畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1540-1548.doi: 10.11843/j.issn.0366-6964.2025.04.007
收稿日期:
2024-06-26
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
闫文朝
E-mail:xyh18568331350@163.com;ywchao11@126.com
作者简介:
谢月华(1998-), 女, 河南太康人, 硕士生, 主要从事顶复门原虫发育生物学研究, E-mail: xyh18568331350@163.com
基金资助:
XIE Yuehua1,2(), XIE Fujie2, SUO Xun2, YAN Wenchao1,*(
)
Received:
2024-06-26
Online:
2025-04-23
Published:
2025-04-28
Contact:
YAN Wenchao
E-mail:xyh18568331350@163.com;ywchao11@126.com
摘要:
顶复门原虫包含隐孢子虫、弓形虫、疟原虫、艾美耳球虫等和人类、动物健康相关的寄生虫。它们可以感染广泛的宿主且不易被免疫系统发现,引起急性和慢性疾病。由于其在自然宿主中进行研究的伦理和实际问题,加之顶复门原虫具有复杂的生活史且动物模型建立通常比较困难,使得人们对这些病原体生物学特性的了解仍然有限。最近使用的3D细胞培养系统促进和拓展了顶复门原虫的研究,使人们能模拟宿主-病原体互作,为疫苗开发、药物筛选、寄生虫生物学研究及其他应用提供平台。本综述总结了3D细胞培养系统应用在顶复门原虫研究中的进展,以期为读者从事相关研究提供参考。
中图分类号:
谢月华, 谢福杰, 索勋, 闫文朝. 3D细胞培养系统在顶复门原虫研究中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1540-1548.
XIE Yuehua, XIE Fujie, SUO Xun, YAN Wenchao. Application of the 3D Cell Culture System in the Study of Apicomplexa Protozoa[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1540-1548.
表 1
3D细胞培养系统在顶复门原虫研究中的应用"
种类 Species | 3D细胞培养系统 3D cell culture system | 应用 Application | 参考文献 Reference |
隐孢子虫 Cryptosporidium | 传代细胞3D培养 | 在诱导人回盲肠癌细胞(HCT-8)中加入虫体后可观察到小肠中虫体的机械运动 | [ |
中空纤维系统 | 虫体在这种条件下可以生长繁殖,并持续产生6个月以上具有感染性的卵囊 | [ | |
丝蛋白支架系统 | 可以支持隐孢子虫完成完整的生活史 | [ | |
穿透小室系统 | 隐孢子虫在此系统中可以形成卵囊 | [ | |
类器官 | 隐孢子虫可以在类器官内完成其生活史 | [ | |
气液界面系统 | 牛源隐孢子虫在此系统内可以形成具有感染性的卵囊 | [ | |
弓形虫 Toxoplasma | 原代细胞3D培养系统 | 用于探究弓形虫感染对DCs迁移的影响 | [ |
传代细胞3D培养系统 | 弓形虫可以入侵JEG-3单层细胞,但不能入侵JEG-3 3D系统 | [ | |
用于虫体从纳虫空泡中逸出的形式研究 | [ | ||
速殖子可以感染人脑类器官并转化为缓殖子形成包囊 | [ | ||
类器官及其衍生的系统 | 用于弓形虫入侵和增殖的研究 | [ | |
弓形虫能顺利入侵牛和猪的类器官,且能在24 h后形成感染灶 | [ | ||
用于弓形虫入侵和复制的研究 | [ | ||
虫体进入到了裂殖生殖和配子生殖并形成感染性卵囊 | [ | ||
疟原虫 Plasmodium | 微阵列系统 | 用于探究cAMP与GIE的力学性能与变形能力相关性 | [ |
弹性基质 | 用于探究肌动蛋白和子孢子表面入侵相关蛋白的作用 | [ | |
用于探究疟原虫TRAP的闭合和开放两种构象的关系 | [ | ||
类器官及其衍生的系统 | 建立了具有稳定的肝脏表型的3D伯氏疟原虫感染平台 | [ | |
使用3D球体培养的原代肝细胞开发了一个疟疾肝阶段模型 | [ | ||
聚丙烯酰胺水凝胶系统 | 用于研究单个生理相关的物理参数对野生型和突变型虫体运动的影响 | [ | |
艾美耳球虫 Eimeria | 类器官及其衍生系统 | 类器官用来研究虫体在体外的发育阶段 | [ |
子孢子共培养后发现虫子可入侵并发育至配子体阶段,但未观察到卵囊形成 | [ | ||
用于探究球虫体外生长发育 | [ |
1 | VISVESVARAG S,GARCIAL S.Culture of protozoan parasites[J].Clin Microbiol Rev,2022,15(3):327-328. |
2 |
JUSTICEM J,DHILLONP.Using the mouse to model human disease: increasing validity and reproducibility[J].Dis Model Mech,2016,9(2):101-103.
doi: 10.1242/dmm.024547 |
3 |
MURILLO-CUESTAS,ARTUCHR,ASENSIOF,et al.The value of mouse models of rare diseases: a Spanish experience[J].Front Genet,2020,11,583932.
doi: 10.3389/fgene.2020.583932 |
4 |
BAYIRE,SENDEMIRA,MISSIRLISY F.Mechanobiology of cells and cell systems, such as organoids[J].Biophys Rev,2019,11(5):721-728.
doi: 10.1007/s12551-019-00590-7 |
5 |
COJ Y,MARGALEF-CATALÀM,LIX N,et al.Controlling epithelial polarity: a human enteroid model for host-pathogen interactions[J].Cell Rep,2019,26(9):2509-2520.
doi: 10.1016/j.celrep.2019.01.108 |
6 |
RADTKEA L,WILSONJ W,SARKERS,et al.Analysis of interactions of Salmonella type three secretion mutants with 3-D intestinal epithelial cells[J].PLoS One,2010,5(12):e15750.
doi: 10.1371/journal.pone.0015750 |
7 |
DUTTAD,CLEVERSH.Organoid culture systems to study host-pathogen interactions[J].Curr Opin Immunol,2017,48,15-22.
doi: 10.1016/j.coi.2017.07.012 |
8 |
DELGADO BETANCOURTE,HAMIDB,FABIANB T,et al.From entry to early dissemination—Toxoplasma gondii's initial encounter with its host[J].Front Cell Infect Microbiol,2019,9,46.
doi: 10.3389/fcimb.2019.00046 |
9 |
KLOTZC,AEBISCHERT,SEEBERF.Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host-parasite interaction[J].Int J Med Microbiol,2012,302(4-5):203-209.
doi: 10.1016/j.ijmm.2012.07.010 |
10 | AL-RAMADANA,MORTENSENA C,CARLSSONJ,et al.Analysis of radiation effects in two irradiated tumor spheroid models[J].Oncol Lett,2018,15(3):3008-3016. |
11 |
ACHILLIT M,MEYERJ,MORGANJ R.Advances in the formation, use and understanding of multi-cellular spheroids[J].Expert Opin Biol Ther,2012,12(10):1347-1360.
doi: 10.1517/14712598.2012.707181 |
12 |
LABARBERAD V,REIDB G,YOOB H.The multicellular tumor spheroid model for high-throughput cancer drug discovery[J].Expert Opin Drug Discov,2012,7(9):819-830.
doi: 10.1517/17460441.2012.708334 |
13 | FOTYR.A simple hanging drop cell culture protocol for generation of 3D spheroids[J].J Vis Exp,2011(51):2720. |
14 |
EDMONDSONR,BROGLIEJ J,ADCOCKA F,et al.Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors[J].Assay Drug Dev Technol,2014,12(4):207-218.
doi: 10.1089/adt.2014.573 |
15 |
RUBIOR,ABARRATEGIA,GARCIA-CASTROJ,et al.Bone environment is essential for osteosarcoma development from transformed mesenchymal stem cells[J].Stem Cells,2014,32(5):1136-1148.
doi: 10.1002/stem.1647 |
16 |
NYGAA,CHEEMAU,LOIZIDOUM.3D tumour models: novel in vitro approaches to cancer studies[J].J Cell Commun Signal,2011,5(3):239-248.
doi: 10.1007/s12079-011-0132-4 |
17 | LEFEBVREM,RAZAKANDRAINIBER,VILLENAI,et al.Cryptosporidium-biofilm interactions: a review[J].Appl Environ Microbiol,2021,87(3):e02483-20. |
18 |
STENSVOLDC R,MARTÍ-MARCOA,MORATALS,et al.Cryptosporidium occultus in disguise[J].J Microbiol Methods,2024,222,106957.
doi: 10.1016/j.mimet.2024.106957 |
19 |
WARRENC A,DESTURAR V,SEVILLEJAJ E A D,et al.Detection of epithelial-cell injury, and quantification of infection, in the HCT-8 organoid model of cryptosporidiosis[J].J Infect Dis,2008,198(1):143-149.
doi: 10.1086/588819 |
20 |
MORADAM,LEES,GUNTHER-CUMMINSL,et al.Continuous culture of Cryptosporidium parvum using hollow fiber technology[J].Int J Parasitol,2016,46(1):21-29.
doi: 10.1016/j.ijpara.2015.07.006 |
21 | DECICCO REPASSM A,CHENY,LINY N,et al.Novel bioengineered three-dimensional human intestinal model for long-term infection of Cryptosporidium parvum[J].Infect Immun,2017,85(3):e00731-16. |
22 |
BAYDOUNM,VANNESTES B,CREUSYC,et al.Three-dimensional (3D) culture of adult murine colon as an in vitro model of cryptosporidiosis: proof of concept[J].Sci Rep,2017,7(1):17288.
doi: 10.1038/s41598-017-17304-2 |
23 |
HEOI,DUTTAD,SCHAEFERD A,et al.Modelling Cryptosporidium infection in human small intestinal and lung organoids[J].Nat Microbiol,2018,3(7):814-823.
doi: 10.1038/s41564-018-0177-8 |
24 |
WILKEG,FUNKHOUSER-JONESL J,WANGY,et al.A stem-cell-derived platform enables complete Cryptosporidium development in vitro and genetic tractability[J].Cell Host Microbe,2019,26(1):123-134.
doi: 10.1016/j.chom.2019.05.007 |
25 |
SANCHEZS G,BESTEIROS.The pathogenicity and virulence of Toxoplasma gondii[J].Virulence,2021,12(1):3095-3114.
doi: 10.1080/21505594.2021.2012346 |
26 |
ATTIASM,TEIXEIRAD E,BENCHIMOLM,et al.The life-cycle of Toxoplasma gondii reviewed using animations[J].Parasites Vectors,2020,13(1):588.
doi: 10.1186/s13071-020-04445-z |
27 |
TONGW H,PAVEYC,O'HANDLEYR,et al.Behavioral biology of Toxoplasma gondii infection[J].Parasit Vectors,2021,14(1):77.
doi: 10.1186/s13071-020-04528-x |
28 |
KANATANIS,UHLÉNP,BARRAGANA.Infection by Toxoplasma gondii induces amoeboid-like migration of dendritic cells in a three-dimensional collagen matrix[J].PLoS One,2015,10(9):e0139104.
doi: 10.1371/journal.pone.0139104 |
29 |
MCCONKEYC A,DELORME-AXFORDE,NICKERSONC A,et al.A three-dimensional culture system recapitulates placental syncytiotrophoblast development and microbial resistance[J].Sci Adv,2016,2(3):e1501462.
doi: 10.1126/sciadv.1501462 |
30 | DANIELSONJ J,EREZPN,ROMANOJ D,et al.Modelling Toxoplasma gondii infection in a 3D cell culture system in vitro: comparison with infection in 2D cell monolayers[J].PLoS One,2018,13(2):e0208558. |
31 |
SEOH H,HANH W,LEES E,et al.Modelling Toxoplasma gondii infection in human cerebral organoids[J].Emerg Microbes Infect,2020,9(1):1943-1954.
doi: 10.1080/22221751.2020.1812435 |
32 |
LUUL,JOHNSTONL J,DERRICOTTH,et al.An open-format enteroid culture system for interrogation of interactions between Toxoplasma gondii and the intestinal epithelium[J].Front Cell Infect Microbiol,2019,9,300.
doi: 10.3389/fcimb.2019.00300 |
33 |
DERRICOTTH,LUUL,FONGW Y,et al.Developing a 3D intestinal epithelium model for livestock species[J].Cell Tissue Res,2019,375(2):409-424.
doi: 10.1007/s00441-018-2924-9 |
34 |
HOLTHAUSD,DELGADO-BETANCOURTE,AEBISCHERT,et al.Harmonization of protocols for multi-species organoid platforms to study the intestinal biology of Toxoplasma gondii and other protozoan infections[J].Front Cell Infect Microbiol,2021,10,610368.
doi: 10.3389/fcimb.2020.610368 |
35 |
DI GENOVAB M,WILSONS K,DUBEYJ P,et al.Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction[J].PLoS Biology,2019,17(8):e3000364.
doi: 10.1371/journal.pbio.3000364 |
36 |
DVORINJ D,GOLDBERGD E.Plasmodium egress across the parasite life cycle[J].Annu Rev Microbiol,2022,76,67-90.
doi: 10.1146/annurev-micro-041320-020659 |
37 |
SPIELMANNT,GRASS,SABITZKIR,et al.Endocytosis in Plasmodium and Toxoplasma parasites[J].Trends Parasitol,2020,36(6):520-532.
doi: 10.1016/j.pt.2020.03.010 |
38 |
CULLETONR,PAINA,SNOUNOUG.Plasmodium malariae: the persisting mysteries of a persistent parasite[J].Trends Parasitol,2023,39(2):113-125.
doi: 10.1016/j.pt.2022.11.008 |
39 |
WAIDEM L,SCHMIDTN W.The gut microbiome, immunity, and Plasmodium severity[J].Curr Opin Microbiol,2020,58,56-61.
doi: 10.1016/j.mib.2020.08.006 |
40 |
OMOROUR,BIN SA'IDI,DELVESM,et al.Protocols for Plasmodium gametocyte production in vitro: an integrative review and analysis[J].Parasites Vectors,2022,15(1):451.
doi: 10.1186/s13071-022-05566-3 |
41 |
张义伟,苏紫薇,李其龙,等.伯氏疟原虫ANKA株感染小鼠的T细胞、NK细胞及细胞因子变化[J].畜牧兽医学报,2022,53(11):4008-4018.
doi: 10.11843/j.issn.0366-6964.2022.11.026 |
ZHANGY W,SUZ W,LIQ L,et al.The changes of t cells, NK cells and cytokines in mice infected with Plasmodium berghei ANKA strain[J].Acta Veterinaria et Zootechnica Sinica,2022,53(11):4008-4018.
doi: 10.11843/j.issn.0366-6964.2022.11.026 |
|
42 |
SINGHM,SURYANSHU,KANIKA,et al.Plasmodium's journey through the Anopheles mosquito: a comprehensive review[J].Biochimie,2021,181,176-190.
doi: 10.1016/j.biochi.2020.12.009 |
43 | GARDINERD L,TRENHOLMEK R.Plasmodium falciparum gametocytes: playing hide and seek[J].Ann Transl Med,2015,3(4):45. |
44 |
RAMDANIG,NAISSANTB,THOMPSONE,et al.cAMP-signalling regulates gametocyte-infected erythrocyte deformability required for malaria parasite transmission[J].PLoS Pathog,2015,11(5):e1004815.
doi: 10.1371/journal.ppat.1004815 |
45 |
FRISCHKNECHTF,MATUSCHEWSKIK.Plasmodium sporozoite biology[J].Cold Spring Harb Perspect Med,2017,7(5):a025478.
doi: 10.1101/cshperspect.a025478 |
46 |
MÜNTERS,SABASSB,SELHUBER-UNKELC,et al.Plasmodium sporozoite motility is modulated by the turnover of discrete adhesion sites[J].Cell Host Microbe,2009,6(6):551-562.
doi: 10.1016/j.chom.2009.11.007 |
47 |
BRAUMANNF,KLUGD,KEHRERJ,et al.Conformational change of Plasmodium TRAP is essential for sporozoite migration and transmission[J].EMBO Rep,2023,24(7):e57064.
doi: 10.15252/embr.202357064 |
48 | CARNEVALEA.Aportaciones de un servicio de genética al estudio de los pacientes de un hospital pediátrico[J].Gac Méd Méx,1986,122(5-6):149-156. |
49 |
ARÉVALO-PINZÓNG,GARZÓN-OSPINAD,PULIDOF A,et al.Plasmodium vivax cell traversal protein for ookinetes and sporozoites (CelTOS) functionally restricted regions are involved in specific host-pathogen interactions[J].Front Cell Infect Microbiol,2020,10,119.
doi: 10.3389/fcimb.2020.00119 |
50 |
NIKLAUSL,AGOP-NERSESIANC,SCHMUCKLI-MAURERJ,et al.Deciphering host lysosome-mediated elimination of Plasmodium berghei liver stage parasites[J].Sci Rep,2019,9(1):7967.
doi: 10.1038/s41598-019-44449-z |
51 |
SALAZAR ALVAREZL C,VERA LIZCANOO,DA SILVA BARROSD K A,et al.Plasmodium vivax gametocytes adherence to bone marrow endothelial cells[J].Front Cell Infect Microbiol,2021,11,614985.
doi: 10.3389/fcimb.2021.614985 |
52 |
MELLINR,BODDEYJ A.Organoids for liver stage malaria research[J].Trends Parasitol,2020,36(2):158-169.
doi: 10.1016/j.pt.2019.12.003 |
53 |
KIMJ,KOOB K,KNOBLICHJ A.Human organoids: model systems for human biology and medicine[J].Nat Rev Mol Cell Biol,2020,21(10):571-584.
doi: 10.1038/s41580-020-0259-3 |
54 |
AREZF,REBELOS P,FONTINHAD,et al.Flexible 3D cell-based platforms for the discovery and profiling of novel drugs targeting Plasmodium hepatic infection[J].ACS Infect Dis,2019,5(11):1831-1842.
doi: 10.1021/acsinfecdis.9b00144 |
55 |
CHUAA C Y,ANANTHANARAYANANA,ONGJ J Y,et al.Hepatic spheroids used as an in vitro model to study malaria relapse[J].Biomaterials,2019,216,119221.
doi: 10.1016/j.biomaterials.2019.05.032 |
56 |
RIPPJ,KEHRERJ,SMYRNAKOUX,et al.Malaria parasites differentially sense environmental elasticity during transmission[J].EMBO Mol Med,2021,13(4):e13933.
doi: 10.15252/emmm.202113933 |
57 | QUIROZ-CASTAÑEDAR E,DANTÁN-GONZÁLEZE.Control of avian coccidiosis: future and present natural alternatives[J].Biomed Res Int,2015,2015,430610. |
58 | FERNANDES DE MOURA GUEDES J P. Host-pathogen interactions at the intestinal epithelial barrier[D]. Cambridge: University of Cambridge, 2018. |
59 |
NASHT J,MORRISK M,MABBOTTN A,et al.Inside-out chicken enteroids with leukocyte component as a model to study host-pathogen interactions[J].Commun Biol,2021,4(1):377.
doi: 10.1038/s42003-021-01901-z |
60 |
ARENDTM,ELISSAJ,SCHMIDTN,et al.Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens[J].Vet Immunol Immunopathol,2019,218,109934.
doi: 10.1016/j.vetimm.2019.109934 |
[1] | 冯永翠, NaingHtet Aung, 张馨尹, 汪飞燕, 王乐乐, 张露, 朱玉, 许金俊, 陶建平, 刘丹丹. 毒害艾美耳球虫配子体抗原基因DNA疫苗的构建与免疫保护效果评价[J]. 畜牧兽医学报, 2025, 56(4): 1887-1896. |
[2] | 陈远才, 黄建营, 秦慧凯, 张龙现. 隐孢子虫基因组学研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1059-1064. |
[3] | 李慧中, 张弛, 严丹丽, 宋鹏慧, 汪飞燕, 冯茜茜, 刘丹丹, 许金俊, 陶建平. 鸡毒害艾美耳球虫ROP30蛋白的原核表达及其对鸡免疫保护效果的观察[J]. 畜牧兽医学报, 2025, 56(3): 1419-1430. |
[4] | 郭旭, 陈晓晓, 迟依明, 马文宇, 杜孟泽, 安健, 李秋明, 尹德琦. 刚地弓形虫AP2家族蛋白质研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3824-3832. |
[5] | 梁瑞英, 索静霞, 梁琳, 刘贤勇, 丁家波, 索勋, 汤新明. 艾美耳球虫的遗传操作:平台建立、应用与展望[J]. 畜牧兽医学报, 2024, 55(8): 3362-3373. |
[6] | 韩成全, 刘婧陶, 于淼, 关立增, 徐璐, 王悦尚. 芦丁在BV2细胞中抗弓形虫的作用及机制分析[J]. 畜牧兽医学报, 2024, 55(7): 3119-3131. |
[7] | 陈浩, 郝哥, 蒲家艳, 肖洁, 熊常明, 何维, 朱煜华, 许力文, 姜庆, 杨光友. 肠艾美耳球虫重组微线蛋白2对家兔免疫保护效果评价[J]. 畜牧兽医学报, 2024, 55(6): 2588-2598. |
[8] | 周思含, 李天恩, 邓金华, 孙洪超, 闫文朝, 石团员, 王天奇. 浙江省部分地区鸡球虫感染情况调查分析[J]. 畜牧兽医学报, 2024, 55(6): 2629-2640. |
[9] | 王乐乐, 王礼跃, 蔡为民, 康喜龙, 冯茜茜, 张知之, 范雪莲, 朱玉, 刘丹丹, 许金俊, 潘志明, 陶建平. 鸡球虫重组蛋白rEnApiAP2对鸡免疫保护效果的观察[J]. 畜牧兽医学报, 2024, 55(4): 1716-1727. |
[10] | 王贺, 郭志廷, 李建喜, 张景艳, 王磊, 张康, 孙继文, 尚小粉, 马永华. 常山散对雏鸡感染柔嫩艾美耳球虫不同发育阶段的防治效果[J]. 畜牧兽医学报, 2024, 55(3): 1278-1289. |
[11] | 彭月梅, 叶状, 汪飞燕, 王礼跃, 冯永翠, 王乐乐, 候照峰, 许金俊, 陶建平, 刘丹丹. 毒害艾美耳球虫谷胱甘肽过氧化物酶EnGPX的原核表达与分析[J]. 畜牧兽医学报, 2024, 55(2): 846-853. |
[12] | 倪君丽, 刘欣超, 孙栋, 方肆云, 王定爱, 申翰钦, 严专强, 戚南山, 孙铭飞, 顾有方. 鸡球虫病7价多表位嵌合重组抗原ET seven真核质粒的构建、表达及其初步功能分析[J]. 畜牧兽医学报, 2024, 55(11): 5159-5172. |
[13] | 陈曦, 王一, 王佳丽, 杨新, 宋军科, 赵光辉. 毒害艾美耳球虫和产气荚膜梭菌双重PCR检测方法的建立[J]. 畜牧兽医学报, 2023, 54(9): 3985-3990. |
[14] | 郑若愚, 任永军, 肖洁, 白鑫, 蒲家艳, 陈浩, 杨光友. 斯氏艾美耳球虫3-磷酸甘油醛脱氢酶重组蛋白对兔的免疫保护效果评价[J]. 畜牧兽医学报, 2023, 54(6): 2581-2595. |
[15] | 孙晓敬, 张磊, 田甜, 马茜, 姚佳, 汪洋. 弓形虫病治疗:从传统药物到纳米药物[J]. 畜牧兽医学报, 2023, 54(5): 1834-1844. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||