畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 5018-5034.doi: 10.11843/j.issn.0366-6964.2024.11.020
王婉昕(), 袁紫金, 朱功全, 王雨晴, 薛颖, 葛晶, 赵敏孟, 刘龙, 龚道清, 耿拓宇*(
)
收稿日期:
2024-01-16
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
耿拓宇
E-mail:1263210729@qq.com;tygeng@yzu.edu.cn
作者简介:
王婉昕(1998-), 女, 江苏盐城人, 硕士生, 主要从事家禽营养调控研究, E-mail: 1263210729@qq.com
基金资助:
Wanxin WANG(), Zijin YUAN, Gongquan ZHU, Yuqing WANG, Ying XUE, Jing GE, Minmeng ZHAO, Long LIU, Daoqing GONG, Tuoyu GENG*(
)
Received:
2024-01-16
Online:
2024-11-23
Published:
2024-11-30
Contact:
Tuoyu GENG
E-mail:1263210729@qq.com;tygeng@yzu.edu.cn
摘要:
旨在探究酰基辅酶A合成酶家族成员ACSBG2基因在鹅肝组织响应营养状态变化中的作用及相关机制。本研究将10日龄健康朗德鹅(n=8)用于禁食/再饲喂模型,将65日龄朗德鹅(n=6)用于过量饲喂模型。首先,利用上述动物模型检测鹅肝及胸肌中ACSBG2的mRNA表达对营养状态变化的响应;其次体外培养鹅原代肝细胞及肌细胞,检测营养相关因子(葡萄糖、胰岛素、油酸钠、棕榈酸)对ACSBG2 mRNA表达水平的影响;然后通过在鹅原代肝细胞中过表达ACSBG2基因并进行转录组测序分析,以筛查ACSBG2调控的下游基因与通路;最后在体外培养细胞和动物模型中检测ACSBG2下游基因的mRNA表达水平。结果发现:1)禁食可抑制肝中ACSBG2的表达(P < 0.01),再饲喂和过量饲喂可诱导肝中ACSBG2的表达(P < 0.001);再饲喂(P < 0.001)和过量饲喂(P < 0.01)可诱导胸肌中ACSBG2的表达。2)油酸钠(P < 0.05)和棕榈酸(P < 0.001)可抑制鹅原代肝细胞中ACSBG2的表达;葡萄糖(P < 0.01)和胰岛素(P < 0.001)可诱导鹅原代肝细胞中ACSBG2的表达;葡萄糖(P < 0.05)和棕榈酸(P < 0.05)可抑制鹅原代肌细胞中ACSBG2的表达,油酸钠可诱导鹅原代肌细胞中ACSBG2的表达(P < 0.001)。3)ACSBG2过表达所影响的差异表达基因主要富集于类固醇激素合成和细胞黏附相关的通路。4)在体外和动物模型中ACSBG2可能介导了营养状态变化对STX1A基因表达的影响。本研究表明,ACSBG2基因主要通过类固醇激素合成与细胞黏附等通路调控糖脂代谢和炎症相关因子的表达,从而介导营养/能量变化所造成的影响。
中图分类号:
王婉昕, 袁紫金, 朱功全, 王雨晴, 薛颖, 葛晶, 赵敏孟, 刘龙, 龚道清, 耿拓宇. ACSBG2基因通过类固醇激素合成和细胞黏附相关通路介导鹅肝组织对营养状态变化的响应[J]. 畜牧兽医学报, 2024, 55(11): 5018-5034.
Wanxin WANG, Zijin YUAN, Gongquan ZHU, Yuqing WANG, Ying XUE, Jing GE, Minmeng ZHAO, Long LIU, Daoqing GONG, Tuoyu GENG. ACSBG2 Gene Mediates the Response of Goose Liver to Nutritional Changes through Steroid Hormone Synthesis and Cell Adhesion-related Pathways[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5018-5034.
表 1
荧光定量引物序列"
基因Gene | 引物序列(5′→3′) Primer sequence (5′→3′) | 产物大小/bp Product size | 退火温度/℃ Annealing temperature |
ACSBG2 | F: AGGTGGCCAGTGGATAAAGC | 214 | 62 |
R: ATGACAGGCCTCAGGAGAGT | |||
UBC | F: AGGGTGGATTCTTTCTGG | 243 | 55 |
R: ACTGAGTTTGGAGGGAGC | |||
CYP8B1 | F: TGATGGACCCCTTCTGCTTT | 227 | 60 |
R: CGGCTTGGAAAACATCAGCT | |||
ADIPOQ | F: CAAGTTCCTCTGCAGCATCC | 134 | 61 |
R: TGTTGGTCTGGAACTGGTCA | |||
COL1A1 | F: CAGATCGAGAACATCCGCAG | 248 | 61 |
R: TGCTTCTTCTCCTTGGGGTT | |||
EREG | F: CTGCTCTTCCTCGGTTACCT | 152 | 62 |
R: GGCTTGCATCTGGTTATCCC | |||
ANGPT4 | F: GACAACGACAACTGCCTCTG | 126 | 61 |
R: GTTGAGCTTGCGGATGTTGT | |||
NEU3 | F: CTTCTGCCTCTTCGCCCT | 176 | 59 |
R: AATTAAAAGCCGCACGACCC | |||
LCAT | F: TGTGGGAGGACATGAAGGAC | 163 | 62 |
R: GTGTCATCCCCATCCCCATA | |||
HES1 | F: GAGTGCATGAACGAGGTGAC | 109 | 62 |
R: CGTTGATCTGGGTCATGCAG | |||
FBXO32 | F: AAGCTCTGCCAGTACCACTT | 242 | 60 |
R: TCTTGCGGTGAAAGAGAGGT | |||
FAM32A | F: ACGGAAGAAGAAGAAGGCGA | 153 | 61 |
R: CTCTCCATTTGCCGCTTCTC | |||
HLA-DRA | F: CGTCCATCATCACCATCACG | 116 | 62 |
R: GGGCAGGTAGGAGAACTTGT | |||
TMEM14A | F: CGGACTAGTAGCATGCCTGA | 141 | 61 |
R: TCCACTGAAACACTCTGCCT | |||
RPL18A | F: CAAGTCCCGGTTCTGGTACT | 92 | 62 |
R: ACTTCTCATACACCTGGCCG | |||
C1QA | F: AGCATCACCAAGAACAGGGA | 155 | 61 |
R: CTGTAGATCTGGCTGCCCTT | |||
THBS2 | F: AGGACAGGCAATCTAGAGGC | 209 | 62 |
R: GTAGTTCTCCCCTGCCACTT | |||
SIGLEC1 | F: CCAAAAGACCGTGGTGTACC | 150 | 62 |
R: CGGAACTTATAGGACCCGCT | |||
SCARA3 | F: TACCTCAACAAGTCCCTCGG | 164 | 62 |
R: ATGTTCCTCAGCATCTCCCC | |||
CNTNAP1 | F: CCGGCATCAACAACTACGTG | 207 | 62 |
R: CTGCGAACTCCAGCTTCTTC | |||
CLDN3 | F: GAAGGGCTGTGGATGAACTG | 221 | 62 |
R: GAGACGATGGTGATCTTGGC | |||
STX1A | F: ATCCGAGAGCTGCATGACAT | 204 | 60 |
R: ACCAAGGATCACACAGCAGA | |||
RPL27 | F: AGCGAAGAGGTCCAAGATCA | 195 | 60 |
R: TTCTTGCCCGTCTTGTACCT | |||
RPL18A | F: CAAGTCCCGGTTCTGGTACT | 225 | 62 |
R: GCTCCCATATCACGGTAGCA | |||
ENSACDG00005014361 | F: GAACCCCAGCTACCAAAACG | 153 | 62 |
R: CCACCAAAGGCACCTGAATG | |||
ENSACDG00005013890 | F: CTGTCCTGGTGCCTCATGTA | 177 | 62 |
R: GAAGGGCAGGAAGGAAGAGT | |||
ACTB | F: CAACGAGCGGTTCAGGTGT | 92 | 61 |
R: TGGAGTTGAAGGTGGTCTCG |
表 2
前10个上调和前10个下调的差异表达基因"
基因表达变化Gene expression change | ID | 基因Gene | 倍数的对数log2(fold change) | Padj |
上调Up-regulate | ENSACDG00005017918 | ASCBG2 | 2.88 | 7.67×10-285 |
ENSACDG00005010507 | - | 1.20 | 1.73×10-55 | |
ENSACDG00005010937 | RPL18A | 1.74 | 1.35×10-27 | |
ENSACDG00005013321 | GPNMB | 1.55 | 2.27×10-14 | |
ENSACDG00005003993 | - | 1.11 | 6.81×10-14 | |
ENSACDG00005011759 | - | 1.01 | 3.85×10-13 | |
ENSACDG00005010479 | TMEN14A | 1.03 | 1.39×10-12 | |
ENSACDG00005012911 | TMEN52 | 1.03 | 3.10×10-11 | |
ENSACDG00005013890 | - | 1.30 | 3.39×10-10 | |
ENSACDG00005015365 | - | 1.26 | 3.87×10-9 | |
下调Down-regulated | ENSACDG00005007930 | - | -1.21 | 3.76×10-54 |
ENSACDG00005008996 | C1QB | -1.55 | 5.37×10-53 | |
ENSACDG00005009001 | C1QA | -1.35 | 6.34×10-50 | |
ENSACDG00005014182 | SIGLEC1 | -1.21 | 3.08×10-41 | |
ENSACDG00005016869 | - | -1.17 | 1.22×10-38 | |
ENSACDG00005015981 | COL1A1 | -1.01 | 2.45×10-35 | |
ENSACDG00005008999 | C1QC | -1.47 | 2.62×10-35 | |
ENSACDG00005015382 | HLA-DRA | -1.014 | 2.62×10-35 | |
ENSACDG00005009902 | - | -1.23 | 2.30×10-27 | |
ENSACDG00005018406 | DBNL | -1.20 | 1.33×10-25 |
1 |
CHEN Z Z , XING Y , FAN X , et al. Fasting and refeeding affect the goose liver transcriptome mainly through the PPAR signaling pathway[J]. J Poult Sci, 2021, 58 (4): 245- 257.
doi: 10.2141/jpsa.0200095 |
2 | 赵星. 胰岛素样生长因子结合蛋白2(IGFBP2)在鹅肥肝形成中的作用及相关机制研究[D]. 扬州: 扬州大学, 2017. |
ZHAO X. Study on the role of IGFBP2 in the development of goose fatty liver and related mechanism[D]. Yangzhou: Yangzhou University, 2017. (in Chinese) | |
3 |
SALTIEL A R , KAHN C R . Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature, 2001, 414 (6865): 799- 806.
doi: 10.1038/414799a |
4 | 许超. 棕榈酸、油酸对肝细胞脂质代谢影响的初步研究[D]. 南京: 南京农业大学, 2020. |
XU C. The primary study of lipid matebolism influenced by palmitic acid, oleic acid in hepatocytes[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese) | |
5 |
KOKTA T A , STRAT A L , PAPASANI M R , et al. Regulation of lipid accumulation in 3T3-L1 cells: insulin-independent and combined effects of fatty acids and insulin[J]. Animal, 2008, 2 (1): 92- 99.
doi: 10.1017/S1751731107000936 |
6 |
OH J M , CHOI J M , LEE J Y , et al. Role of NADPH oxidase-4 in saturated fatty acid-induced insulin resistance in SK-Hep-1 cells[J]. Food Chem Toxicol, 2014, 63, 128- 135.
doi: 10.1016/j.fct.2013.10.049 |
7 |
GANJI S H , KASHYAP M L , KAMANNA V S . Niacin inhibits fat accumulation, oxidative stress, and inflammatory cytokine IL-8 in cultured hepatocytes: Impact on non-alcoholic fatty liver disease[J]. Metabolism, 2015, 64 (9): 982- 990.
doi: 10.1016/j.metabol.2015.05.002 |
8 |
杨林辉, 陈东风. TNF-α对脂肪变性肝细胞SREBP-1c的表达及甘油三酯含量的影响[J]. 第三军医大学学报, 2006, 28 (23): 2354- 2357.
doi: 10.3321/j.issn:1000-5404.2006.23.018 |
YANG L H , CHEN D F . Effects of TNF alpha on expression of SREBP-1c mRNA and triglyceride contents in cultured steatosis hepatocytes[J]. Acta Academiae Medicinae Militaris Tertiae, 2006, 28 (23): 2354- 2357.
doi: 10.3321/j.issn:1000-5404.2006.23.018 |
|
9 |
牟彦双, 王宇祥, 李辉. 油酸对鸡前脂肪细胞分化过程中基因表达的影响[J]. 东北农业大学学报, 2013, 44 (12): 46- 51.
doi: 10.3969/j.issn.1005-9369.2013.12.009 |
MU Y S , WANG Y X , LI H . Effect of oleate on gene expression during differentiation of chicken preadipocyte[J]. Journal of Northeast Agricultural University, 2013, 44 (12): 46- 51.
doi: 10.3969/j.issn.1005-9369.2013.12.009 |
|
10 |
WATKINS P A . Fatty acid activation[J]. Prog Lipid Res, 1997, 36 (1): 55- 83.
doi: 10.1016/S0163-7827(97)00004-0 |
11 |
OHKUNI A , OHNO Y , KIHARA A . Identification of acyl-CoA synthetases involved in the mammalian sphingosine 1-phosphate metabolic pathway[J]. Biochem Biophys Res Commun, 2013, 442 (3-4): 195- 201.
doi: 10.1016/j.bbrc.2013.11.036 |
12 |
MIN K T , BENZER S . Preventing neurodegeneration in the Drosophila mutant bubblegum[J]. Science (NewYork, N.Y.), 1999, 284 (5422): 1985- 1988.
doi: 10.1126/science.284.5422.1985 |
13 |
PEI Z T , OEY N A , ZUIDERVAART M M , et al. The acyl-CoA synthetase "bubblegum" (lipidosin): further characterization and role in neuronal fatty acid β-oxidation[J]. J Biol Chem, 2003, 278 (47): 47070- 47078.
doi: 10.1074/jbc.M310075200 |
14 |
STEINBERG S J , MORGENTHALER J , HEINZER A K , et al. Very long-chain acyl-CoA synthetases: Human "bubblegum" represents a new family of proteins capable of activating very long-chain fatty acids[J]. J Biol Chem, 2000, 275 (45): 35162- 35169.
doi: 10.1074/jbc.M006403200 |
15 |
PEI Z T , JIA Z Z , WATKINS P A . The Second member of the human and murine "Bubblegum" family is a testis- and brainstem-specific Acyl-CoA Synthetase[J]. J Biol Chem, 2006, 281 (10): 6632- 6641.
doi: 10.1074/jbc.M511558200 |
16 |
ZHENG Y , ZHOU Z M , MIN X , et al. Identification and characterization of the BGR-like gene with a potential role in human testicular development/spermatogenesis[J]. Asian J Androl, 2005, 7 (1): 21- 32.
doi: 10.1111/j.1745-7262.2005.00014.x |
17 | 姜建萍. 中国荷斯坦牛全基因组indel分析及产奶性状关键基因鉴定[D]. 北京: 中国农业大学, 2019. |
JIANG J P. Studies on genome wide indels and identification of key genes for milk production traits in Chinese Holstein[D]. Beijing: China Agricultural University, 2019. (in Chinese) | |
18 |
DUFF M O , OLSON S , WEI X T , et al. Genome-wide identification of zero nucleotide recursive splicing in Drosophila[J]. Nature, 2015, 521 (7552): 376- 379.
doi: 10.1038/nature14475 |
19 |
WATKINS P A , MAIGUEL D , JIA Z Z , et al. Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genomes[J]. J Lipid Res, 2007, 48 (12): 2736- 2750.
doi: 10.1194/jlr.M700378-JLR200 |
20 |
D'ANDRE H C , PAUL W , SHEN X , et al. Identification and characterization of genes that control fat deposition in chickens[J]. J Anim Sci Biotechnol, 2013, 4 (1): 43.
doi: 10.1186/2049-1891-4-43 |
21 | 范翔. MAP3K7CL在鹅肥肝形成中的作用及机理研究[D]. 扬州: 扬州大学, 2022. |
FAN X. Study on the role and mechanism of MAP3K7CL in the formation of goose fatty liver[D]. Yangzhou: Yangzhou University, 2022. (in Chinese) | |
22 |
LIU L , ZHAO X , WANG Q , et al. Prosteatotic and protective components in a unique model of fatty liver: Gut microbiota and suppressed complement system[J]. Sci Rep, 2016, 6, 31763.
doi: 10.1038/srep31763 |
23 |
WANG Y F , BUYSE J , COUROUSSE N , et al. Effects of sex and fasting/refeeding on hepatic AMPK signaling in chickens (Gallus gallus)[J]. Comp Biochem Physiol Part A Mol Integr Physiol, 2020, 240, 110606.
doi: 10.1016/j.cbpa.2019.110606 |
24 |
FUJITA S , YAMAGUCHI M , HIRAMOTO D , et al. Effects of fasting and refeeding on the mRNA levels of insulin-like growth factor-binding proteins in chick liver and brain[J]. J Poult Sci, 2018, 55 (4): 269- 273.
doi: 10.2141/jpsa.0180005 |
25 |
GENG T , HU W , BROADWATER M H , et al. Fatty acids differentially regulate insulin resistance through endoplasm reticulum stress-mediated induction of tribbles homologue 3:a potential link between dietary fat composition and the pathophysiological outcomes of obesity[J]. Diabetologia, 2013, 56 (9): 2078- 2087.
doi: 10.1007/s00125-013-2973-2 |
26 |
WEI Y R , WANG D , TOPCZEWSKI F , et al. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells[J]. Am J Physiol Endocrinol Metab, 2006, 291 (2): E275- E281.
doi: 10.1152/ajpendo.00644.2005 |
27 |
赵冉, 袁中尚, 巩光平, 等. 性激素对脂代谢的影响及其临床应用进展[J]. 山东医药, 2015, 55 (37): 98- 100.
doi: 10.3969/j.issn.1002-266X.2015.37.040 |
ZHAO R , YUAN Z S , GONG G P , et al. Effect of sex hormones on lipid metabolism and its clinical application progress[J]. Shandong Medical Journal, 2015, 55 (37): 98- 100.
doi: 10.3969/j.issn.1002-266X.2015.37.040 |
|
28 | 颜光美. 药理学[M]. 北京: 高等教育出版社, 2009. |
YAN G M . Pharmacology[M]. Beijing: Higher Education Press, 2009. | |
29 |
郭悦承, 陆伦根. 肝星状细胞储存的视黄醇对慢性肝病的影响[J]. 国际消化病杂志, 2020, 40 (5): 291-293, 297.
doi: 10.3969/j.issn.1673-534X.2020.05.002 |
GUO Y C , LU L G . Effect of retinol stored in hepatic stellate cells on chronic liver disease[J]. International Journal of Digestive Diseases, 2020, 40 (5): 291-293, 297.
doi: 10.3969/j.issn.1673-534X.2020.05.002 |
|
30 |
SARASTE J , GOUD B . Functional symmetry of endomembranes[J]. Mol Biol Cell, 2007, 18 (4): 1430- 1436.
doi: 10.1091/mbc.e06-10-0933 |
31 |
金红敏, 李立新. 拟南芥SNARE因子在膜泡运输中的功能[J]. 植物学报, 2010, 45 (4): 479- 491.
doi: 10.3969/j.issn.1674-3466.2010.04.012 |
JIN H M , LI L X . Role of Arabidopsis SNARE proteins in vesicle trafficking[J]. Chinese Bulletin of Botany, 2010, 45 (4): 479- 491.
doi: 10.3969/j.issn.1674-3466.2010.04.012 |
|
32 | 刘名, 杨捍宇, 谢秋实, 等. 视黄酸在糖脂代谢和胰岛素抵抗中的作用研究进展[J]. 药学进展, 2020, 44 (11): 846- 853. |
LIU M , YANG H Y , XIE Q S , et al. Advances in research on the role of retinoic acid in glycolipid metabolism and insulin resistance[J]. Progress in Pharmaceutical Sciences, 2020, 44 (11): 846- 853. | |
33 |
冯帅霞, 徐莹, 韩涵. 过氧化物酶体增殖物激活受体(PPAR)在肝脏疾病中的作用及潜在意义[J]. 临床肝胆病杂志, 2023, 39 (7): 1747- 1753.
doi: 10.3969/j.issn.1001-5256.2023.07.034 |
FENG S X , XU Y , HAN H . Role and potential significance of peroxisome proliferator-activated receptors in liver diseases[J]. Journal of Clinical Hepatology, 2023, 39 (7): 1747- 1753.
doi: 10.3969/j.issn.1001-5256.2023.07.034 |
|
34 |
FISSLTHALER B , POPP R , KISS L , et al. Cytochrome P450 2C is an EDHF synthase in coronary arteries[J]. Nature, 1999, 401 (6752): 493- 497.
doi: 10.1038/46816 |
35 | 杨娜娜, 王莉. E-钙粘素与子痫前期相关性研究进展[J]. 临床军医杂志, 2018, 46 (3): 369- 372. |
YANG N N , WANG L . Research progress on the correlation between E-cadherin and preeclampsia[J]. Journal of Clinical Military Medicine, 2018, 46 (3): 369- 372. | |
36 |
WANG H , ZHU L S , CHENG J W , et al. CD40 ligand induces expression of vascular cell adhesion molecule 1 and E-selectin in orbital fibroblasts from patients with Graves' orbitopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253 (4): 573- 582.
doi: 10.1007/s00417-014-2902-1 |
37 |
LAMM M E . Interaction of antigens and antibodies at mucosal surfaces[J]. Annu Rev Microbiol, 1997, 51, 311- 340.
doi: 10.1146/annurev.micro.51.1.311 |
38 |
KROPSHOFER H , ARNDT S O , MOLDENHAUER G , et al. HLA-DM acts as a molecular chaperone and rescues empty HLA-DR molecules at lysosomal pH[J]. Immunity, 1997, 6 (3): 293- 302.
doi: 10.1016/S1074-7613(00)80332-5 |
[1] | 袁紫金, 王婉昕, 邢娅, 李家惠, 薛颖, 葛晶, 赵敏孟, 刘龙, 龚道清, 耿拓宇. HDLBP通过调控氧化应激水平和炎性因子表达参与鹅肥肝的形成[J]. 畜牧兽医学报, 2024, 55(9): 3897-3913. |
[2] | 黄红艳, 张力允, 黄智荣, 伍仲平, 张续勐, 欧阳宏佳, 陈俊鹏, 林桢平, 田允波, 李秀金, 黄运茂. 狮头鹅群体遗传多样性和体重体尺全基因组关联分析[J]. 畜牧兽医学报, 2024, 55(9): 3914-3924. |
[3] | 王靖萱, 代立志, 王振宇, 刘滢, 禹桐, 严敏, 王瑞龙, 肖建华. 高脂饮食诱导胰岛素抵抗过程中肝脏能量代谢特征的研究[J]. 畜牧兽医学报, 2024, 55(9): 4172-4185. |
[4] | 王艳, 高亚东, 蒋成辉, 曾巧英. 一株鹅源禽腺病毒4型的分离及致病性[J]. 畜牧兽医学报, 2024, 55(9): 4232-4240. |
[5] | 陈哲, 曲小露, 郭彬彬, 孙雪峰, 闫乐艳. 基于转录组测序研究绿光影响鹅胚心脏早期发育的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1978-1988. |
[6] | 彭娜娜, 宁慧敏, 陈玉豪, 李欣颖, 祝福强, 于国滨, 董伟. 肠炎沙门菌菌毛重组蛋白对其细胞黏附的竞争性阻断效应[J]. 畜牧兽医学报, 2024, 55(11): 5183-5190. |
[7] | 段香茹, 康佳, 杨若晨, 单新雨, 李太春, 赵雯, 张英杰, 刘月琴. L-半胱氨酸对绵羊卵巢颗粒细胞增殖、凋亡和类固醇激素分泌的影响[J]. 畜牧兽医学报, 2024, 55(1): 179-191. |
[8] | 贺名扬, 马钰静, 王泳, 杨若晨, 刘月琴, 张英杰, 段春辉. 褪黑激素对绵羊卵巢颗粒细胞增殖、凋亡、类固醇激素分泌的影响[J]. 畜牧兽医学报, 2023, 54(8): 3313-3324. |
[9] | 卿恩华, 唐彬铖, 牛添, 王珺琦, 陈朝颜, 胡继伟, 何桦, 李亮, 王继文, 胡深强. 不同旱养方式对鹅睾丸及外生殖器组织形态学的影响[J]. 畜牧兽医学报, 2023, 54(7): 2872-2885. |
[10] | 王宏宇, 朱寅初, 云涛, 张存, 鲍恩东. 鹅星状病毒基因Ⅰ型和Ⅱ型双重荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2023, 54(4): 1616-1623. |
[11] | 袁岩聪, 何航, 刘安芳, 万堃, 章杰. 不同体重四川白鹅消化生理、免疫和肠道微生物的比较分析[J]. 畜牧兽医学报, 2023, 54(3): 1124-1134. |
[12] | 马帅, 王燕, 庄新娟, 王文正, 赵茹茜. 母鹅日粮添加甜菜碱通过IGFs信号通路促进子代胸肌肌纤维肥大[J]. 畜牧兽医学报, 2023, 54(12): 5112-5124. |
[13] | 张力, 许加龙, 黄锦钰, 许子月, 雷昕诺, 卢会鹏, 朱睿, 孙伟翔, 曹海月, 王安平, 朱善元. 鹅骨骼肌卫星细胞的分离培养与鉴定[J]. 畜牧兽医学报, 2023, 54(10): 4186-4195. |
[14] | 吕炫, 贾北平, 祝萌, 于胜祖, 张淼, 王蓓, 朱英奇, 张云凯, 王晴, 王桂军. 一株鹅星状病毒变异毒株的基因组特征与致病性分析[J]. 畜牧兽医学报, 2022, 53(8): 2812-2818. |
[15] | 李岳鹏, 丁嘉烽, 张献颢, 李帅辰, 张建涛, 王洪斌. 低聚果糖诱导的奶牛急性蹄叶炎肝和骨骼肌中AMPK和GLUT及相关基因的变化[J]. 畜牧兽医学报, 2022, 53(6): 1971-1979. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||