al. The mechanism of activated platelet-rich plasma supernatant promotion of hair growth by cultured dermal papilla cells[J]. J Cosmet Dermatol, 2019, 18 (6): 1711- 1716.
doi: 10.1111/jocd.12919 |
57 |
NISSIMOV J N , DAS C A . Hair curvature: a natural dialectic and review[J]. Biol Rev Camb Philos Soc, 2014, 89 (3): 723- 766.
doi: 10.1111/brv.12081 |
58 |
LU Q , GAO Y , FAN Z , et al. Amphiregulin promotes hair regeneration of skin-derived precursors via the PI3K and MAPK pathways[J]. Cell Proli, 2021, 54 (9): e13106.
doi: 10.1111/cpr.13106 |
59 |
RAMOT Y , BERTOLINI M , BOBOLJOVA M , et al. PPAR-gamma signalling as a key mediator of human hair follicle physiology and pathology[J]. Exp Dermatol, 2020, 29 (3): 312- 321.
doi: 10.1111/exd.14062 |
60 |
WANG E , HAREL S , CHRISTIANO A M . JAK-STAT signaling jump starts the hair cycle[J]. J Invest Dermatol, 2016, 136 (11): 2131- 2132.
doi: 10.1016/j.jid.2016.08.029 |
61 |
HAREL S , HIGGINS C A , CERISE J E , et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth[J]. Sci Adv, 2015, 1 (9): e1500973.
doi: 10.1126/sciadv.1500973 |
62 |
LIU G , CHENG G , ZHANG Y , et al. Pyridoxine regulates hair follicle development via the PI3K/Akt, Wnt and Notch signalling pathways in rex rabbits[J]. Anim Nutr, 2021, 7 (4): 1162- 1172.
doi: 10.1016/j.aninu.2021.09.003 |
63 |
CHEN Y , FAN Z , WANG X , et al. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration[J]. Stem Cell Res Ther, 2020, 11 (1): 144.
doi: 10.1186/s13287-020-01650-6 |
64 |
RISHIKAYSH P , DEV K , DIAZ D , et al. Signaling involved in hair follicle morphogenesis and development[J]. Int J Mol Sci, 2014, 15 (1): 1647- 1670.
doi: 10.3390/ijms15011647 |
65 |
TU W , CAO Y W , SUN M , et al. mTOR signaling in hair follicle and hair diseases: recent progress[J]. Front Med, 2023, 10, 1209439.
doi: 10.3389/fmed.2023.1209439 |
66 |
LI C , FENG C , MA G , et al. Time-course RNA-seq analysis reveals stage-specific and melatonin-triggered gene expression patterns during the hair follicle growth cycle in Capra hircus[J]. BMC Genomics, 2022, 23 (1): 140.
doi: 10.1186/s12864-022-08331-z |
67 | XIONG L , ZHEVLAKOVA I , WEST X Z , et al. TLR2 regulates hair follicle cycle and regeneration via BMP signaling[J]. Elife, 2024, 12, 1- 26. |
[1] | 谷博, 王安琪, 于鑫淼, 郭俊彤, 杨一, 邓祎婕, 姜怀志. 基于全转录组测序的2个不同品种绵羊卵巢ceRNA网络构建及关键miRNA的筛选[J]. 畜牧兽医学报, 2025, 56(6): 2765-2777. |
[2] | 吴琼, 李凌丹, 袁辉, 宾晨, 邓可, 李伟, 叶十一, 李国攀, 沈青春, 熊涛. 猪α干扰素8s突变体原核表达及其体内外活性鉴定[J]. 畜牧兽医学报, 2025, 56(5): 2413-2423. |
[3] | 黄程, 杨志远, 林健, 程慧敏, 王米, 毛惠琳, 王国良, 刘贵明, 赵际成, 刘月焕. H9亚型禽流感病毒mRNA疫苗的构建与效力评价[J]. 畜牧兽医学报, 2025, 56(4): 1843-1853. |
[4] | 陈琼, 毛帅翔, 吴龙飞, 杨闯, 孙宝丽. 雷琼牛和陆丰牛半腱肌的lncRNA表达特征及其在骨骼肌发育和脂肪沉积中的ceRNA网络分析[J]. 畜牧兽医学报, 2025, 56(3): 1203-1215. |
[5] | 杨杨, 李良远, 万鹏程, 卢守亮, 刘长彬, 杨华, 王立民, 代蓉, 周平. 绵羊季节性发情性状核心基因和关键lncRNA的筛选与分析[J]. 畜牧兽医学报, 2025, 56(3): 1264-1277. |
[6] | 卢娜, 高钰, 赵嘉伟, 苏迪, 陈家磊, 罗忠礼. 猫传染性腹膜炎病毒mRNA疫苗转录载体的构建与鉴定[J]. 畜牧兽医学报, 2025, 56(2): 803-813. |
[7] | 周显珊, 黄世会, 牛熙, 冉雪琴, 王嘉福. 皱皮香猪泛素化连接酶2基因结构变异的差异表达研究[J]. 畜牧兽医学报, 2025, 56(1): 136-146. |
[8] | 张琰, 吴梅金, 周家豪, 刁洪秀. 阿霉素处理后对犬乳腺肿瘤细胞系CHMp lncRNAs差异表达的影响[J]. 畜牧兽医学报, 2024, 55(6): 2716-2726. |
[9] | 周扬, 吴炜姿, 曹伟胜, 王福广, 许秀琼, 钟文霞, 吴立炀, 叶健, 卢受昇. 基于Nanopore测序技术的非洲猪瘟病毒全基因组测序方法建立[J]. 畜牧兽医学报, 2024, 55(5): 2080-2089. |
[10] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[11] | 曹玉珠, 邢雨欣, 马乘霖, 管宏波, 贾其辉, 康相涛, 田亚东, 李转见, 刘小军, 李红. 鸡FGF6基因生物学特性及其多态性与经济性状的关联分析[J]. 畜牧兽医学报, 2024, 55(4): 1536-1550. |
[12] | 杨杨, 余乾, 刘昱成, 杨华, 赵卓, 王立民, 周平, 杨庆勇, 代蓉. 绵羊MYL基因家族的鉴定与组织表达分析[J]. 畜牧兽医学报, 2024, 55(4): 1551-1564. |
[13] | 田睿, 徐思翔, 谢烽, 刘广锦, 王刚, 李庆霞, 代蕾, 谢国信, 张琼文, 陆亚警, 王光文, 王金秀, 张炜. 黄牛源产气荚膜梭菌分离株基因组的生物信息学分析[J]. 畜牧兽医学报, 2024, 55(4): 1707-1715. |
[14] | 王欢, 陈韬羽, 吴慧, 蒙勇, 李世元, 钱和洁, 牛世华, 满初日嘎, 陈巧玲, 高宏岩, 杜丽, 王凤阳, 陈思. 海南黑山羊ATG16L2基因启动子区多态性研究[J]. 畜牧兽医学报, 2024, 55(11): 4980-4991. |
[15] | 林晓坤, 都萌萌, 周李生, 黄振刚, 王頔, 周东辉, 曹欣欣, 贺建宁, 赵金山, 李和刚. 敖汉细毛羊羊毛经济性状的全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(10): 4346-4359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||