1 |
GALE C , VELAZQUEZ E . Actinobacillus pleuropneumoniae: a review of an economically important pathogen[J]. Livestock, 2020, 25 (6): 308- 314.
doi: 10.12968/live.2020.25.6.308
|
2 |
刘雨潇, 胡海兵, 李树清, 等. 猪胸膜肺炎放线杆菌(APP)1型感染小鼠模型的建立及其病理学观察[J]. 上海交通大学学报: 农业科学版, 2015, 33 (5): 1- 5.
|
|
LIU Y X , HU H B , LI S Q , et al. Establish Actinobacillus pleuropneumonise type Ⅰ infection model in mice and odserve pathologicdl changes[J]. Journal of Shanghai Jiaotong University: Agricultural Science, 2015, 33 (5): 1- 5.
|
3 |
COHEN L M , GRØNTVEDT C A , KLEM T B , et al. A descriptive study of acute outbreaks of respiratory disease in Norwegian fattening pig herds[J]. Acta Vet Scand, 2020, 62 (1): 35.
doi: 10.1186/s13028-020-00529-z
|
4 |
LU Y C , LI M C , CHEN Y M , et al. DNA vaccine encoding type Ⅳ pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge[J]. Vaccine, 2011, 29 (44): 7740- 7746.
doi: 10.1016/j.vaccine.2011.07.127
|
5 |
DONÀ V , RAMETTE A , PERRETEN V . Comparative genomics of 26 complete circular genomes of 18 different serotypes of Actinobacillus pleuropneumoniae[J]. Microb Genom, 2022, 8 (2): 000776.
|
6 |
SITEAVU M I , DRUGEA R I , PITOIU E , et al. Antimicrobial resistance of Actinobacillus pleuropneumoniae, Streptococcus suis, and Pasteurella multocida isolated from Romanian swine farms[J]. Microorganisms, 2023, 11 (10): 2410.
doi: 10.3390/microorganisms11102410
|
7 |
VILARÓ A , NOVELL E , ENRIQUE-TARANCON V , et al. Susceptibility trends of swine respiratory pathogens from 2019 to 2022 to antimicrobials commonly used in Spain[J]. Porcine Health Manag, 2023, 9 (1): 47.
doi: 10.1186/s40813-023-00341-x
|
8 |
KONG F S , DING Z D , ZHANG K , et al. Optimization of extraction flavonoids from Exocarpium Citri Grandis and evaluation its hypoglycemic and hypolipidemic activities[J]. J Ethnopharmacol, 2020, 262, 113178.
doi: 10.1016/j.jep.2020.113178
|
9 |
LIU G X , LI S Y , ZHANG N M , et al. Sequential grade evaluation method exploration of Exocarpium Citri Grandis (Huajuhong) decoction pieces based on "network prediction→grading quantization→efficacy validation"[J]. J Ethnopharmacol, 2022, 291, 115149.
doi: 10.1016/j.jep.2022.115149
|
10 |
罗曦, 包永睿, 李天娇, 等. 基于"质-量"双标的枳壳质量分析方法研究[J]. 中草药, 2023, 54 (22): 7293- 7299.
|
|
LUO X , BAO Y R , LI T J , et al. Research on quality analysis method of Aurantii fructus based on"quality-quantity"double standard[J]. Chinese Traditional and Herbal Drugs, 2023, 54 (22): 7293- 7299.
|
11 |
ZHANG H H , ZHOU X J , ZHONG Y S , et al. Naringin suppressed airway inflammation and ameliorated pulmonary endothelial hyperpermeability by upregulating Aquaporin1 in lipopolysaccharide/cigarette smoke-induced mice[J]. Biomed Pharmacother, 2022, 150, 113035.
doi: 10.1016/j.biopha.2022.113035
|
12 |
MOHAMED E E , AHMED O M , ZOHEIR K M A , et al. Naringin-dextrin nanocomposite abates diethylnitrosamine/acetylaminofluorene-induced lung carcinogenesis by modulating oxidative stress, inflammation, apoptosis, and cell proliferation[J]. Cancers (Basel), 2023, 15 (20): 5102.
doi: 10.3390/cancers15205102
|
13 |
刘澈, 马源, 董旭鹏, 等. 柚皮苷对脓毒症引起的急性肺损伤小鼠保护作用的研究[J]. 中国临床药理学杂志, 2024, 40 (5): 693- 697.
|
|
LIU C , MA Y , DONG X P , et al. Protective effect of naringin on sepsis-induced acute lung injury in mice[J]. Chinese Journal of Clinical Pharmacology, 2024, 40 (5): 693- 697.
|
14 |
WEI Y , SUN L , LIU C , et al. Naringin regulates endoplasmic reticulum stress and mitophagy through the ATF3/PINK1 signaling axis to alleviate pulmonary fibrosis[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396 (6): 1155- 1169.
doi: 10.1007/s00210-023-02390-z
|
15 |
ZHAO G Y , HUANG Q L , JING X H , et al. Therapeutic effect and safety evaluation of naringin on Klebsiella pneumoniae in mice[J]. Int J Mol Sci, 2023, 24 (21): 15940.
doi: 10.3390/ijms242115940
|
16 |
CHEN Y , NIE Y C , LUO Y L , et al. Protective effects of naringin against paraquat-induced acute lung injury and pulmonary fibrosis in mice[J]. Food Chem Toxicol, 2013, 58, 133- 140.
doi: 10.1016/j.fct.2013.04.024
|
17 |
JIANG J Y , HUANG K , XU S Q , et al. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction[J]. Redox Biol, 2020, 36, 101638.
doi: 10.1016/j.redox.2020.101638
|
18 |
DALTON C M , SCHLEGEL C , HUNTER C J . Caveolin-1:a review of intracellular functions, tissue-specific roles, and epithelial tight junction regulation[J]. Biology (Basel), 2023, 12 (11): 1402.
|
19 |
MIN S M , TAO W T , DING D S , et al. Tetramethylpyrazine ameliorates acute lung injury by regulating the Rac1/LIMK1 signaling pathway[J]. Front Pharmacol, 2023, 13, 1005014.
doi: 10.3389/fphar.2022.1005014
|
20 |
ZHANG L , ZHAO F , XU H , et al. HtrA of Actinobacillus pleuropneumoniae is a virulence factor that confers resistance to heat shock and oxidative stress[J]. Gene, 2022, 841, 146771.
doi: 10.1016/j.gene.2022.146771
|
21 |
LI X Y , LIU Z W , GAO T , et al. Tea polyphenols protects tracheal epithelial tight junctions in lung during Actinobacillus pleuropneumoniae Infection via suppressing TLR-4/MAPK/PKC-MLCK signaling[J]. Int J Mol Sci, 2023, 24 (14): 11842.
doi: 10.3390/ijms241411842
|
22 |
AJITO T , HAGA Y , HOMMA S , et al. Immunohistological evaluation on respiratory lesions of pigs intranasally inoculated with Actinobacillus pleuropneumoniae serotype 1[J]. J Vet Med Sci, 1996, 58 (4): 297- 303.
doi: 10.1292/jvms.58.297
|
23 |
TANG H , WANG R , PANG S Q , et al. Native ApxIIA secreted by Actinobacillus pleuropneumoniae induces apoptosis in porcine alveolar macrophages dependent on concentration and acylation[J]. Vet Microbiol, 2023, 287, 109908.
doi: 10.1016/j.vetmic.2023.109908
|
24 |
WANG Y Y , WANG X , LI Y X , et al. Xuanfei Baidu Decoction reduces acute lung injury by regulating infiltration of neutrophils and macrophages via PD-1/IL17A pathway[J]. Pharmacol Res, 2022, 176, 106083.
doi: 10.1016/j.phrs.2022.106083
|
25 |
LEE D H , WOO J K , HEO W , et al. Citrus junos Tanaka peel extract and its bioactive naringin reduce fine dust-induced respiratory injury markers in BALB/c male mice[J]. Nutrients, 2022, 14 (5): 1101.
doi: 10.3390/nu14051101
|
26 |
SALAMA A A A , YASSEN N N , MANSOUR H M . Naringin protects mice from D-galactose-induced lung aging and mitochondrial dysfunction: Implication of SIRT1 pathways[J]. Life Sci, 2023, 324, 121471.
doi: 10.1016/j.lfs.2023.121471
|
27 |
TURGUT N H , KARA H , ELAGOZ S , et al. The Protective effect of naringin against bleomycin-induced pulmonary fibrosis in Wistar rats[J]. Pulm Med, 2016, 2016, 7601393.
|
28 |
HUANG Q L , LI W , JING X H , et al. Naringin's alleviation of the inflammatory response caused by Actinobacillus pleuropneumoniae by downregulating the NF-κB/NLRP3 signalling pathway[J]. Int J Mol Sci, 2024, 25 (2): 1027.
doi: 10.3390/ijms25021027
|
29 |
BRAUER C , HENNIG-PAUKA I , HOELTIG D , et al. Experimental Actinobacillus pleuropneumoniae challenge in swine: comparison of computed tomographic and radiographic findings during disease[J]. BMC Vet Res, 2012, 8 (1): 47.
doi: 10.1186/1746-6148-8-47
|
30 |
ZHANG Q H , PENG L , HAN W Y , et al. The morphology and metabolic changes of Actinobacillus pleuropneumoniae during its growth as a biofilm[J]. Vet Res, 2023, 54 (1): 42.
doi: 10.1186/s13567-023-01173-x
|
31 |
黄麒霖, 仇正英, 王贵波, 等. 猪传染性胸膜肺炎发病机制研究进展[J]. 黑龙江畜牧兽医, 2024, (3): 31- 37.
|
|
HUANG Q L , QIU Z Y , WANG G B , et al. Research progress on pathogenesis of porcine pleuropneumonia[J]. Heilongjiang Animal Science and Veterinary Medicine, 2024, (3): 31- 37.
|
32 |
CAO Q , WEI W B , WANG H , et al. Cleavage of E-cadherin by porcine respiratory bacterial pathogens facilitates airway epithelial barrier disruption and bacterial paracellular transmigration[J]. Virulence, 2021, 12 (1): 2296- 2313.
doi: 10.1080/21505594.2021.1966996
|
33 |
TANG H , ZHANG Q H , HAN W Y , et al. Identification of FtpA, a Dps-like protein involved in anti-oxidative stress and virulence in Actinobacillus pleuropneumoniae[J]. J Bacteriol, 2022, 204 (2): e0032621.
doi: 10.1128/jb.00326-21
|
34 |
HU Y F , JIANG C S , ZHAO Y Q , et al. TurboID screening of ApxI toxin interactants identifies host proteins involved in Actinobacillus pleuropneumoniae-induced apoptosis of immortalized porcine alveolar macrophages[J]. Vet Res, 2023, 54 (1): 62.
doi: 10.1186/s13567-023-01194-6
|
35 |
JING X H , ZHAO G Y , WANG G B , et al. Naringin alleviates pneumonia caused by Klebsiella pneumoniae infection by suppressing NLRP3 inflammasome[J]. Biomed Pharmacother, 2024, 170, 116028.
|
36 |
WU Y H , CAI C H , XIANG Y J , et al. Naringin ameliorates monocrotaline-induced pulmonary arterial hypertension through endothelial-to-mesenchymal transition inhibition[J]. Front Pharmacol, 2021, 12, 696135.
|
37 |
LV Q , WANG J J , XU C Q , et al. Pirfenidone alleviates pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways[J]. Mol Med, 2020, 26 (1): 49.
|
38 |
WANG Z J , LIU M , AI Y , et al. The compound artemisinin-hydroxychloroquine ameliorates bleomycin-induced pulmonary fibrosis in rats by inhibiting TGF-β1/Smad2/3 signaling pathway[J]. Pulm Pharmacol Ther, 2023, 83, 102268.
|
39 |
DUQUETTE S C , FISCHER C D , WILLIAMS A C , et al. Immunomodulatory effects of tulathromycin on apoptosis, efferocytosis, and proinflammatory leukotriene B4 production in leukocytes from Actinobacillus pleuropneumoniae-or zymosan-challenged pigs[J]. Am J Vet Res, 2015, 76 (6): 507- 519.
|
40 |
RESNICK-SILVERMAN L . Using TUNEL assay to quantitate p53-induced apoptosis in mouse tissues[J]. Methods Mol Biol, 2021, 2267, 181- 190.
|