畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 1203-1215.doi: 10.11843/j.issn.0366-6964.2025.03.021
收稿日期:
2024-10-10
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
孙宝丽
E-mail:cq@stu.scau.edu.cn;baolisun@scau.edu.cn
作者简介:
陈琼(2002-),女,河南许昌人,硕士,主要从事草食动物的研究,E-mail: cq@stu.scau.edu.cn
基金资助:
CHEN Qiong(), MAO Shuaixiang, WU Longfei, YANG Chuang, SUN Baoli*(
)
Received:
2024-10-10
Online:
2025-03-23
Published:
2025-04-02
Contact:
SUN Baoli
E-mail:cq@stu.scau.edu.cn;baolisun@scau.edu.cn
摘要:
旨在了解长链非编码RNA(lncRNA)调控骨骼肌发育和脂肪沉积的遗传基础,以陆丰牛和雷琼牛的半腱肌作为样本进行转录组分析,挖掘影响骨骼肌发育和脂肪沉积的关键lncRNA。本研究选用年龄为4个月龄,饲养状况相同的雌性雷琼牛和陆丰牛各4头,提取半腱肌的RNA后进行转录组测序,以Q<0.05为阈值筛选出差异基因,并进行GO和KEGG富集分析、lncRNA-miRNA-mRNA调控网络以及顺式靶向调控网络的构建。最后通过RT-qPCR检验差异基因的表达水平,验证测序结果的可靠性。结果显示,以雷琼牛作为对照组,差异表达的lncRNA有146个,其中71个下调,75个上调,差异表达的mRNA有355个,其中180个下调,175个上调,差异表达的miRNA有34个,其中29个下调,5个上调。对lncRNA进行GO富集分析,结果显示其主要富集在了钙激活的钾通道活性、肌动球蛋白收缩环、蛋白激酶A调节亚基结合、肌球蛋白Ⅱ复合物等,KEGG富集分析结果显示,其主要富集在cGMP-PKG信号通路、RNA转运、Gap连接、胰岛素分泌等通路。根据lncRNA和mRNA的位置关系进行顺式靶向调控作用的预测,筛选到了8个mRNA被7个lncRNA靶向调控,其中DKL1与肌肉发育相关。然后通过构建ceRNA调控网络,筛选出影响肌肉发育以及脂肪沉积的竞争性调控子网络,其中筛选到与肌肉发育相关的基因有ELN和FBOX32,与脂肪沉积相关的基因有SLC27A6和FABP5。RT-qPCR结果显示, 9个差异表达基因的表达水平和转录组测序的表达趋势一致,说明测序结果可靠。本研究发现,雷琼牛和陆丰牛半腱肌中差异表达的lncRNA、mRNA和miRNA,并发现了一些差异lncRNA、mRNA和miRNA可能存在的调控关系,对于揭示肌肉发育以及肌内脂肪沉积的分子调控机制具有重要意义,也为提高华南黄牛的肉用性能提供理论基础。
中图分类号:
陈琼, 毛帅翔, 吴龙飞, 杨闯, 孙宝丽. 雷琼牛和陆丰牛半腱肌的lncRNA表达特征及其在骨骼肌发育和脂肪沉积中的ceRNA网络分析[J]. 畜牧兽医学报, 2025, 56(3): 1203-1215.
CHEN Qiong, MAO Shuaixiang, WU Longfei, YANG Chuang, SUN Baoli. lncRNA Expression Characteristics in Semitendinosus Muscle of Leiqiong Cattle and Lufeng Cattle and Its ceRNA Network Analysis in Skeletal Muscle Development and Fat Deposition[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1203-1215.
表 1
RT-qPCR引物序列"
名称Name | 引物类型Primer type | 引物序列(5′→3′)Primer sequence |
FBOX32 | 正向 | GAAACGCTTCCTGGACGAGA |
反向 | TCTTCTTGGCTGCAACGTCA | |
PLK2 | 正向 | AGCAGTAGCAGTGAATGCCT |
反向 | GCTGGTACCCAAAGCCGTAT | |
CNTER | 正向 | GCAGCGGTTGGTGAAGAGAT |
反向 | CACGTGGGGAGTCTCCTG | |
ENSBTAT00000083033 | 正向 | GAACAGGCACGCCTCTCCTA |
反向 | CGGTGGTGTCGTTTCCCTTA | |
MSTRG.20852.37 | 正向 | ACGCCTAGGTTGAGTTGGTG |
反向 | CCCCATGTGTCTTCTGGTCC | |
MSTRG.18394.2 | 正向 | AGCCACAGTCTATACAGCCC |
反向 | AATTCCCAGCAATGGACACC | |
miR-29b | 正向 | CCACGACAGCACCAGAAACAG |
反向 | AGTGCAGGGTCCGAGGTATTGTCGTATCCAGTG CAGGGTCCGAGGTATTCGCACTGGATACGACGTGTGC | |
miR-411a | 正向 | AGAACACGGCCACAACCC |
反向 | AGTGCAGGGTCCGAGGTATTGTCGTATCCAGTGC AGGGTCCGAGGTATTCGCACTGGATACGACTCTCCG | |
miR-204 | 正向 | GAAGGCAAAGGGACGCAA |
反向 | AGTGCAGGGTCCGAGGTATTGTCGTATCCA GTGCAGGGTCCGAGGTATTCGCACTGGATACGACTGTCT | |
GAPDH | 正向 | ACTCTGGCAAAGTGGATGTTGTC |
反向 | GCATCACCCCACTTGATGTTGGTCGTATCCAGTG CAGGGTCCGAGGTATTCGCACTGGATACGACCTCCTC | |
U6 | 正向 | CGCTTCACGAATTTGCGTGTCAT |
反向 | GCTTCGGCAGCACATATACTAAAAT |
表 2
雷琼牛和陆丰牛半腱肌RNA测序概况"
样本 Sample | LQN_F1 | LQN_F2 | LQN_F3 | LQN_F4 | LFN_F1 | LFN_F2 | LFN_F3 | LFN_F4 |
原始数据Raw reads | 112 159 604 | 116 292 212 | 114 386 662 | 111 749 404 | 119 421 536 | 126 286 918 | 101 476 548 | 117 738 472 |
有效数据Clean reads | 100 011 860 | 103 050 206 | 96 380 652 | 99 241 588 | 104 507 510 | 110 896 226 | 89 114 240 | 104 275 892 |
有效数据/% Clean reads | 89.16 | 88.61 | 84.25 | 88.8 | 87.51 | 87.81 | 87.81 | 88.56 |
Q30/% | 95.51 | 95.18 | 95.16 | 95.33 | 95.36 | 95.07 | 95.41 | 95.38 |
Q20/% | 98.55 | 98.44 | 98.37 | 98.48 | 98.49 | 98.39 | 98.51 | 98.51 |
比对到序列数/% Mapped Reads | 97.33 | 96.84 | 97.32 | 97.14 | 97.17 | 96.88 | 96.97 | 97.06 |
比对到多个位置序列/% Multiple_Mapped | 2.84 | 2.84 | 2.84 | 2.77 | 2.84 | 3.07 | 2.78 | 2.73 |
比对到唯一位置序列/% Uniquely_Mapped | 97.16 | 97.16 | 97.16 | 97.23 | 97.16 | 96.93 | 97.22 | 97.27 |
1 | 马晓萍,王明利.典型国家肉牛生产经济效率比较及对中国的启示[J].西北农林科技大学学报: 社会科学版,2023,23(1):138-152. |
MAX P,WANGM L.Comparison of economic efficiency of beef cattle production in typical countries and its enlightenment to China[J].Journal of Northwest A&F University: Social Science Edition,2023,23(1):138-152. | |
2 | 吴东霖. 基于多组学研究同期发情和全棉籽通过消化道微生物和脂质代谢影响放牧西门塔尔母牛繁殖机能的机制[D]. 呼和浩特: 内蒙古农业大学, 2024. |
WU D L. Mechanistic study on the influence of estrus synchronization and whole cottonseed on reproductive functions in grazing Simmental cows through digestive tract microbiota and lipid metabolism based on multi-omics analysis[D]. Hohhot: Inner Mongolia Agricultural University, 2024. (in Chinese) | |
3 |
蔡保,郭宪.中国黄牛全基因组测序研究进展[J].中国畜禽种业,2024,20(10):17-30.
doi: 10.3969/j.issn.1673-4556.2024.10.004 |
CAIB,GUOX.Research progress on whole genome sequencing of Chinese cattle[J].The Chinese Livestock and Poultry Breeding,2024,20(10):17-30.
doi: 10.3969/j.issn.1673-4556.2024.10.004 |
|
4 |
LIUY Q,XUL Y,YANGL,et al.Discovery of genomic characteristics and selection signatures in southern Chinese local cattle[J].Front Genet,2020,11,533052.
doi: 10.3389/fgene.2020.533052 |
5 |
LIUY Q,ZHAOG Y,LINX J,et al.Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in southern China[J].PLoS One,2022,17(8):e0271718.
doi: 10.1371/journal.pone.0271718 |
6 |
杨闯,吴龙飞,柳广斌,等.雷琼牛与陆丰牛背最长肌lncRNA表达特点及其相关ceRNA网络分析[J].畜牧兽医学报,2023,54(5):1951-1963.
doi: 10.11843/j.issn.0366-6964.2023.05.017 |
YANGC,WUL F,LIUG B,et al.Expression profile and bioinformatics analysis of lncRNA and its associated ceRNA networks in Longissimus dorsi from Lufeng cattle and Leiqiong cattle[J].Acta Veterinaria et Zootechnica Sinica,2023,54(5):1951-1963.
doi: 10.11843/j.issn.0366-6964.2023.05.017 |
|
7 |
MATARNEHS K,SILVAS L,GERRARDD E.New insights in muscle biology that alter meat quality[J].Annu Rev Anim Biosci,2021,9,355-377.
doi: 10.1146/annurev-animal-021419-083902 |
8 |
ZHAOX Y,ZHUR S,WANGY P,et al.Differentiation proliferative capacity of skeletal muscle satellite cells from Dapulian and Landrace pigs[J].Ital J Anim Sci,2020,19(1):574-585.
doi: 10.1080/1828051X.2020.1769511 |
9 |
LEEJ,KANGH.Role of microRNAs and long non-coding RNAs in sarcopenia[J].Cells,2022,11(2):187.
doi: 10.3390/cells11020187 |
10 |
ZHANGH,WANGY Y,LIUX M,et al.Progress of long noncoding RNAs in anti-tumor resistance[J].Pathol Res Pract,2020,216(11):153215.
doi: 10.1016/j.prp.2020.153215 |
11 |
REESEM,DHAYATS A.Small extracellular vesicle non-coding RNAs in pancreatic cancer: molecular mechanisms and clinical implications[J].J Hematol Oncol,2021,14(1):141.
doi: 10.1186/s13045-021-01149-4 |
12 |
NTINIE,MARSICOA.Functional impacts of non-coding RNA processing on enhancer activity and target gene expression[J].J Mol Cell Biol,2019,11(10):868-879.
doi: 10.1093/jmcb/mjz047 |
13 |
GILN,ULITSKYI.Regulation of gene expression by cis-acting long non-coding RNAs[J].Nat Rev Genet,2020,21(2):102-117.
doi: 10.1038/s41576-019-0184-5 |
14 | ZHOUH Y,SIMIONV,PIERCEJ B,et al.LncRNA-MAP3K4 regulates vascular inflammation through the p38 MAPK signaling pathway and cis-modulation of MAP3K4[J].FASEB J,2021,35(1):e21133. |
15 |
STATELLOL,GUOC J,CHENL L,et al.Gene regulation by long non-coding RNAs and its biological functions[J].Nat Rev Mol Cell Biol,2021,22(2):96-118.
doi: 10.1038/s41580-020-00315-9 |
16 | 马宇泽,郭保生,蒋青.骨骼来源外泌体全身性调节作用的研究进展[J].徐州医科大学学报,2023,43(5):379-384. |
MAY Z,GUOB S,JIANGQ.Research progress on the systemic regulatory effects of bone-derived exosomes[J].Journal of Xuzhou Medical University,2023,43(5):379-384. | |
17 | 宋昀静,田彦梅,孟科,等.不同性别滩羊背最长肌中肌肉发育相关LncRNA的筛选及分析[J].华北农学报,2024,39(1):219-227. |
SONGY J,TIANY M,MENGK,et al.Screening and analysis of LncRNA related to muscle development in longissimus dorsi muscle of different sex Tan sheep[J].Acta Agriculturae Boreali-Sinica,2024,39(1):219-227. | |
18 |
HEM L,ZHANGW B,WANGS,et al.MicroRNA-181a regulates the proliferation and differentiation of Hu Sheep skeletal muscle satellite cells and targets the YAP1 gene[J].Genes (Basel),2022,13(3):520.
doi: 10.3390/genes13030520 |
19 |
WATTK I,JUDSONR,MEDLOWP,et al.Yap is a novel regulator of C2C12 myogenesis[J].Biochem Biophys Res Commun,2010,393(4):619-624.
doi: 10.1016/j.bbrc.2010.02.034 |
20 |
HEM L,ZHANGW B,WANGS,et al.Effects of YAP1 on proliferation and differentiation of Hu sheep skeletal muscle satellite cells in vitro[J].Anim Biotechnol,2023,34(7):2691-2700.
doi: 10.1080/10495398.2022.2112688 |
21 | ZHUY,MAJ F,PANH M,et al.MiR-29a family as a key regulator of skeletal muscle dysplasia in a porcine model of intrauterine growth retardation[J].Biomolecules,2022,12(9):1193. |
22 | WUT Y,WANGS H,WANGL H,et al.Long noncoding RNA (lncRNA) CTTN-IT1 elevates skeletal muscle satellite cell proliferation and differentiation by acting as ceRNA for YAP1 through absorbing miR-29a in Hu sheep[J].Front Genet,2020,11,843. |
23 | 张迪,刘静,刘兰英,等.长链非编码RNA在肌少-骨质疏松症中调控作用的展望[J].中国骨质疏松杂志,2023,29(10):1555-1560. |
ZHANGD,LIUJ,LIUL Y,et al.Perspectives of the regulatory role of long-non-coding RNAs in osteosarcopenia[J].Chinese Journal of Osteoporosis,2023,29(10):1555-1560. | |
24 | 杜梦梦. 长链非编码RNA SYISL促进肌肉萎缩的分子机制研究[D]. 武汉: 华中农业大学, 2023. |
DU M M. Molecular mechanism of long non-coding RNA SYISL promoting muscle atrophy[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese) | |
25 |
SHIH M,HEY,LIX Z,et al.Regulation of non-coding RNA in the growth and development of skeletal muscle in domestic chickens[J].Genes (Basel),2022,13(6):1033.
doi: 10.3390/genes13061033 |
26 |
LIUJ,ZHOUY,HUX,et al.Transcriptome analysis reveals the profile of long non-coding RNAs during chicken muscle development[J].Front Physiol,2021,12,660370.
doi: 10.3389/fphys.2021.660370 |
27 |
MAM T,CAIB L,JIANGL,et al.lncRNA-Six1 is a target of miR-1611 that Functions as a ceRNA to regulate Six1 protein expression and fiber type switching in chicken myogenesis[J].Cells,2018,7(12):243.
doi: 10.3390/cells7120243 |
28 |
LIR Y,LIB J,JIANGA W,et al.Exploring the lncRNAs related to skeletal muscle fiber types and meat quality traits in pigs[J].Genes (Basel),2020,11(8):883.
doi: 10.3390/genes11080883 |
29 | COŞKUNÇ,ÇÇEKF A,TOKGVNO,et al.Expression pattern of BK channels on various oxidative stress conditions in skeletal muscle[J].Middle East J Sci,2022,8(1):46-55. |
30 | HEC Y,LIX Y,WANGM L,et al.Deletion of BK channels decreased skeletal and cardiac muscle function but increased smooth muscle contraction in rats[J].Biochem Biophys Res Commun,2021,570,8-14. |
31 |
GAOS Y,LIUY P,WENR,et al.Kcnma1 is involved in mitochondrial homeostasis in diabetes-related skeletal muscle atrophy[J].FASEB J,2023,37(4):e22866.
doi: 10.1096/fj.202201397RR |
32 | RENX F,GUANZ,ZHAOX R,et al.Systematic selection signature analysis of Chinese gamecocks based on genomic and transcriptomic data[J].Int J Mol Sci,2023,24(6):5868. |
33 | ZHOUY C,ZHAOY Y,ZHAL F,et al.KCNMA1 promotes obesity-related hypertension: integrated analysis based on genome-wide association studies[J].Genes Dis,2023,10(1):58-61. |
34 | JIAOH,ARNERP,HOFFSTEDTJ,et al.Genome wide association study identifies KCNMA1 contributing to human obesity[J].BMC Med Genomics,2011,4,51. |
35 | LIX F,WANGZ Q,LIL Y,et al.Retraction note: downregulation of the long noncoding RNA MBNL1-AS1 protects sevoflurane-pretreated mice against ischemia-reperfusion injury by targeting KCNMA1[J].Exp Mol Med,2021,53(11):1819. |
36 | PECCIA,MAX F,SAVOIAA,et al.MYH9:structure, functions and role of non-muscle myosin ⅡA in human disease[J].Gene,2018,664,152-167. |
37 | ANQ M,DONGY,CAOY,et al.Myh9 plays an essential role in the survival and maintenance of hematopoietic stem/progenitor cells[J].Cells,2022,11(12):1865. |
38 | WANGB,QIX L,LIUJ,et al.MYH9 promotes growth and metastasis via activation of MAPK/AKT signaling in colorectal cancer[J].J Cancer,2019,10(4):874-884. |
39 | VICENTE-MANZANARESM,MAX F,ADELSTEINR S,et al.Non-muscle myosin Ⅱ takes centre stage in cell adhesion and migration[J].Nat Rev Mol Cell Biol,2009,10(11):778-790. |
40 | CONTIM A,ADELSTEINR S.Nonmuscle myosin Ⅱ moves in new directions[J].J Cell Sci,2008,121,11-18. |
41 | ZHANGH W,LIUS Y,TANGL,et al.Long non-coding RNA (LncRNA) MRPL23-AS1 promotes tumor progression and carcinogenesis in osteosarcoma by activating Wnt/β-catenin signaling via inhibiting microRNA miR-30b and upregulating myosin heavy chain 9 (MYH9)[J].Bioengineered,2021,12(1):162-171. |
42 | HUS F,RENS,CAIY Q,et al.Glycoprotein PTGDS promotes tumorigenesis of diffuse large B-cell lymphoma by MYH9-mediated regulation of Wnt-β-catenin-STAT3 signaling[J].Cell Death Differ,2022,29(3):642-656. |
43 | INAMORIK I,YOSHIDA-MORIGUCHIT,HARAY,et al.Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE[J].Science,2012,335(6064):93-96. |
44 | KATZM,DISKINR.Structural basis for matriglycan synthesis by the LARGE1 dual glycosyltransferase[J].PLoS One,2022,17(12):e0278713. |
45 | WALIMBEA S,OKUMAH,JOSEPHS,et al.POMK regulates dystroglycan function via LARGE1-mediated elongation of matriglycan[J].Elife,2020,9,e61388. |
46 | RIBEIRO JRA F,SOUZAL S,ALMEIDAC F,et al.Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies[J].Sci Rep,2019,9(1):11842. |
47 | ICHIMIYAT,YAMAKAWAT,HIRANOT,et al.Autophagy and autophagy-related diseases: a review[J].Int J Mol Sci,2020,21(23):8974. |
48 | XIAQ H,HUANGX B,HUANGJ R,et al.The role of autophagy in skeletal muscle diseases[J].Front Physiol,2021,12,638983. |
49 | LEED E,BAREJAA,BARTLETTD B,et al.Autophagy as a therapeutic target to enhance aged muscle regeneration[J].Cells,2019,8(2):183. |
50 | WADDELLJ N,ZHANGP J,WENY F,et al.Dlk1 is necessary for proper skeletal muscle development and regeneration[J].PLoS One,2010,5(11):e15055. |
51 | FUY,HAOX,SHANGP,et al.Functional identification of porcine DLK1 during muscle development[J].Animals (Basel),2022,12(12):1523. |
52 | FALIXF A,ARONSOND C,LAMERSW H,et al.Possible roles of DLK1 in the Notch pathway during development and disease[J].Biochim Biophys Acta,2012,1822(6):988-995. |
53 | WANGM Y,JIANGP,YUX,et al.Analysis of the bovine DLK1 gene polymorphism and its relation to lipid metabolism in Chinese Simmental[J].Animals (Basel),2020,10(6):923. |
54 | HEH,WANGY W,YEP,et al.Long noncoding RNA ZFPM2-AS1 acts as a miRNA sponge and promotes cell invasion through regulation of miR-139/GDF10 in hepatocellular carcinoma[J].J Exp Clin Cancer Res,2020,39(1):159. |
55 | XIEK R,XIONGH R,XIAOW,et al.Downregulation of miR-29c promotes muscle wasting by modulating the activity of leukemia inhibitory factor in lung cancer cachexia[J].Cancer Cell Int,2021,21(1):627. |
56 | LIUQ,CHENL Y,LIANGX C,et al.Exercise attenuates angiotensinⅡ-induced muscle atrophy by targeting PPARγ/miR-29b[J].J Sport Health Sci,2022,11(6):696-707. |
57 | BABAEEM,CHAMANIE,AHMADIR,et al.The expression levels of miRNAs- 27a and 23a in the peripheral blood mononuclear cells (PBMCs) and their correlation with FOXO1 and some inflammatory and anti-inflammatory cytokines in the patients with coronary artery disease (CAD)[J].Life Sci,2020,256,117898. |
58 | LIB J,QIAOL Y,ANL X,et al.Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition[J].BMC Genomics,2018,19(1):338. |
59 | AVILÉSC,POLVILLOO,PEÑAF,et al.Associations between DGAT1, FABP4, LEP, RORC, and SCD1 gene polymorphisms and fat deposition in Spanish commercial beef[J].J Anim Sci,2013,91(10):4571-4577. |
[1] | 贾万里, 王继英, 李菁璇, 王彦平, 耿立英, 张传生, 赵雪艳. 基于转录组测序技术鉴别影响莱芜猪滴水损失的关键基因[J]. 畜牧兽医学报, 2025, 56(3): 1134-1146. |
[2] | 杨杨, 李良远, 万鹏程, 卢守亮, 刘长彬, 杨华, 王立民, 代蓉, 周平. 绵羊季节性发情性状核心基因和关键lncRNA的筛选与分析[J]. 畜牧兽医学报, 2025, 56(3): 1264-1277. |
[3] | 卢建, 马猛, 郭军, 王星果, 窦套存, 胡玉萍, 王强, 李永峰, 邵丹, 童海兵, 郭杰, 曲亮. 育成期能量限饲及转换为自由采食调控开产时蛋鸡生殖器官发育的关键基因和信号通路研究[J]. 畜牧兽医学报, 2025, 56(2): 737-754. |
[4] | 张琰, 吴梅金, 周家豪, 刁洪秀. 阿霉素处理后对犬乳腺肿瘤细胞系CHMp lncRNAs差异表达的影响[J]. 畜牧兽医学报, 2024, 55(6): 2716-2726. |
[5] | 崔晟頔, 王凯, 赵真坚, 陈栋, 申琦, 余杨, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 唐国庆. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1945-1957. |
[6] | 刘伟烨, 黄雪伟. 非编码RNA在传染性法氏囊病病毒感染中的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1488-1498. |
[7] | 雷艳茹, 胡晓玉, 许春红, 张晨曦, 杜文苹, 王阳光, 李东华, 孙桂荣, 李文婷, 康相涛. 5个贵妃鸡配套系生长发育规律、屠宰性能和肉品质比较分析[J]. 畜牧兽医学报, 2024, 55(4): 1521-1535. |
[8] | 左子珍, 王海波, 柴志欣, 符健慧, 张翔飞, 罗晓林, 钟金城. 过瘤胃蛋氨酸对牦牛半腱肌肉品质、挥发性风味物质及脂肪酸组成的影响[J]. 畜牧兽医学报, 2024, 55(3): 1102-1114. |
[9] | 刘阳光, 章会斌, 文浩宇, 谢帆, 赵世明, 丁月云, 郑先瑞, 殷宗俊, 张晓东. 猪卵泡液外泌体处理卵巢颗粒细胞的SNP/Indel筛选分析[J]. 畜牧兽医学报, 2024, 55(2): 576-586. |
[10] | 张唯玉, 程景, 许家宝, 王静, 陶薪燕, 李博, 张亚伟, 张丹丹, 张宁, 郝振凯, 周琛帛, 张元庆. 晋南牛SREBP1基因调控前体脂肪细胞分化的研究[J]. 畜牧兽医学报, 2024, 55(11): 5003-5017. |
[11] | 卢建, 居小军, 王星果, 马猛, 王强, 李永峰, 窦套存, 胡玉萍, 郭军, 邵丹, 童海兵, 曲亮. 育成期代谢能摄入量对蛋鸡生殖器官发育、激素水平和卵巢基因表达的影响[J]. 畜牧兽医学报, 2024, 55(11): 5085-5100. |
[12] | 蔡梦雷, 赵东旭, 张政钢, 刘东海, 姜婷婷, 苏士炫, 闫雪敏, 薛晓阳, 崔国林. GreA蛋白对肠炎沙门菌生物学特性及致病力影响[J]. 畜牧兽医学报, 2024, 55(11): 5173-5182. |
[13] | 毛晓宇, 杜嘉伟, 汤嘉玉, 潘金海, 蒋蕾, 孙小磊, 昝林森, 王洪宝. 干扰和过表达CHRNG对牛成肌细胞增殖分化的影响[J]. 畜牧兽医学报, 2024, 55(10): 4360-4376. |
[14] | 苗舒, 安济山, 王祚, 肖定福, 兰欣怡, 刘磊, 沈维军, 万发春. 亮氨酸通过PI3K-AKT信号通路促进牛成肌细胞的增殖[J]. 畜牧兽医学报, 2024, 55(1): 142-152. |
[15] | 张德安, 杨若渚, 刘杰, 刘德武, 邓铭, 柳广斌, 孙宝丽, 郭勇庆, 李耀坤. 饲喂青贮黄梁木代替青贮玉米川中黑山羊肝转录组的表达分析[J]. 畜牧兽医学报, 2024, 55(1): 232-244. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||