畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2588-2598.doi: 10.11843/j.issn.0366-6964.2024.06.030
陈浩1(), 郝哥1(
), 蒲家艳1, 肖洁1, 熊常明1, 何维1, 朱煜华1, 许力文1, 姜庆2,*(
), 杨光友1,*(
)
收稿日期:
2023-09-05
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
姜庆,杨光友
E-mail:chenhao2197@outlook.com;haoge@stu.sicau.edu.cn;jiangqing0904@126.com;guangyou1963@126.com
作者简介:
陈浩(1997-),男,贵州遵义人,硕士,主要从事动物寄生虫病研究,E-mail: chenhao2197@outlook.com陈浩和郝哥为同等贡献作者
基金资助:
Hao CHEN1(), Ge HAO1(
), Jiayan PU1, Jie XIAO1, Changming XIONG1, Wei HE1, Yuhua ZHU1, Liwen XU1, Qing JIANG2,*(
), Guangyou YANG1,*(
)
Received:
2023-09-05
Online:
2024-06-23
Published:
2024-06-28
Contact:
Qing JIANG, Guangyou YANG
E-mail:chenhao2197@outlook.com;haoge@stu.sicau.edu.cn;jiangqing0904@126.com;guangyou1963@126.com
摘要:
本研究旨在评价肠艾美耳球虫重组微线蛋白2(rEiMIC2)对兔的免疫保护效果,为肠艾美耳球虫重组亚单位疫苗的研究提供参考。在肠艾美耳球虫转录组数据中筛选出EiMIC2基因,进行克隆、原核表达和蛋白纯化,并采用免疫印迹检测重组蛋白的免疫反应性。将35日龄无球虫新西兰幼兔32只随机分为4组(未免疫未攻虫组、未免疫攻虫组、pET-32a(+)载体组和rEiMIC2免疫组),每组8只,未免疫未攻虫组和未免疫攻虫组每只颈部皮下注射1 mL无菌PBS,pET-32a(+)载体组和rEiMIC2免疫组每只分别接种100 μg pET-32a(+)载体蛋白、rEiMIC2,首免后2周进行二免。二免14 d后,除去未免疫未攻虫组,其余3组每只新西兰兔口服接种5×104个肠艾美耳球虫孢子化卵囊;攻虫14 d后安乐死所有新西兰兔。重组蛋白免疫兔后通过观察临床症状、肠道病变、测定兔的相对增重率、卵囊减少率、抗球虫指数(ACI)值和料肉比以及检测血清中特异性IgG、IL-2、IL-4、IL-10、IFN-γ综合评价rEiMIC2的免疫保护效果。结果显示,EiMIC2基因开放阅读框长度为1 605 bp,编码的蛋白分子质量约为57.68 ku。免疫印迹显示rEiMIC2能够被阳性血清所识别,表明其具有良好的免疫反应性。免疫保护试验显示:攻虫后各组幼兔陆续出现精神沉郁和腹泻的症状,未免疫攻虫组和rEiMIC2免疫组各有1只兔死亡;rEiMIC2免疫组相对增重率为73.97%,卵囊减少率为69.98%,ACI值为136.97,料肉比为3.98∶1,与未免疫攻虫组差异显著(P < 0.05);rEiMIC2免疫组肠道病变与未免疫攻虫组相比较轻,血清中特异性IgG水平显著高于未免疫攻虫组(P < 0.05)。综上,rEiMIC2免疫兔后,能有效减少卵囊排出和增重损失,减轻肠道损伤,具有一定的保护效果。
中图分类号:
陈浩, 郝哥, 蒲家艳, 肖洁, 熊常明, 何维, 朱煜华, 许力文, 姜庆, 杨光友. 肠艾美耳球虫重组微线蛋白2对家兔免疫保护效果评价[J]. 畜牧兽医学报, 2024, 55(6): 2588-2598.
Hao CHEN, Ge HAO, Jiayan PU, Jie XIAO, Changming XIONG, Wei HE, Yuhua ZHU, Liwen XU, Qing JIANG, Guangyou YANG. Evaluation of the Immune Protective Effect of Recombinant MIC2 from Eimeria intestinalis in Rabbits[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2588-2598.
表 1
免疫分组"
组别 Group | 动物数量 Rabbits number | 免疫原及剂量 Immunogen and dosage | 免疫方式 Immunization route | 免疫次数 Immunization times | 攻虫 Challenge dosage |
未免疫未攻虫组 Unchallenged group | 8 | PBS 1 mL | 颈部皮下注射 | 2次,同等剂量,间隔14 d | 未感染 |
未免疫攻虫组 Challenged group | 8 | PBS 1 mL | 颈部皮下注射 | 2次,同等剂量,间隔14 d | 口服5×104孢子化卵囊 |
pET-32a(+)组 pET-32a(+) vector group | 8 | 100 μg载体蛋白+1 mg皂素溶于无菌PBS 1 mL | 颈部皮下注射 | 2次,同等剂量,间隔14 d | 口服5×104孢子化卵囊 |
rEiMIC2免疫组 rEiMIC2 immunized group | 8 | 100 μg rEiMIC2+ 1mg皂素溶于无菌PBS 1 mL | 颈部皮下注射 | 2次,同等剂量,间隔14 d | 口服5×104孢子化卵囊 |
图 1
EiMIC2与其他球虫MIC2氨基酸序列比对 A. EiMIC2基因扩增结果:M. MarkerIII DNA相对分子质量标准;1. PCR产物;B.氨基酸序列比对GenBank序列号:E. intestinalis (OP805603); E. praecox (CDI78561.1); E. acervuline (XP_013250247.1); E. maxima (XP_013335154.1); E. necatrix (XP_013433151.1); E. brunetti (CDJ53405.1); E. mitis (XP_013349538.1); E. tenella (XP_013229200.1)。红色方框:B抗原表位"
表 5
各组平均增重率、相对增重率、卵囊减少率和料肉比"
组别 Group | 攻虫前平均增重/g Average body weight gain before challenge | 攻虫后平均增重/g Average body weight gain after challenge | 相对增重率/% Relative weight gain | OPG/105 | 卵囊减少率/% Oocyst decrease ratio | 料肉比 Feed conversion ratio | 平均病变评分 Mean lesion scores | ACI |
未免疫未攻虫组 | 510.00±91.92a | 716.50±98.48a | — | — | — | 3.00∶1 | — | 200 |
Unchallenged group | ||||||||
未免疫攻虫组 | 481.62±66.25a | 438.28±81.60b | 61.17 | 9.45±8.79a | — | 4.71∶1 | 2.03±1.39 | 88.37 |
Challenged group | ||||||||
pET-32a(+)组 | 511.18±90.82a | 419.37±80.64b | 58.53 | 9.32±10.01a | -1.4 | 4.95∶1 | 2.67±0.75 | 91.83 |
pET-32a(+) vector group | ||||||||
rEiMIC2免疫组 | 471.87±82.97a | 530.00±90.18c | 73.97 | 2.83±3.22b | 69.98 | 3.98∶1 | 1.45±1.19 | 136.97 |
rEiMIC2 immunization group |
1 |
XIE Y , XIAO J , ZHOU X , et al. Global transcriptome landscape of the rabbit protozoan parasite Eimeria stiedae[J]. Parasit Vectors, 2021, 14 (1): 308.
doi: 10.1186/s13071-021-04811-5 |
2 | PAKANDL M . Coccidia of rabbit: a review[J]. Folia Parasitol (Praha), 2013, 56 (3): 153- 166. |
3 | SHI T Y , TAO G R , BAO G L , et al. Stable transfection of Eimeria intestinalis and investigation of its life cycle, reproduction and immunogenicity[J]. Front Microbiol, 2016, 7, 807. |
4 | ABD EI-GHANY W A . Coccidiosis: a parasitic disease of significant importance in rabbits[J]. World Vet J, 2020, 10 (4): 499- 507. |
5 | 闫文朝, 王天奇, 索勋, 等. 家兔球虫病的研究进展[J]. 中国兽医科学, 2010, 40 (11): 1200- 1205. |
YAN W C , WANG T Q , SUO X , et al. Advances in coccidiosis of domestic rabbits[J]. Chinese Veterinary Science, 2010, 40 (11): 1200- 1205. | |
6 | 罗跃军, 任永军, 白鑫, 等. 斯氏艾美耳球虫重组表面抗原SAG13和SAG14对兔的免疫保护效果初步观察[J]. 畜牧兽医学报, 2022, 53 (3): 883- 893. |
LUO Y J , REN Y J , BAI X , et al. Preliminary observation on the Immunoprotective effects of Recombinant surface antigens SAG13 and SAG14 of Eimeria stiedae in rabbits[J]. Acta Veterinaria Et Zootechnica Sinica, 2022, 53 (3): 883- 893. | |
7 |
XIAO J , CHEN H , ZHENG R Y , et al. Recombinant GMA56 and ROP17 of Eimeria magna conferred protection against infection by homologous species[J]. Front Immunol, 2023, 13, 1037949.
doi: 10.3389/fimmu.2022.1037949 |
8 |
DUBOIS D J , SOLDATI-FAVRE D . Biogenesis and secretion of micronemes in Toxoplasma gondii[J]. Cell Microbiol, 2019, 21 (5): e13018.
doi: 10.1111/cmi.13018 |
9 |
OLAJIDE J S , QU Z G , YANG S L , et al. Eimeria proteins: order amidst disorder[J]. Parasit Vectors, 2022, 15 (1): 38.
doi: 10.1186/s13071-022-05159-0 |
10 | 田秀玲, 汤新明, 秦梅, 等. 基于IFA技术检测微线体蛋白2在艾美耳属球虫的空间分布[J]. 寄生虫与医学昆虫学报, 2015, 21 (4): 240- 243. |
TIAN X L , TANG X M , QIN M , et al. Analysis on the location of microneme 2 protein in sporozoites of Eimeria spp. by indirect immunofluorescence assay[J]. Acta Parasitology et Medica Entomologica Sinica, 2015, 21 (4): 240- 243. | |
11 |
FOROUTAN M , ZAKI L , GHAFFARIFAR F . Recent progress in microneme-based vaccines development against Toxoplasma gondii[J]. Clin Exp Vaccine Res, 2018, 7 (2): 93- 103.
doi: 10.7774/cevr.2018.7.2.93 |
12 |
YAN M , CUI X X , ZHAO Q P , et al. Molecular characterization and protective efficacy of the microneme 2 protein from Eimeria tenella[J]. Parasite, 2018, 25, 60.
doi: 10.1051/parasite/2018061 |
13 | ZHANG Z C , LIU L R , HUANG J W , et al. The molecular characterization and immune protection of microneme 2 of Eimeria acervulina[J]. Vet Parasitol, 2006, 215, 96- 105. |
14 |
XIAO J , HE W , XIONG C M , et al. Protective efficacy of recombinant proteins AMA1 and IMP1 in rabbits infected with Eimeria intestinalis[J]. Vet Parasitol, 2023, 320, 109985.
doi: 10.1016/j.vetpar.2023.109985 |
15 |
WEI W R , SHEN N X , XIAO J , et al. Expression analysis and serodiagnostic potential of microneme proteins 1 and 3 in Eimeria stiedai[J]. Genes (Basel), 2020, 11 (7): 725.
doi: 10.3390/genes11070725 |
16 |
BORTOLUZZI C , PARAS K L , APPLEGATE T J , et al. Comparison between McMaster and Mini-FLOTAC methods for the enumeration of Eimeria maxima oocysts in poultry excreta[J]. Vet Parasitol, 2018, 254, 21- 25.
doi: 10.1016/j.vetpar.2018.02.039 |
17 |
JOHNSON J , REID W M . Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens[J]. Exp Parasitol, 1970, 28 (1): 30- 36.
doi: 10.1016/0014-4894(70)90063-9 |
18 |
SHEN N X , WEI W R , CHEN Y H , et al. An antibody persistent and protective two rSsCLP-based subunit cocktail vaccine against Sarcoptes scabiei in a rabbit model[J]. Vaccines (Basel), 2020, 8 (1): 129.
doi: 10.3390/vaccines8010129 |
19 |
FANG S F , GU X L , EL-ASHRAM S , et al. Immune protection provided by a precocious line trivalent vaccine against rabbit Eimeria[J]. Vet Parasitol, 2019, 275, 108927.
doi: 10.1016/j.vetpar.2019.108927 |
20 |
SOUTTER F , WERLING D , NOLAN M , et al. A novel whole yeast-based subunit oral vaccine against Eimeria tenella in Chickens[J]. Front Immunol, 2022, 13, 809711.
doi: 10.3389/fimmu.2022.809711 |
21 |
LIU Q , CHEN Z T , SHI W Y , et al. Preparation and initial application of monoclonal antibodies that recognize Eimeria tenella microneme proteins 1 and 2[J]. Parasitol Res, 2014, 113 (11): 4151- 4161.
doi: 10.1007/s00436-014-4087-2 |
22 |
BROSSIER F , DAVID SIBLEY L . Toxoplasma gondii: microneme protein MIC2[J]. Int J Biochem Cell Biol, 2005, 37 (11): 2266- 2272.
doi: 10.1016/j.biocel.2005.06.006 |
23 |
BANDINI G , LEON D R , HOPPE C M , et al. O-Fucosylation of thrombospondin-like repeats is required for processing of microneme protein 2 and for efficient host cell invasion by Toxoplasma gondii tachyzoites[J]. J Biol Chem, 2019, 294 (6): 1967- 1983.
doi: 10.1074/jbc.RA118.005179 |
24 |
SASAI K , FETTERER R H , LILLEHOJ H , et al. Characterization of monoclonal antibodies that recognize the Eimeria tenella Microneme protein MIC2[J]. J Parasitol, 2008, 94 (6): 1432- 1434.
doi: 10.1645/GE-1558.1 |
25 | CARRUTHERS V B, TOMLEY F M. Microneme proteins in apicomplexans[M]//BURLEIGH B A, SOLDATI-FAVRE D. Molecular Mechanisms of Parasite Invasion. New York: Springer, 2008: 33-45. |
26 |
HOAN T D , ZHANG Z C , HUANG J W , et al. Identification and immunogenicity of microneme protein 2 (EbMIC2) of Eimeria brunetti[J]. Exp Parasitol, 2016, 162, 7- 17.
doi: 10.1016/j.exppara.2015.12.015 |
27 |
HUANG J W , ZHANG Z C , LI M H , et al. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge[J]. Parasitol Int, 2015, 64 (5): 408- 416.
doi: 10.1016/j.parint.2015.06.002 |
28 | AKPO Y , KPODÉKON M T , DJAGO Y , et al. Vaccination of rabbits against coccidiosis using precocious lines of Eimeria magna and Eimeria media in Benin[J]. Vet Parasitol, 2012, 184 (1): 73- 76. |
29 | SADEK BACHENE M , TEMIM S , AINBAZIZ H , et al. A vaccination trial with a precocious line of Eimeria magna in Algerian local rabbits Oryctolagus cuniculus[J]. Vet Parasitol, 2018, 261, 73- 76. |
30 | PAKANDL M , SEWALD B , DROUET-VIARD F . Invasion of the intestinal tract by sporozoites of Eimeria coecicola and Eimeria intestinalis in naive and immune rabbits[J]. Parasitol Res, 2006, 98 (4): 310- 316. |
31 | DROUET-VIARD F , LICOIS D , PROVÔT F , et al. The invasion of the rabbit intestinal tract by Eimeria intestinalis sporozoites[J]. Parasitol Res, 1994, 80 (8): 706- 707. |
32 | YUAN X , LIU J , HU X F , et al. Alterations in the jejunal microbiota and fecal metabolite profiles of rabbits infected with Eimeria intestinalis[J]. Parasit Vectors, 2022, 15 (1): 231. |
33 | LU C Y , YAN Y Q , JIAN F C , et al. Coccidia-Microbiota interactions and their effects on the host[J]. Front Cell Infect Microbiol, 2021, 11, 751481. |
34 | CHAPMAN H D . Milestones in avian coccidiosis research: a review[J]. Poult Sci, 2014, 93 (3): 501- 511. |
35 | DONG X J , ABDELNABI G H , LEE S H , et al. Enhanced egress of intracellular Eimeria tenella sporozoites by splenic lymphocytes from coccidian-infected chickens[J]. Infect Immun, 2011, 79 (8): 3465- 3470. |
36 | SONG X K , HUANG X M , YAN R F , et al. Efficacy of chimeric DNA vaccines encoding Eimeria tenella 5401 and chicken IFN-γ or IL-2 against coccidiosis in chickens[J]. Exp Parasitol, 2015, 156, 19- 25. |
37 | HOAN T D , THAO D T , GADAHI J A , et al. Analysis of humoral immune response and cytokines in chickens vaccinated with Eimeria brunetti apical membrane antigen-1 (EbAMA1) DNA vaccine[J]. Exp Parasitol, 2014, 144, 65- 72. |
38 | ARENDT M , ELISSA J , SCHMIDT N , et al. Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens[J]. Vet Immunol Immunopathol, 2019, 218, 109934. |
39 | GAZZINELLI-GUIMARÃES A C , GAZZINELLI-GUIMARÃES P H , NOGUEIRA D S , et al. IgG induced by vaccination with Ascaris suum extracts is protective against infection[J]. Front Immunol, 2018, 9, 2535. |
40 | XIONG L , CHEN L , CHEN Y X , et al. Evaluation of the immunoprotective effects of eight recombinant proteins from Baylisascaris schroederi in mice model[J]. Parasit Vectors, 2023, 16 (1): 254. |
41 | ZHAO P F , LI Y C , ZHOU Y Q , et al. In vivo immunoprotective comparison between recombinant protein and DNA vaccine of Eimeria tenella surface antigen 4[J]. Vet Parasitol, 2020, 278, 109032. |
42 | ZHANG Z C , LIU X C , YANG X C , et al. The molecular characterization and immunity identification of microneme 3 of Eimeria acervulina[J]. J Eukaryot Microbiol, 2016, 63 (6): 709- 721. |
43 | CHEN H , PU J Y , XIAO J , et al. Evaluation of the immune protective effects of rEmMIC2 and rEmMIC3 from Eimeria magna in rabbits[J]. Parasitol Res, 2023, 122 (2): 661- 669. |
[1] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[2] | 王康, 刘格言, 王宇, 杨振, 唐欣巍, 曹三杰, 黄小波, 颜其贵, 伍锐, 赵勤, 杜森焱, 文心田, 文翼平. 副猪革拉瑟菌影递送猪圆环病毒2型DNA二联疫苗的制备及小鼠免疫效果评价[J]. 畜牧兽医学报, 2024, 55(3): 1179-1191. |
[3] | 武文英, 夏青, 胡萌婕, 赵逸轩, 王琛, 张宇豪, 郝成武, 贺笋, 郭爱珍, 陈建国, 陈颖钰. 牛支原体兔体攻毒模型的建立[J]. 畜牧兽医学报, 2024, 55(3): 1268-1277. |
[4] | 陈孟娟, 刘雨晴, 王智通, 温佳乐, 许会芬, 于光晴, 李明. 新西兰白兔BMP15基因的真核表达载体构建、表达模式及其在卵巢组织的表达[J]. 畜牧兽医学报, 2024, 55(2): 562-575. |
[5] | 张倩文, 刘玉梅, 石丽辉, 梁文军, 李梦云, 王玉琴, 张自强. 生产母兔沙门菌感染的病理学变化及其药物敏感性分析[J]. 畜牧兽医学报, 2023, 54(8): 3510-3518. |
[6] | 郑若愚, 任永军, 肖洁, 白鑫, 蒲家艳, 陈浩, 杨光友. 斯氏艾美耳球虫3-磷酸甘油醛脱氢酶重组蛋白对兔的免疫保护效果评价[J]. 畜牧兽医学报, 2023, 54(6): 2581-2595. |
[7] | 李玉娟, 张原铭, 张北育, 李福昌, 刘磊. 饲粮赖氨酸水平对安哥拉兔产毛性能及毛囊发育的影响[J]. 畜牧兽医学报, 2023, 54(5): 2013-2019. |
[8] | 黄翠锐, 郝桂英, 周宇, 田焱, 杨富升, 唐丽, 杨光友, 谢跃, 何冉, 徐璟, 古小彬. 绵羊痒螨重组精氨酸激酶诱导兔皮肤嗜酸性粒细胞的聚集[J]. 畜牧兽医学报, 2023, 54(5): 2186-2194. |
[9] | 袁生, 李安琪, 吕文珂, 羊露露, 周峰, 黄良宗, 白挨泉, 温峰, 黄淑坚, 郭锦玥. 一株猪伪狂犬病病毒的主要毒力相关基因的变异分析及其对家兔的致病性[J]. 畜牧兽医学报, 2023, 54(5): 2195-2199. |
[10] | 孟令宅, 陈春丽, 于蒙蒙, 王占新, 王素艳, 刘鹏, 何塔娜, 郭茹, 陈运通, 刘长军, 祁小乐, 吴志强, 高玉龙. B亚型禽偏肺病毒对黄羽肉鸡致病性分析及其灭活疫苗免疫效果评价[J]. 畜牧兽医学报, 2023, 54(12): 5154-5161. |
[11] | 王佳宁, 张自强, 孔德婧, 冯彩彩, 张飞可, 刘玉梅. 家兔肺炎克雷伯菌的分离鉴定[J]. 畜牧兽医学报, 2023, 54(12): 5198-5206. |
[12] | 蔡佳炜, 张琛, 靳荣帅, 鲍志远, 张希宇, 王璠, 翟频, 赵博昊, 陈阳, 汤先伟, 吴信生. 热应激下公兔睾丸组织形态和精液转录组分析[J]. 畜牧兽医学报, 2023, 54(11): 4653-4663. |
[13] | 杨安琪, 李嘉诚, 宋颖, 陈欣, 靳荣帅, 赵博昊, 吴信生, 陈阳. CYP19A1对兔卵巢颗粒细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54(10): 4209-4219. |
[14] | 武殿阁, 夏苗, 颜安, 江皓天, 樊佳奇, 周思源, 韦旭, 刘树栋, 陈宝江. 香芹酚对肉兔生长性能、养分表观消化率及肠道形态、短链脂肪酸含量和菌群相关指标的影响[J]. 畜牧兽医学报, 2023, 54(10): 4233-4246. |
[15] | 肖洁, 罗跃军, 陈浩, 蒲家艳, 何维, 熊常明, 郝哥, 任永军, 杨光友. 兔斯氏艾美耳球虫、肠艾美耳球虫和大型艾美耳球虫PCR检测靶标的筛选与单一、多重直接PCR检测方法的建立[J]. 畜牧兽医学报, 2023, 54(10): 4327-4337. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||