畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3824-3832.doi: 10.11843/j.issn.0366-6964.2024.09.008
郭旭, 陈晓晓, 迟依明, 马文宇, 杜孟泽, 安健, 李秋明*(), 尹德琦*(
)
收稿日期:
2023-12-07
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
李秋明,尹德琦
E-mail:liqiuming007@126.com;yindeqi1992@163.com
作者简介:
郭旭(2003-),男,北京人,本科生,主要从事于寄生虫病学研究陈晓晓和郭旭为同等贡献作者
基金资助:
Xu GUO, Xiaoxiao CHEN, Yiming CHI, Wenyu MA, Mengze DU, Jian AN, Qiuming LI*(), Deqi YIN*(
)
Received:
2023-12-07
Online:
2024-09-23
Published:
2024-09-27
Contact:
Qiuming LI, Deqi YIN
E-mail:liqiuming007@126.com;yindeqi1992@163.com
摘要:
弓形虫是一种专性寄生于细胞内的顶复门原虫,具有多宿主、多阶段的发育周期。弓形虫有性阶段仅限于猫科动物,而无性阶段发生在包括人类在内的大多数温血动物中。全世界大约有三分之一的人感染弓形虫病,同时该病也能够对畜牧业造成严重经济损失。刚地弓形虫具有一套复杂的基因调控网络,能够使虫体在适应不同的外界环境变化时及时在特定的阶段进行自身基因的转录及表达。然而,目前人们对其潜在的转录调控机制知之甚少。研究发现特异性的转录因子(transcription factors, TFs)在真核生物的转录调控中具有重要作用,特别是AP2(apetala 2, AP2)家族转录因子参与了弓形虫不同阶段基因表达过程,这些因子在寄生虫生长和发育过程中发挥极其重要的作用。本文结合近几年的研究成果,对弓形虫转录因子AP2家族蛋白质的研究进展进行汇总,以期为深入研究弓形虫的生物学特征奠定基础。
中图分类号:
郭旭, 陈晓晓, 迟依明, 马文宇, 杜孟泽, 安健, 李秋明, 尹德琦. 刚地弓形虫AP2家族蛋白质研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3824-3832.
Xu GUO, Xiaoxiao CHEN, Yiming CHI, Wenyu MA, Mengze DU, Jian AN, Qiuming LI, Deqi YIN. Research Progress of Toxoplasma gondii AP2 Family[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3824-3832.
表 1
弓形虫AP2转录因子汇总表"
基因号 Gene ID | 氨基酸 Amino acid | 基因描述 Gene description | 功能 Function | 参考文献 Reference |
TGME49_306620 | 1 388 aa | 转录因子AP2IX-9 AP2 domain transcription factor AP2IX-9 | 缓殖子发育的抑制因子 Inhibitory factors of bradyzoite development | [ |
TGME49_318610 | 1 369 aa | 转录因子AP2IV-3 AP2 domain transcription factor AP2IV-3 | 缓殖子基因表达的激活剂 Activator of bradyzoite gene expression | [ |
TGME49_288950 | 951 aa | 转录因子AP2IX-4 AP2 domain transcription factor AP2IX-4 | 促进组织包囊的形成 Promote the formation of tissue cyst | [ |
TGME49_315760 | 3 236 aa | 转录因子AP2XI-4 AP2 domain transcription factor AP2XI-4 | 寄生虫分化和包囊形成过程中调节缓殖子基因表达 Regulation of bradyzoite gene expression during parasite differentiation and cyst formation | [ |
TGME49_289710 | 2 282 aa | 转录因子AP2IX-5 AP2 domain transcription factor AP2IX-5 | 调控细胞周期和速殖子增殖 Regulation of cell cycle and tachyzoite proliferation | [ |
TGME49_217700 | 1 737 aa | 转录因子AP2XII-2 AP2 domain transcription factor AP2XII-2 | 调控细胞周期S期和缓殖子分化 Regulation of cell cycle S-phase and bradyzoite differentiation | [ |
TGME49_318470 | 2 406 aa | 转录因子AP2IV-4 AP2 domain transcription factor AP2IV-4 | 调节组织包囊的形成 Regulating the formation of tissue cysts | [ |
TGME49_216220 | 868 aa | 转录因子AP2XI-5 AP2 domain transcription factor AP2XI-5 | 调节关键毒力因子的基因转录 Regulation of gene transcription of key virulence factors | [ |
TGME49_247730 | 1 502 aa | 转录因子AP2XII-5 AP2 domain transcription factor AP2XII-5 | 调控弓形虫生活史各阶段基因的有序表达而影响毒株毒力 Regulating the orderly expression of genes at all stages of Toxoplasma gondii life cycle and affecting the virulence of the strain | [ |
TGME49_224050 | 868 aa | 转录因子AP2X-4 AP2 domain transcription factor AP2X-4 | 调控基因转录;调节棒状体蛋白质的表达 Regulate gene transcription and the expression of rhoptry proteins | [ |
TGME49_218960 | 2 282 aa | 转录因子AP2XII-1 AP2 domain transcription factor AP2XII-1 | 调控急性感染性速殖子阶段向有性裂殖子阶段的转变 Regulation of the transition from the acute infectious tachyzoite stage to the sexual cleavage stage | [ |
TGME49_310900 | 2 243 aa | 转录因子AP2XI-2 AP2 domain transcription factor AP2XI-2 | 调控速殖子阶段向有性裂殖子阶段的转变 Regulation of the tachyzoite stage to the sexual cleavage stage | [ |
1 |
KOCHANOWSKY J A , KOSHY A A . Toxoplasma gondii [J]. Curr Biol, 2018, 28 (14): R770- R771.
doi: 10.1016/j.cub.2018.05.035 |
2 |
VALLEAU D , SIDIK S M , GODOY L C , et al. A conserved complex of microneme proteins mediates rhoptry discharge in Toxoplasma[J]. EMBO J, 2023, 42 (23): e113155.
doi: 10.15252/embj.2022113155 |
3 |
ATTIAS M , TEIXEIRA D E , BENCHIMOL M , et al. The life-cycle of Toxoplasma gondii reviewed using animations[J]. Parasit Vectors, 2020, 13 (1): 588.
doi: 10.1186/s13071-020-04445-z |
4 |
GEORGE B P , SCHNEIDER E B , VENKATESAN A . Encephalitis hospitalization rates and inpatient mortality in the United States, 2000-2010[J]. PLoS One, 2014, 9 (9): e104169.
doi: 10.1371/journal.pone.0104169 |
5 |
ZHOU J , LI C X , LUO Y Q , et al. Antigenic epitope analysis and efficacy evaluation of GRA41 DNA vaccine against T. gondii infection[J]. Acta Parasitol, 2019, 64 (3): 471- 478.
doi: 10.2478/s11686-019-00091-3 |
6 |
PIAO L X , CHENG J H , AOSAI F , et al. Cellular immunopathogenesis in primary Toxoplasma gondii infection during pregnancy[J]. Parasite Immunol, 2018, 40 (9): e12570.
doi: 10.1111/pim.12570 |
7 |
ZHOU D H , ZHAO F R , HUANG S Y , et al. Changes in the proteomic profiles of mouse brain after infection with cyst-forming Toxoplasma gondii[J]. Parasit Vectors, 2013, 6, 96.
doi: 10.1186/1756-3305-6-96 |
8 |
SMITH N C , GOULART C , HAYWARD J A , et al. Control of human toxoplasmosis[J]. Int J Parasitol, 2021, 51 (2-3): 95- 121.
doi: 10.1016/j.ijpara.2020.11.001 |
9 |
MVLLER J , HEMPHILL A . Toxoplasma gondii infection: novel emerging therapeutic targets[J]. Expert Opin Ther Targets, 2023, 27 (4-5): 293- 304.
doi: 10.1080/14728222.2023.2217353 |
10 |
AUGUSTO L , WEK R C , SULLIVAN W J . Host sensing and signal transduction during Toxoplasma stage conversion[J]. Mol Microbiol, 2021, 115 (5): 839- 848.
doi: 10.1111/mmi.14634 |
11 |
WALDMAN B S , SCHWARZ D , WADSWORTH II M H , et al. Identification of a master regulator of differentiation in Toxoplasma[J]. Cell, 2020, 180 (2): 359- 372. e16.
doi: 10.1016/j.cell.2019.12.013 |
12 |
ROSENBERG A , SIBLEY L D . Epigenetic modifiers alter host cell transcription to promote Toxoplasma infection[J]. ACS Infect Dis, 2022, 8 (3): 411- 413.
doi: 10.1021/acsinfecdis.2c00054 |
13 |
SOKOL-BORRELLI S L , REILLY S M , HOLMES M J , et al. A transcriptional network required for bradyzoite development in Toxoplasma gondii is dispensable for recrudescent disease[J]. Nat Commun, 2023, 14 (1): 6078.
doi: 10.1038/s41467-023-40948-w |
14 |
MARKUS B M , WALDMAN B S , LORENZI H A , et al. High-resolution mapping of transcription initiation in the asexual stages of Toxoplasma gondii[J]. Front Cell Infect Microbiol, 2021, 10, 617998.
doi: 10.3389/fcimb.2020.617998 |
15 |
DU K G , LU F , XIE C Z , et al. Toxoplasma gondii infection induces cell apoptosis via multiple pathways revealed by transcriptome analysis[J]. J Zhejiang Univ Sci B, 2022, 23 (4): 315- 327.
doi: 10.1631/jzus.B2100877 |
16 |
BEHNKE M S , WOOTTON J C , LEHMANN M M , et al. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii[J]. PLoS One, 2010, 5 (8): e12354.
doi: 10.1371/journal.pone.0012354 |
17 |
IWANAGA S , KANEKO I , KATO T , et al. Identification of an AP2-family protein that is critical for malaria liver stage development[J]. PLoS One, 2012, 7 (11): e47557.
doi: 10.1371/journal.pone.0047557 |
18 |
RIECHMANN J L , MEYEROWITZ E M . The AP2/EREBP family of plant transcription factors[J]. Biol Chem, 1998, 379 (6): 633- 646.
doi: 10.1515/bchm.1998.379.6.633 |
19 |
BALAJI S , BABU M M , IYER L M , et al. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains[J]. Nucleic Acids Res, 2005, 33 (13): 3994- 4006.
doi: 10.1093/nar/gki709 |
20 |
RADKE J B , LUCAS O , DE SILVA E K , et al. ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst[J]. Proc Natl Acad Sci U S A, 2013, 110 (17): 6871- 6876.
doi: 10.1073/pnas.1300059110 |
21 |
JENINGA M D , QUINN J E , PETTER M . ApiAP2 transcription factors in apicomplexan parasites[J]. Pathogens, 2019, 8 (2): 47.
doi: 10.3390/pathogens8020047 |
22 |
CAMPBELL T L , DE SILVA E K , OLSZEWSKI K L , et al. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite[J]. PLoS Pathog, 2010, 6 (10): e1001165.
doi: 10.1371/journal.ppat.1001165 |
23 |
RADKE J B , WORTH D , HONG D , et al. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis[J]. PLoS Pathog, 2018, 14 (5): e1007035.
doi: 10.1371/journal.ppat.1007035 |
24 |
KIM S K , BOOTHROYD J C . Stage-specific expression of surface antigens by Toxoplasma gondii as a mechanism to facilitate parasite persistence[J]. J Immunol, 2005, 174 (12): 8038- 8048.
doi: 10.4049/jimmunol.174.12.8038 |
25 | HUANG S , HOLMES M J , RADKE J B , et al. Toxoplasma gondii AP2IX-4 regulates gene expression during bradyzoite development[J]. mSphere, 2017, 2 (2): e00054- 17. |
26 |
WANG J C , DIXON S E , TING L M , et al. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation[J]. PLoS Pathog, 2014, 10 (1): e1003830.
doi: 10.1371/journal.ppat.1003830 |
27 |
KHELIFA A S , SANCHEZ C G , LESAGE K M , et al. TgAP2IX-5 is a key transcriptional regulator of the asexual cell cycle division in Toxoplasma gondii[J]. Nat Commun, 2021, 12 (1): 116.
doi: 10.1038/s41467-020-20216-x |
28 | WANG C Y , HU D D , TANG X M , et al. Internal daughter formation of Toxoplasma gondii tachyzoites is coordinated by transcription factor TgAP2IX-5[J]. Cell Microbiol, 2021, 23 (3): e13291. |
29 |
BECK J R , RODRIGUEZ-FERNANDEZ I A , DE LEON J C , et al. A novel family of Toxoplasma IMC proteins displays a hierarchical organization and functions in coordinating parasite division[J]. PLoS Pathog, 2010, 6 (9): e1001094.
doi: 10.1371/journal.ppat.1001094 |
30 | HONG D P , RADKE J B , WHITE M W . Opposing transcriptional mechanisms regulate Toxoplasma development[J]. mSphere, 2017, 2 (1): e00347- 16. |
31 |
WALKER R , GISSOT M , CROKEN M M , et al. The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation[J]. Mol Microbiol, 2013, 87 (3): 641- 655.
doi: 10.1111/mmi.12121 |
32 |
WALKER R , GISSOT M , HUOT L , et al. Toxoplasma transcription factor TgAP2XI-5 regulates the expression of genes involved in parasite virulence and host invasion[J]. J Biol Chem, 2013, 288 (43): 31127- 31138.
doi: 10.1074/jbc.M113.486589 |
33 | ANTUNES A V , SHAHINAS M , SWALE C , et al. In vitro production of cat-restricted Toxoplasma pre-sexual stages[J]. Nature, 2023, 625 (7994): 366- 376. |
34 | FAN F Q , XUE L L , YIN X Y , et al. AP2XII-1 is a negative regulator of merogony and presexual commitment in Toxoplasma gondii[J]. mBio, 2023, 14 (5): e01785- 23. |
35 |
ANDERSON-WHITE B R , IVEY F D , CHENG K , et al. A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii[J]. Cell Microbiol, 2011, 13 (1): 18- 31.
doi: 10.1111/j.1462-5822.2010.01514.x |
36 | SRIVASTAVA S , WHITE M W , SULLIVAN JR W J . Toxoplasma gondii AP2XII-2 contributes to proper progression through S-phase of the cell cycle[J]. mSphere, 2020, 5 (5): e00542- 20. |
37 | SRIVASTAVA S , HOLMES M J , WHITE M W , et al. Toxoplasma gondii AP2XII-2 contributes to transcriptional repression for sexual commitment[J]. mSphere, 2023, 8 (2): e00606- 22. |
38 | 张晶雯. AP2X-4和AP2XⅡ-5对弓形虫生长发育的调节作用[D]. 武汉: 华中农业大学, 2020. |
ZHANG J W. Regulation of Toxoplasma gondii growth and development by AP2X-4 and AP2XII-5[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese) | |
39 | ZHANG J W , FAN F Q , ZHANG L H , et al. Nuclear factor AP2X-4 governs the expression of cell cycle- and life stage-regulated genes and is critical for Toxoplasma growth[J]. Microbiol Spectr, 2022, 10 (4): e00120- 22. |
40 |
DE MONERRI N C S , YAKUBU R R , CHEN A L , et al. The ubiquitin proteome of Toxoplasma gondii reveals roles for protein ubiquitination in cell-cycle transitions[J]. Cell Host Microbe, 2015, 18 (5): 621- 633.
doi: 10.1016/j.chom.2015.10.014 |
41 |
VANAGAS L , MUÑOZ D , CRISTALDI C , et al. Histone variant H2B. Z acetylation is necessary for maintenance of Toxoplasma gondii biological fitness[J]. Biochim Biophys Acta Gene Regul Mech, 2023, 1866 (3): 194943.
doi: 10.1016/j.bbagrm.2023.194943 |
42 |
FLECK K , NITZ M , JEFFERS V . "Reading" a new chapter in protozoan parasite transcriptional regulation[J]. PLoS Pathog, 2021, 17 (12): e1010056.
doi: 10.1371/journal.ppat.1010056 |
43 |
JEFFERS V , SULLIVAN JR W J . Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii[J]. Eukaryot Cell, 2012, 11 (6): 735- 742.
doi: 10.1128/EC.00088-12 |
44 |
MIAO J , LAWRENCE M , JEFFERS V , et al. Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development[J]. Mol Microbiol, 2013, 89 (4): 660- 675.
doi: 10.1111/mmi.12303 |
45 |
GAJI R Y , SHARP A K , BROWN A M . Protein kinases in Toxoplasma gondii[J]. Int J Parasitol, 2021, 51 (6): 415- 429.
doi: 10.1016/j.ijpara.2020.11.006 |
46 |
BLUME M , MAUS D . Converting and hoarding driven by protein phosphorylation in Toxoplasma gondii[J]. Trends Parasitol, 2023, 39 (4): 232- 234.
doi: 10.1016/j.pt.2023.02.002 |
47 |
SEDDON A R , DAS A B , HAMPTON M B , et al. Site-specific decreases in DNA methylation in replicating cells following exposure to oxidative stress[J]. Hum Mol Genet, 2023, 32 (4): 632- 648.
doi: 10.1093/hmg/ddac232 |
48 |
CHEN C , WANG Z H , DING Y , et al. DNA methylation: from cancer biology to clinical perspectives[J]. Front Biosci (Landmark Ed), 2022, 27 (12): 326.
doi: 10.31083/j.fbl2712326 |
49 |
SAKSOUK N , BHATTI M M , KIEFFER S , et al. Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii[J]. Mol Cell Biol, 2005, 25 (23): 10301- 10314.
doi: 10.1128/MCB.25.23.10301-10314.2005 |
50 |
AFONSO C F , MARQUES M C , ANTÓNIO J P M , et al. Cysteine-assisted click-chemistry for proximity-driven, site-specific acetylation of histones[J]. Angew Chem Int Ed, 2022, 61 (46): e202208543.
doi: 10.1002/anie.202208543 |
51 |
HARRIS M T , JEFFERS V , MARTYNOWICZ J , et al. A novel GCN5b lysine acetyltransferase complex associates with distinct transcription factors in the protozoan parasite Toxoplasma gondii[J]. Mol Biochem Parasitol, 2019, 232, 111203.
doi: 10.1016/j.molbiopara.2019.111203 |
52 |
NDOJA A , COHEN R E , YAO T T . Ubiquitin signals proteolysis-independent stripping of transcription factors[J]. Mol Cell, 2014, 53 (6): 893- 903.
doi: 10.1016/j.molcel.2014.02.002 |
53 |
YIN D Q , JIANG N , ZHANG Y , et al. Global lysine crotonylation and 2-hydroxyisobutyrylation in phenotypically different Toxoplasma gondii parasites[J]. Mol Cell Proteomics, 2019, 18 (11): 2207- 2224.
doi: 10.1074/mcp.RA119.001611 |
54 |
YIN D Q , JIANG N , CHENG C , et al. Protein lactylation and metabolic regulation of the zoonotic parasite Toxoplasma gondii[J]. Genomics Proteomics Bioinformatics, 2023, 21 (6): 1163- 1181.
doi: 10.1016/j.gpb.2022.09.010 |
55 |
NARDELLI S C , DE MONERRI N C S , VANAGAS L , et al. Genome-wide localization of histone variants in Toxoplasma gondii implicates variant exchange in stage-specific gene expression[J]. BMC Genomics, 2022, 23 (1): 128.
doi: 10.1186/s12864-022-08338-6 |
56 |
ULAHANNAN N , CUTLER R , DOÑA-TERMINE R , et al. Genomic insights into host and parasite interactions during intracellular infection by Toxoplasma gondii[J]. PLoS One, 2022, 17 (9): e0275226.
doi: 10.1371/journal.pone.0275226 |
57 |
BRAUN L , CANNELLA D , ORTET P , et al. A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii[J]. PLoS Pathog, 2010, 6 (5): e1000920.
doi: 10.1371/journal.ppat.1000920 |
58 |
郑雨昕, 张义伟, 姜宁. 恶性疟原虫ApiAP2蛋白质家族研究进展[J]. 畜牧兽医学报, 2022, 53 (5): 1354- 1363.
doi: 10.11843/j.issn.0366-6964.2022.05.004 |
ZHENG Y X , ZHANG Y W , JIANG N . Research advance on ApiAP2 family of Plasmodium falciparum[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (5): 1354- 1363.
doi: 10.11843/j.issn.0366-6964.2022.05.004 |
|
59 |
SANTOS J M , JOSLING G , ROSS P , et al. Red blood cell invasion by the malaria parasite is coordinated by the PfAP2-I transcription factor[J]. Cell Host Microbe, 2017, 21 (6): 731- 741. e10.
doi: 10.1016/j.chom.2017.05.006 |
60 |
JOSLING G A , PETTER M , OEHRING S C , et al. A Plasmodium falciparum bromodomain protein regulates invasion gene expression[J]. Cell Host Microbe, 2015, 17 (6): 741- 751.
doi: 10.1016/j.chom.2015.05.009 |
[1] | 贾宏霞, 刘在霞, 周乐, 鲍艳春, 霍晨曦, 左鹏鹏, 谷明娟, 娜日苏, 张文广. 基因组选择在肉牛中的研究进展[J]. 畜牧兽医学报, 2024, 55(9): 3757-3768. |
[2] | 陈南珠, 李俊良, 余大为, 周心仪, 王晶, 邹惠影, 杜卫华. 猪MKRN3基因的印记表达和DNA甲基化状态分析[J]. 畜牧兽医学报, 2024, 55(9): 3853-3863. |
[3] | 刘思宇, 张曼, 张岩, 魏稚彤, 祁兴磊, 高腾云, 刘贤, 梁栋, 付彤. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55(9): 3876-3886. |
[4] | 黄红艳, 张力允, 黄智荣, 伍仲平, 张续勐, 欧阳宏佳, 陈俊鹏, 林桢平, 田允波, 李秀金, 黄运茂. 狮头鹅群体遗传多样性和体重体尺全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(9): 3914-3924. |
[5] | 师睿, 李珊珊, 张海亮, 路海博, 闫青霞, 张毅, 陈绍祜, 王雅春. 中国荷斯坦牛繁殖性状的基因型与环境互作[J]. 畜牧兽医学报, 2024, 55(9): 3968-3977. |
[6] | 赵康宁, 杨忠龙, 陈怡, 朱春成, 郭云飞, 印云聪, 秦涛, 陈素娟, 彭大新. 16株新型H3N3亚型禽流感病毒的遗传变异分析[J]. 畜牧兽医学报, 2024, 55(9): 4029-4040. |
[7] | 张姗, 刘大虎, 刘宝京, 梁琳, 梁瑞英, 汤新明, 仇旭升, 丁铲, 丁家波, 侯绍华. 一株鸽副黏病毒Ⅰ型分离鉴定及致病性分析[J]. 畜牧兽医学报, 2024, 55(9): 4051-4060. |
[8] | 刘炜, 马嘉怡, 耿浩宇, 谢添, 苗苏南, 廖宗杰, 耿士忠. 一株广谱沙门菌噬菌体的分离鉴定及其生物学特性[J]. 畜牧兽医学报, 2024, 55(9): 4061-4068. |
[9] | 王梦迪, 王昱旻, 张震, 鲁秀香, 王恒, 樊文杰, 姚晨, 刘鹏翔, 马延杰, 褚贝贝, 王江, 杨国宇. TSG101基因敲低对猪伪狂犬病病毒体外增殖的影响[J]. 畜牧兽医学报, 2024, 55(9): 4110-4120. |
[10] | 刘雯雯, 董发明, 毕延震. 多基因编辑技术的发展及其在畜牧种质创新中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3267-3275. |
[11] | 安塔娜, 韩海格, 陶克涛, 宝音德力格尔, 李文博, 芒来. 家马不同毛色遗传特性研究综述[J]. 畜牧兽医学报, 2024, 55(8): 3297-3308. |
[12] | 梁瑞英, 索静霞, 梁琳, 刘贤勇, 丁家波, 索勋, 汤新明. 艾美耳球虫的遗传操作:平台建立、应用与展望[J]. 畜牧兽医学报, 2024, 55(8): 3362-3373. |
[13] | 张涛, 李佳芪, 胥磊, 王丹, 张梦华, 张涛, 闫梦婕, 王玮韬, 范守民, 黄锡霞. 基于全基因组重测序数据的新疆褐牛基因组结构变异检测及群体结构分析[J]. 畜牧兽医学报, 2024, 55(8): 3427-3435. |
[14] | 牛一凡, 李崇阳, 杨柏高, 张培培, 张航, 冯肖艺, 曹建华, 余洲, 马友记, 赵学明. 不同单细胞全基因组扩增体系扩增牛微量血液DNA效果评价[J]. 畜牧兽医学报, 2024, 55(8): 3436-3445. |
[15] | 彭章蓉, 孙皓然, 张乔儒, 杨颖, 郭鸿莹, 常彤, 赵卉, 张铁涛. 不同年龄梅花鹿肌内脂肪沉积规律及其对风味品质影响[J]. 畜牧兽医学报, 2024, 55(8): 3541-3551. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||