畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4700-4719.doi: 10.11843/j.issn.0366-6964.2024.10.041
付涵1(), 卢冲1, 缪荣浩1, 卢亚宾1, 李建龙1, 刘建华1, 耿明阳2, 郭庆勇1, 买占海1,*(
), 况玲1,*(
)
收稿日期:
2024-02-27
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
买占海,况玲
E-mail:2332300667@qq.com;mzh881231@126.com;kuangling62@126.com
作者简介:
付涵(1997-), 男, 河南洛阳人, 硕士生, 主要从事临床兽医学研究, E-mail: 2332300667@qq.com
基金资助:
Han FU1(), Chong LU1, Ronghao MIAO1, Yabin LU1, Jianlong LI1, Jianhua LIU1, Mingyang GENG2, Qingyong GUO1, Zhanhai MAI1,*(
), Ling KUANG1,*(
)
Received:
2024-02-27
Online:
2024-10-23
Published:
2024-11-04
Contact:
Zhanhai MAI, Ling KUANG
E-mail:2332300667@qq.com;mzh881231@126.com;kuangling62@126.com
摘要:
本试验旨在研究流产对母马阴道和肠道菌群结构的差异性,并对阴道致病菌进行分离鉴定,探讨造成马流产的阴道致病菌的生物学特性。分别采集流产母马和健康母马阴道分泌物和粪便样品,流产母马组10匹和健康组6匹,并对阴道和粪便样本进行16S rRNA V3~V4区高通量测序,比较两组之间阴道和肠道菌群差异,同时分离鉴定流产母马的阴道细菌。结果显示:与健康组相比,Alpha多样性显示,流产组阴道、肠道菌群丰富度及多样性有增高趋势。通过Binary jaccard及unweighted unifrac两种距离矩阵分析可知两组阴道、肠道菌群的相似性、分散性、丰度及进化关系均存在差异。在门水平上,与健康组相比,流产组阴道菌群中拟杆菌门和梭杆菌门丰度降低,而螺旋菌门和厚壁菌门丰度增加;流产组肠道菌群中厚壁菌门和拟杆菌门丰度降低,变形菌门和放线菌门丰度增加。LEfSe分析乳杆菌科、乳杆菌属、肠杆菌目、肠杆菌科、镰刀菌属为流产组阴道菌群优势菌种;放线菌属、放线菌门、放线菌纲、棒状杆菌科、棒状杆菌属、嗜肽菌属、嗜肽菌科是流产组的肠道优势菌种,这些细菌丰度的改变可能与疾病的发生发展以及预后相关。功能预测及相关性分析发现正常阴道细菌与健康相关微生物之间存在正相关。正常阴道微生物与流产相关病原菌呈负相关。流产母马肠道中代谢相关通路与阴道中疾病的发生相关通路有较高的相关性;肠道中免疫疾病相关通路与阴道中免疫系统的变化也存在正相关,提示肠道中代谢功能的紊乱可能会引发阴道某些疾病的发生。从流产母马阴道中分离并鉴定出4种主要致病菌,分别为沙门菌、马链球菌兽疫亚种、克雷伯菌和大肠杆菌。母马阴道及肠道菌群高度参与流产疾病的发生与免疫的过程,在妊娠时,菌群的代谢途径可能起沟通肠道与阴道菌群和宿主免疫的桥梁作用,阴道菌群中厚壁菌门和放线菌门及肠道菌群中Arcanobacterium hippocoleae和Streptococcus infantarius与流产相关的变形菌门呈负相关。沙门菌可能是造成马流产的主要致病菌,并且变形菌门、嗜胨菌属、弯曲杆菌属可能是发生流产的阴道菌群生物标志物。
中图分类号:
付涵, 卢冲, 缪荣浩, 卢亚宾, 李建龙, 刘建华, 耿明阳, 郭庆勇, 买占海, 况玲. 流产对母马阴道和肠道菌群多样性的影响及阴道细菌的分离鉴定[J]. 畜牧兽医学报, 2024, 55(10): 4700-4719.
Han FU, Chong LU, Ronghao MIAO, Yabin LU, Jianlong LI, Jianhua LIU, Mingyang GENG, Qingyong GUO, Zhanhai MAI, Ling KUANG. Effects of Abortion on the Diversity of Vaginal and Intestinal Flora in Mares and the Isolation and Identification of Vaginal Bacteria[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4700-4719.
表 1
流产与健康母马阴道菌群门水平物种丰度分析结果"
物种名称Species name | 健康组Health group | 流产组Abortion group | P值P value |
拟杆菌门Bacteroidetes | 0.333 2±0.103 8 | 0.314 3±0.127 7 | 0.764 |
厚壁菌门Firmicutes | 0.269 5±0.212 1 | 0.300 2±0.104 4 | 0.751 |
放线菌门Actinobacteria | 0.117 1±0.075 1 | 0.144 9±0.142 7 | 0.669 |
梭杆菌门Fusobacteria | 0.144 2±0.159 6 | 0.113 0±0.127 4 | 0.672 |
变形菌门Proteobacteria | 0.108 3±0.071 7 | 0.099 8±0.090 4 | 0.849 |
螺旋体门Spirochaetes | 0.003 2±0.003 2 | 0.004 7±0.009 2 | 0.725 |
疣微菌门Verrucomicrobia | 0.005 7±0.003 1 | 0.002 8±0.003 4 | 0.173 |
子囊菌门Candidatus_Saccharibacteria | 0.001 7±0.001 7 | 0.004 1±0.006 4 | 0.388 |
软壁菌门Tenericutes | 0.000 6±0.000 8 | 0.001 7±0.001 9 | 0.132 |
蓝菌门Cyanobacteria | 0.001 9±0.001 8 | 0.001 3±0.000 9 | 0.525 |
其它Others | 0.017 2±0.015 6 | 0.010 2±0.012 6 | 0.364 |
表 2
流产与健康母马阴道菌群属水平物种丰度分析结果"
物种名称Species name | 健康组Health group | 流产组Abortion group | P值P value |
卟啉单胞菌属Porphyromonas | 0.265 7±0.135 8 | 0.259 9±0.165 6 | 0.944 |
梭杆菌属Fusobacterium | 0.099 6±0.150 9 | 0.084 7±0.125 2 | 0.834 |
棒状杆菌属Corynebacterium | 0.052 6±0.049 4 | 0.075 4±0.083 3 | 0.555 |
弯曲杆菌属Campylobacter | 0.094 7±0.072 7 | 0.045 5±0.052 5 | 0.137 |
链球菌属Streptococcus | 0.074 2±0.120 3 | 0.026 2±0.033 5 | 0.380 |
奥卡诺杆菌属Arcanobacterium | 0.043 3±0.041 2 | 0.028 1±0.061 9 | 0.605 |
链杆菌属Streptobacillus | 0.088 5±0.097 6 | 0.028 2±0.030 1 | 0.397 |
螺旋球菌属Helcococcus | 0.034 3±0.025 6 | 0.020 2±0.018 6 | 0.223 |
Mobiluncus | 0.013 4±0.011 9 | 0.022 0±0.037 2 | 0.665 |
嗜胨菌属Peptoniphilus | 0.012 5±0.008 2 | 0.017 5±0.019 6 | 0.567 |
其它Others | 0.218 8±0.165 9 | 0.292 4±0.183 4 | 0.435 |
表 3
流产与健康母马肠道菌群门水平物种丰度分析结果"
物种名称Species name | 健康组Health group | 流产组Abortion group | P值P value |
厚壁菌门Firmicutes | 0.599 4±0.115 9 | 0.548 7±0.144 6 | 0.479 |
拟杆菌门Bacteroidetes | 0.214 5±0.058 8 | 0.202 8±0.055 3 | 0.695 |
螺旋体门Spirochaetes | 0.068 8±0.037 8 | 0.066 4±0.043 4 | 0.912 |
放线菌门Actinobacteria | 0.006 1±0.001 7 | 0.055 3±0.143 5 | 0.421 |
纤维杆菌门Fibrobacteres | 0.045 6±0.036 8 | 0.040 1±0.031 4 | 0.755 |
变形菌门Proteobacteria | 0.016 2±0.003 8 | 0.026 9±0.018 6 | 0.195 |
疣微菌门Verrucomicrobia | 0.011 2±0.003 3 | 0.009 7±0.004 2 | 0.493 |
软壁菌门Tenericutes | 0.002 4±0.001 6 | 0.004 2±0.002 1 | 0.087 |
互养菌门Synergistetes | 0.001 4±0.000 4 | 0.002 2±0.001 1 | 0.058 |
子囊菌门Candidatus_Saccharibacteria | 0.002 1±0.001 7 | 0.001 7±0.001 1 | 0.537 |
其它Others | 0.029 8±0.006 8 | 0.036 6±0.021 9 | 0.476 |
表 4
流产与健康母马肠道菌群属水平物种丰度分析结果"
物种名称Species name | 健康组Health group | 流产组Abortion group | P值P value |
梭菌属Clostridium_XlVa | 0.079 0±0.015 8 | 0.057 3±0.023 1 | 0.063 |
密螺旋体属Treponema | 0.06602±0.036 2 | 0.061 6±0.041 2 | 0.825 |
幻杆菌属Phascolarctobacterium | 0.04308±0.008 1 | 0.057 0±0.040 6 | 0.345 |
纤维杆菌属Fibrobacter | 0.04506±0.036 8 | 0.040 1±0.031 4 | 0.755 |
棒状杆菌属Corynebacterium | 0.00004±0.000 2 | 0.064 8±0.144 7 | 0.375 |
链球菌属Streptococcus | 0.049 1±0.047 2 | 0.018 3±0.02 1 | 0.091 |
普雷沃菌属Prevotella | 0.024 6±0.009 0 | 0.022 7±0.009 1 | 0.693 |
振荡杆菌属Oscillibacter | 0.013 9±0.005 1 | 0.020 7±0.015 6 | 0.228 |
瘤胃球菌属Ruminococcus | 0.017 6±0.004 6 | 0.014 9±0.006 5 | 0.384 |
嗜胨菌属Peptoniphilus | 0.031 0±0.069 2 | ||
其它Others | 0.619 1±0.063 8 | 0.588 7±0.165 4 | 0.676 |
图 9
分离菌株16S rRNA基因PCR扩增结果及与参考菌株16S rRNA核苷酸相似性比对和进化树结果 A. PCR扩增结果(M. DL 2000 DNA相对分子质量标准;1. 阴性对照;2. 菌株XJM;3. 菌株XJS;4. 菌株XJK;5.菌株XJD);B1、C1、D1和E1分别是马链球菌兽疫亚种分离菌株XJM、沙门菌分离菌株XJS、克雷伯菌分离菌株XJK和大肠杆菌分离菌株XJD与其对应的参考菌株16S rRNA核苷酸相似性比对结果;B2、C2、D2和E2分别是马链球菌兽疫亚种分离菌株XJM、沙门菌分离菌株XJS、克雷伯菌分离菌株XJK和大肠杆菌分离菌株XJD的16S rRNA核苷酸系统进化分析结果"
1 | 姚新奎, 韩国才. 马生产管理学[M]. 北京: 中国农业大学出版社, 2008. |
YAO X K , HAN G C . Equine production management[M]. Beijing: China Agricultural University Press, 2008. | |
2 |
SNIDER T A . Reproductive disorders in horses[J]. Vet Clin North Am Equine Pract, 2015, 31 (2): 389- 405.
doi: 10.1016/j.cveq.2015.04.011 |
3 |
CANISSO I F , SEGABINAZZI L G T , FEDORKA C E . Persistent breeding-induced endometritis in mares-a multifaceted challenge: from clinical aspects to immunopathogenesis and pathobiology[J]. Int J Mol Sci, 2020, 21 (4): 1432.
doi: 10.3390/ijms21041432 |
4 |
TRAUB-DARGATZ J L , SALMAN M D , VOSS J L . Medical problems of adult horses, as ranked by equine practitioners[J]. J Am Vet Med Assoc, 1991, 198 (10): 1745- 1747.
doi: 10.2460/javma.1991.198.010.1745 |
5 |
TROEDSSON M H T . Uterine clearance and resistance to persistent endometritis in the mare[J]. Theriogenology, 1999, 52 (3): 461- 471.
doi: 10.1016/S0093-691X(99)00143-0 |
6 |
KÖHNE M , KUHLMANN M , TÖNIßEN A , et al. Diagnostic and treatment practices of equine endometritis-a questionnaire[J]. Front Vet Sci, 2020, 7, 547.
doi: 10.3389/fvets.2020.00547 |
7 |
WANG H , LIU K J , SUN Y H , et al. Abortion in donkeys associated with Salmonella abortus equi infection[J]. Equine Vet J, 2019, 51 (6): 756- 759.
doi: 10.1111/evj.13100 |
8 |
MADIĆ J , HAJSIG D , SOSTARI B , et al. An outbreak of abortion in mares associated with Salmonella abortusequi infection[J]. Equine Vet J, 1997, 29 (3): 230- 233.
doi: 10.1111/j.2042-3306.1997.tb01674.x |
9 | BUIGUES S , IVANISSEVICH A , VISSANI M A , et al. Outbreak of Salmonella abortus equi abortion in embryo recipient polo mares[J]. J Equine Vet Sci, 2012, 32 (10): S69- S70. |
10 | DI GENNARO E E , GUIDA N , FRANCO P G , et al. Infectious abortion caused by Salmonella enterica subsp enterica serovar Abortusequi in Argentina[J]. J Equine Vet Sci, 2012, 32 (10 Suppl): S74. |
11 |
郭奎, 王宁, 王金慧, 等. 马流产沙门氏菌的分离鉴定及其微量凝集抗体检测方法的建立与应用[J]. 中国农业科学, 2020, 53 (10): 2112- 2121.
doi: 10.3864/j.issn.0578-1752.2020.10.017 |
GUO K , WANG N , WANG J H , et al. Establishment and preliminary application of microagglutination detection method for Salmonella abortus equi[J]. Scientia Agricultura Sinica, 2020, 53 (10): 2112- 2121.
doi: 10.3864/j.issn.0578-1752.2020.10.017 |
|
12 | 杨康. 马流产沙门氏菌新疆分离株鉴定免疫及其FliC蛋白增强SeM蛋白及gD蛋白抗体应答的研究[D]. 乌鲁木齐: 新疆农业大学, 2016. |
YANG K. Study on the identification and immunization of Salmonella abortus equi isolated from Xinjiang and its FliC protein enhance effect on the humoral immune response of recombinant protein SeM and gD[D]. Urumqi: Xinjiang Agricultural University, 2016. (in Chinese) | |
13 | STRITOF Z , HABUS J , GRIZELJ J , et al. Two outbreaks of Salmonella abortusequi abortion in mares in Croatia[J]. J Equine Vet Sci, 2016, 39 (Suppl): S63. |
14 |
NIWA H , HOBO S , KINOSHITA Y , et al. Aneurysm of the cranial mesenteric artery as a site of carriage of Salmonella enterica subsp. enterica serovar Abortusequi in the horse[J]. J Vet Diagn Invest, 2016, 28 (4): 440- 444.
doi: 10.1177/1040638716649640 |
15 |
SROKA-OLEKSIAK A , GOSIEWSKI T , PABIAN W , et al. Next-generation sequencing as a tool to detect vaginal microbiota disturbances during pregnancy[J]. Microorganisms, 2020, 8 (11): 1813.
doi: 10.3390/microorganisms8111813 |
16 |
BAYAR E , BENNETT P R , CHAN D , et al. The pregnancy microbiome and preterm birth[J]. Semin Immunopathol, 2020, 42 (4): 487- 499.
doi: 10.1007/s00281-020-00817-w |
17 |
KUMAR M , MURUGESAN S , SINGH P , et al. Vaginal microbiota and cytokine levels predict preterm delivery in Asian women[J]. Front Cell Infect Microbiol, 2021, 11, 639665.
doi: 10.3389/fcimb.2021.639665 |
18 |
KARAER A , DOǦAN B , GVNAL S , et al. The vaginal microbiota composition of women undergoing assisted reproduction: a prospective cohort study[J]. Bjog, 2021, 128 (13): 2101- 2109.
doi: 10.1111/1471-0528.16782 |
19 |
DE SIENA M , LATERZA L , MATTEO M V , et al. Gut and reproductive tract microbiota adaptation during pregnancy: new insights for pregnancy-related complications and therapy[J]. Microorganisms, 2021, 9 (3): 473.
doi: 10.3390/microorganisms9030473 |
20 |
ZHANG Y X , CHEN S , CHEN X F , et al. Association between vaginal Gardnerella and tubal pregnancy in women with symptomatic early pregnancies in China: a nested case-control study[J]. Front Cell Infect Microbiol, 2022, 11, 761153.
doi: 10.3389/fcimb.2021.761153 |
21 | 张莹轩. 自然流产菌群特征及补肾安胎法干预流产菌群-代谢物-免疫调节的研究[D]. 广州: 广州中医药大学, 2021. |
ZHANG Y X. The characteristics of vaginal and gut microbiome in spontaneous abortion women and effect of Modified Shoutai Wan on microbiome-metabolites-immune regulation[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2021. (in Chinese) | |
22 |
TILG H , MOSCHEN A R . Microbiota and diabetes: an evolving relationship[J]. Gut, 2014, 63 (9): 1513- 1521.
doi: 10.1136/gutjnl-2014-306928 |
23 | ZHANG Y , ZHANG H P . Microbiota associated with type 2 diabetes and its related complications[J]. Food Sci Hum Well, 2013, 2 (3/4): 167- 172. |
24 |
CAPORASO J G , KUCZYNSKI J , STOMBAUGH J , et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7 (5): 335- 336.
doi: 10.1038/nmeth.f.303 |
25 |
SEGATA N , IZARD J , WALDRON L , et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12 (6): R60.
doi: 10.1186/gb-2011-12-6-r60 |
26 |
RALPH S G , RUTHERFORD A J , WILSON J D . Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study[J]. BMJ, 1999, 319 (7204): 220- 223.
doi: 10.1136/bmj.319.7204.220 |
27 |
VAN OOSTRUM N , DE SUTTER P , MEYS J , et al. Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis[J]. Hum Reprod, 2013, 28 (7): 1809- 1815.
doi: 10.1093/humrep/det096 |
28 |
AL-MEMAR M , BOBDIWALA S , FOURIE H , et al. The association between vaginal bacterial composition and miscarriage: a nested case-control study[J]. BJOG: An Int J Obstetr Gynaecol, 2020, 127 (2): 264- 274.
doi: 10.1111/1471-0528.15972 |
29 |
MOR G , KWON J Y . Trophoblast-microbiome interaction: a new paradigm on immune regulation[J]. Am J Obstetr Gynecol, 2015, 213 (4): S131- S137.
doi: 10.1016/j.ajog.2015.06.039 |
30 |
GELLERSEN B , BROSENS J J . Cyclic decidualization of the human endometrium in reproductive health and failure[J]. Endocr Rev, 2014, 35 (6): 851- 905.
doi: 10.1210/er.2014-1045 |
31 |
GELLERSEN B , BROSENS I A , BROSENS J J . Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives[J]. Semin Reprod Med, 2007, 25 (6): 445- 453.
doi: 10.1055/s-2007-991042 |
32 |
RÖNNQVIST P D J , FORSGREN-BRUSK U B , GRAHN-HÅKANSSON E E . Lactobacilli in the female genital tract in relation to other genital microbes and vaginal pH[J]. Acta Obstetr Gynecol Scand, 2006, 85 (6): 726- 735.
doi: 10.1080/00016340600578357 |
33 | ALDUNATE M , SRBINOVSKI D , HEARPS A C , et al. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis[J]. Front Physiol, 2015, 6, 164. |
34 |
PRINCE A L , CHU D M , SEFEROVIC M D , et al. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome[J]. Cold Spring Harbor Perspect Med, 2015, 5 (6): a023051.
doi: 10.1101/cshperspect.a023051 |
35 |
KOREN O , GOODRICH J K , CULLENDER T C , et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150 (3): 470- 480.
doi: 10.1016/j.cell.2012.07.008 |
36 | 孙璐, 李一卉, 袁庆新. 妊娠期糖尿病与肠道菌群关系的研究进展[J]. 中国临床医学, 2018, 25 (1): 141- 146. |
SUN L , LI Y H , YUAN Q X . Research progresses of the relationship between gestational diabetes mellitus and intestinal flora[J]. Chinese Journal of Clinical Medicine, 2018, 25 (1): 141- 146. | |
37 | 童昆周, 白文彬, 田枫岚, 等. 马流产沙门氏杆菌C系弱毒菌苗的研究[J]. 中国农业科学, 1980, (1): 80- 89. |
TONG K Z , BAI W B , TIAN F L , et al. Studies on a live attenuated vaccine against paratyphoid equine abortion[J]. Scientia Agricultura Sinica, 1980, (1): 80- 89. | |
38 |
GUZZARDI M A , EDERVEEN T H A , RIZZO F , et al. Maternal pre-pregnancy overweight and neonatal gut bacterial colonization are associated with cognitive development and gut microbiota composition in pre-school-age offspring[J]. Brain Behav Immun, 2022, 100, 311- 320.
doi: 10.1016/j.bbi.2021.12.009 |
39 |
MOLINA-VEGA M , PICÓN-CÉSAR M J , GUTIÉRREZ-REPISO C , et al. Metformin action over gut microbiota is related to weight and glycemic control in gestational diabetes mellitus: a randomized trial[J]. Biomed Pharmacother, 2022, 145, 112465.
doi: 10.1016/j.biopha.2021.112465 |
40 |
LOUIS P , FLINT H J . Formation of propionate and butyrate by the human colonic microbiota[J]. Environ Microbiol, 2017, 19 (1): 29- 41.
doi: 10.1111/1462-2920.13589 |
41 | 周海燕, 史俊奇, 裴宇, 等. 湿疹儿童肠道菌群特征及与病情的相关性[J]. 中国妇幼保健, 2023, 38 (14): 2570- 2573. |
ZHOU H Y , SHI J Q , PEI Y , et al. Characteristics of intestinal flora in children with eczema and its correlation with disease[J]. Maternal and Child Health Care of China, 2023, 38 (14): 2570- 2573. | |
42 | COLLADO M C , RAUTAVA S , AAKKO J , et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid[J]. Sci Rep, 2016, 6 (1): 23129. |
43 | CHEN X , LI P , LIU M , et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation[J]. Gut, 2020, 69 (3): 513- 522. |
44 | 郭奎, 张泽楠, 李帅杰, 等. 致马属动物流产沙门氏菌通用型间接ELISA抗体检测方法的建立与应用[J]. 中国农业科学, 2023, 56 (12): 2421- 2430. |
GUO K , ZHANG Z N , LI S J , et al. Development and application of a universal iELISA antibody assay for abortion-causing Salmonella in equidae[J]. Scientia Agricultura Sinica, 2023, 56 (12): 2421- 2430. | |
45 | 刘香, 梁佳平, 张灿, 等. 马流产沙门菌双重PCR检测方法的建立[J]. 中国兽医科学, 2023, 53 (3): 292- 297. |
LIU X , LIANG J P , ZHANG C , et al. Establishment of a duplex PCR method for detection of Salmonella abortus equi[J]. Chinese Veterinary Science, 2023, 53 (3): 292- 297. | |
46 | 李玉学. 群牧母马发生流产的原因及防制措施[J]. 畜牧兽医科技信息, 2014, (4): 32- 34. |
LI Y X . Causes and preventive measures of abortion in herd mares[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2014, (4): 32- 34. | |
47 | 王世民, 王彩蝶, 张艳楠, 等. 马流产沙门菌fimY基因同源性分析及蛋白表达[J]. 动物医学进展, 2015, 36 (6): 39- 42. |
WANG S M , WANG C D , ZHANG Y N , et al. Homology analysis and expression of gene fimY of Salmonella abortus equine[J]. Progress in Veterinary Medicine, 2015, 36 (6): 39- 42. | |
48 | STAZI M , PELLEGRINI M , RAMPACCI E , et al. A new MontanideTM Seppic IMS1313-adjuvanted autogenous vaccine as a useful emergency tool to resolve a Salmonella enterica subsp. enterica serovar abortus equi abortion outbreak in mares[J]. Open Vet J, 2022, 12 (2): 303- 307. |
49 | NEUSTROEV M P , PETROVA S G . Developmental results of a vaccine against salmonella-induced equine abortion[J]. Russ Agric Sci, 2020, 46 (5): 530- 533. |
50 | 胡哲, 郭奎, 王金慧, 等. 我国马、驴流产沙门氏菌病的研究进展[J]. 中国畜牧业, 2022, (12): 49- 50. |
HU Z , GUO K , WANG J H , et al. Research progress of Salmonella abortus in horses and donkeys in China[J]. China Animal Industry, 2022, (12): 49- 50. |
[1] | 娜梅拉, 李科南, 杜海东, 郭文亮, 娜仁花. 不同日龄内蒙古白绒山羊瘤胃及粪便真菌多样性差异研究[J]. 畜牧兽医学报, 2024, 55(8): 3526-3540. |
[2] | 郑焕琴, 姜晓敏, 岳红, 王宝岩, 刘洋, 张兴晓, 张建龙, 朱洪伟. 猫1型疱疹病毒分离鉴定及部分生物学特性分析[J]. 畜牧兽医学报, 2024, 55(7): 3040-3048. |
[3] | 李聪聪, 黄子珂, 黄念旎, 马诗语, 刘晗, 肖志标, 宋果, 蒋亮, 彭为波, 杨联熙, 郭云涛, 黄生强. 九疑山兔线粒体基因组组装及系统进化分析[J]. 畜牧兽医学报, 2024, 55(10): 4417-4427. |
[4] | 张道亮, 丁红研, 王留幸, 邰文俊, 孔昊, 赵畅, 冯士彬, 王希春, 薛艳锋, 吴金节, 李玉. 瘤胃酸中毒对山羊胃肠道功能、形态和菌群的影响[J]. 畜牧兽医学报, 2024, 55(10): 4760-4772. |
[5] | 吴祎程, 冉涛, 周传社, 谭支良. 宏基因组学技术分析山羊瘤胃病毒的多样性[J]. 畜牧兽医学报, 2023, 54(7): 2932-2941. |
[6] | 李蔚, 张强, 瞿嘉豪, 吴亚平, 胡若辰, 贾若艺, 郭如海, 马清义, 潘广林, 王兴龙. 大熊猫肠道菌群年龄演替规律分析[J]. 畜牧兽医学报, 2023, 54(6): 2619-2630. |
[7] | 秦蕾, 吴慧敏, 徐琦琦, 陈万昭, 王东, 李宏博, 夏盼盼, 刘泽鹏, 夏利宁. 外源MDR鼠伤寒沙门菌对健康小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2158-2169. |
[8] | 叶倩文, 陈卓, 李鑫, 孙亚伟, 金肖叶, 李紫仟, 吾买尔江·牙合甫, 钟旗, 马雪连, 姚刚. 一月龄吮乳羔羊肠道菌群组成及其预测物质代谢功能的动态变化研究[J]. 畜牧兽医学报, 2023, 54(3): 1095-1108. |
[9] | 胥辉豪, 刘江渝, 李启卷, 郑小波, 林珈好, 金艺鹏, 林德贵. 己糖激酶2在犬乳腺肿瘤中的表达及预后研究[J]. 畜牧兽医学报, 2023, 54(3): 1310-1324. |
[10] | 李超, 赵雪艳, 王永军, 王彦平, 任一帆, 李菁璇, 王怀中, 王继英, 宋勤叶. 莱芜猪和杜长大猪盲肠和结肠微生物菌群结构组成和功能分析[J]. 畜牧兽医学报, 2023, 54(12): 5033-5045. |
[11] | 陈璐, 常新宇, 沈嘉忱, 沈瑞廷, 赵振华, 侯晓林. 鸡传染性支气管炎病毒感染HD11细胞的转录组分析[J]. 畜牧兽医学报, 2023, 54(11): 4860-4865. |
[12] | 郭銮英, 王妮娜, 李杭远, 纪雨霏, 马骏, 裴明超, 邵建伟, 刘全. 蜱携带牛丙型肝炎病毒新亚型巢式PCR检测方法的建立[J]. 畜牧兽医学报, 2022, 53(3): 972-977. |
[13] | 任曼, 刘欣, 唐玉林, 张瑞雪, 秦俊杰, 朱浩, 郭延生. 归芪益母复方制剂对产后奶牛瘤胃微生物和短链脂肪酸的调节[J]. 畜牧兽医学报, 2022, 53(12): 4461-4469. |
[14] | 夏博策, 张凯艺, 苗佳坤, 杨宇, 彭焕祺, 王彦芳, 杨述林. 猪CPB2基因可变剪接体的克隆及生物信息学研究[J]. 畜牧兽医学报, 2022, 53(10): 3377-3390. |
[15] | 王乐, 陈泓岑, 张永红, 吴琼, 侯佳佳, 王天祎, 卢天航, 黄传发, 张华, 崔德凤. 基于网络药理学联合16S rDNA高通量测序技术分析丹参对感染大肠杆菌小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2022, 53(10): 3695-3711. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||