畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4720-4734.doi: 10.11843/j.issn.0366-6964.2024.10.042
杨作斌1(), 史晋成1, 马紫薇1, 陈如龙2, 舒展3, 李鑫1,3, 王金泉1, 钟旗4, 马雪连1,*(
), 姚刚1,*(
)
收稿日期:
2023-11-01
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
马雪连,姚刚
E-mail:411096297@qq.com;1016685239@qq.com;yg@xjau.edu.cn
作者简介:
杨作斌(1997-), 男, 甘肃天祝人, 硕士生, 主要从事反刍幼畜生长发育与调控研究, E-mail: 411096297@qq.com
基金资助:
Zuobin YANG1(), Jincheng SHI1, Ziwei MA1, Rulong CHEN2, Zhan SHU3, Xin LI1,3, Jinquan WANG1, Qi ZHONG4, Xuelian MA1,*(
), Gang YAO1,*(
)
Received:
2023-11-01
Online:
2024-10-23
Published:
2024-11-04
Contact:
Xuelian MA, Gang YAO
E-mail:411096297@qq.com;1016685239@qq.com;yg@xjau.edu.cn
摘要:
旨在比较粪菌移植(Fecal microbiota transplantation,FMT)治疗犊牛无特异病原性腹泻和细菌性腹泻的疗效和肠道菌群变化。选择8头健康新生犊牛作为健康对照组(Health,H),再选择具有临床腹泻症状的新生犊牛24头,经腹泻相关病原检测,16头无腹泻相关病原感染的腹泻犊牛分为无特异病原腹泻组(Diarrhea,D),8头感染产志贺毒素大肠埃希菌(Shiga toxin-producing E.coli,STEC)的腹泻犊牛作为STEC腹泻组(STEC-Diarrhea,SD)。各组犊牛平均日龄为(14.8±6.1)d。通过腹泻病原和腹泻症状筛查选择供体犊牛并制备粪菌液,口服粪菌液(每头250 mL,含40 g单一供体粪便)治疗腹泻犊牛,根据布里斯托粪便分型法(Bristol Stool Scale, BSS)评估治疗有效性。治疗后D组犊牛命名为无特异病原腹泻治疗组(FMT-D),SD组犊牛为STEC腹泻治疗组(FMT-SD)。记录治愈天数和日增重,测定犊牛生理常值、血常规、细胞因子及免疫球蛋白。采集各组犊牛直肠粪便进行16S rRNA基因测序,分析其肠道菌群变化。结果显示,经FMT治疗,D组和SD组犊牛的布里斯托粪便分型分别从6~7型极显著下降为4~5型(P < 0.000 1),下降后的分型值与H组无差异(P>0.05)。FMT-D组和FMT-SD组的平均治愈天数(4.9和4.4)无显著差异(P>0.05)。治疗后150 d,FMT-D组的犊牛日增重与H组无显著差异(P>0.05),而FMT-SD组的日增重显著低于H组(P < 0.05)。D组和SD组犊牛血液IL-1β、IL-6和IL-10浓度极显著高于H组(P < 0.01),经FMT治疗后均下降至H组水平。D组和SD组犊牛粪便中分泌型免疫球蛋白A极显著低于H组(P < 0.001),且D组IL-22显著低于H组(P < 0.05),经FMT治疗后均上升,与H组水平无差异(P>0.05)。D组和SD组犊牛肠道菌群的丰富度和多样性均显著低于H组(P < 0.05),经FMT治疗后上升至H组水平。D组和SD组犊牛肠道菌群结构β多样性与H组差异极显著(P < 0.001),梭杆菌门的相对丰度均极显著高于H组(P < 0.001),志贺菌属、Tyzzerella和栖粪杆菌属、[Ruminococcus]_gnavus_group、丁酸球菌属和柯林斯氏菌属、梭杆菌属相对丰度显著高于H组(P < 0.05),经过FMT治疗,上述菌门和菌属相对丰度均下降至H组水平。而D组和SD组犊牛的Muribaculaceae、Rikenellaceae_RC9_gut_group、[Eubacterium]_coprostanoligenes_group、鼠肠单胞菌属、Clostridia_UCG_014、Subdoligranulum和布雷兹纳克氏菌属相对丰度极显著低于H组(P < 0.01)。经过FMT治疗,上述菌属的相对丰度均上升且与H组无显著差异(P>0.05)。本研究表明,FMT对无特异病原性腹泻和细菌性的犊牛腹泻均有显著治疗效果。FMT治疗显著降低了腹泻犊牛肠道菌群中具有致病性菌属的相对丰度,同时增加了潜在益生菌属的相对丰度,肠道菌群的组成结构趋向健康,犊牛免疫功能显著增强。FMT治疗可能对犊牛的增重和生长产生长期有益影响。但FMT对这两种腹泻犊牛肠道菌群的恢复过程中存在一定差异。
中图分类号:
杨作斌, 史晋成, 马紫薇, 陈如龙, 舒展, 李鑫, 王金泉, 钟旗, 马雪连, 姚刚. 粪菌移植治疗犊牛无特异病原性腹泻和细菌性腹泻的疗效及其肠道菌群变化[J]. 畜牧兽医学报, 2024, 55(10): 4720-4734.
Zuobin YANG, Jincheng SHI, Ziwei MA, Rulong CHEN, Zhan SHU, Xin LI, Jinquan WANG, Qi ZHONG, Xuelian MA, Gang YAO. The Therapeutic Effect of the Fecal Microbiota Transplantation on Calf Non-specific Pathogenic Diarrhea and Bacterial Diarrhea in Association with Their Gut Microbiota Changes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4720-4734.
1 |
JI S K , JIANG T , YAN H , et al. Ecological restoration of antibiotic-disturbed gastrointestinal microbiota in foregut and hindgut of cows[J]. Front Cell Infect Microbiol, 2018, 8, 79.
doi: 10.3389/fcimb.2018.00079 |
2 | 吴兆海. 粪菌移植对被动免疫失败犊牛肠道屏障功能及肠道菌群构建的影响[D]. 北京: 中国农业大学, 2018. |
WU Z H. Effects of fecal microbiota transplantation on intestinal barrier function and microbiota establishment in calves with failure of passive immune transfer[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
3 |
NIEDERWERDER M C , CONSTANCE L A , ROWLAND R R R , et al. Fecal microbiota transplantation is associated with reduced morbidity and mortality in porcine circovirus associated disease[J]. Front Microbiol, 2018, 9, 1631.
doi: 10.3389/fmicb.2018.01631 |
4 |
KHORUTS A , SADOWSKY M J . Understanding the mechanisms of faecal microbiota transplantation[J]. Nat Rev Gastroenterol Hepatol, 2016, 13 (9): 508- 516.
doi: 10.1038/nrgastro.2016.98 |
5 |
SURAWICZ C M , BRANDT L J , BINION D G , et al. Guidelines for diagnosis, treatment, and prevention of clostridium difficile infections[J]. Am J Gastroenterol, 2013, 108 (4): 478- 498.
doi: 10.1038/ajg.2013.4 |
6 | WANG Y , ZHANG S , BORODY T J , et al. Encyclopedia of fecal microbiota transplantation: a review of effectiveness in the treatment of 85 diseases[J]. Chin Med J, 2022, 135 (16): 1927- 1939. |
7 | 国家卫生健康委, 国家中医药局, 国家疾控局. 关于印发全国医疗服务项目技术规范(2023年版)的通知[EB/OL]. (2023-09-20)[2023-10-10]. http://www.nhc.gov.cn/caiwusi/s7785t/202309/914aec9618944ee2b36621d33517e576.shtml. |
National Health Commission, State Administration of Traditional Chinese Medicine, National Bureau of Disease Control and Prevention. Circular on the issuance of the national technical specification for medical services programs (2023 edition)[EB/OL]. (2023-09-20)[2023-10-10]. http://www.nhc.gov.cn/caiwusi/s7785t/202309/914aec9618944ee2b36621d33517e576.shtml. (in Chinese) | |
8 |
PEREIRA G Q , GOMES L A , SANTOS I S , et al. Fecal microbiota transplantation in puppies with canine parvovirus infection[J]. J Vet Intern Med, 2018, 32 (2): 707- 711.
doi: 10.1111/jvim.15072 |
9 |
TANG W J , CHEN D W , YU B , et al. Capsulized faecal microbiota transplantation ameliorates post-weaning diarrhoea by modulating the gut microbiota in piglets[J]. Vet Res, 2020, 51 (1): 55.
doi: 10.1186/s13567-020-00779-9 |
10 |
王燕, 滕晓晓, 杨柠芝, 等. 粪菌移植法治疗非特异病原性羔羊腹泻的效果初报[J]. 畜牧兽医学报, 2020, 51 (8): 1878- 1885.
doi: 10.11843/j.issn.0366-6964.2020.08.011 |
WANG Y , TENG X X , YANG N Z , et al. Preliminary report of the therapeutic effect of fecal microbiota transplantation on non-specific pathogenic diarrhea in suckling lambs[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (8): 1878- 1885.
doi: 10.11843/j.issn.0366-6964.2020.08.011 |
|
11 |
MCGOVERN K . Approach to the adult horse with chronic diarrhoea[J]. Livestock, 2013, 18 (5): 189- 194.
doi: 10.12968/live.2013.18.5.189 |
12 |
FEARY D J , HASSEL D M . Enteritis and colitis in horses[J]. Vet Clin North Am Equine Pract, 2006, 22 (2): 437- 479.
doi: 10.1016/j.cveq.2006.03.008 |
13 |
MULLEN K R , YASUDA K , DIVERS T J , et al. Equine faecal microbiota transplant: current knowledge, proposed guidelines and future directions[J]. Equine Vet Educ, 2018, 30 (3): 151- 160.
doi: 10.1111/eve.12559 |
14 |
KIM H S , WHON T W , SUNG H , et al. Longitudinal evaluation of fecal microbiota transplantation for ameliorating calf diarrhea and improving growth performance[J]. Nat Commun, 2021, 12 (1): 161.
doi: 10.1038/s41467-020-20389-5 |
15 |
VORA G J , MEADOR C E , STENGER D A , et al. Nucleic acid amplification strategies for DNA microarray-based pathogen detection[J]. Appl Environ Microbiol, 2004, 70 (5): 3047- 3054.
doi: 10.1128/AEM.70.5.3047-3054.2004 |
16 |
CAMMAROTA G , IANIRO G , KELLY C R , et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice[J]. Gut, 2019, 68 (12): 2111- 2121.
doi: 10.1136/gutjnl-2019-319548 |
17 |
AAS J , GESSERT C E , BAKKEN J S . Recurrent clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube[J]. Clin Infect Dis, 2003, 36 (5): 580- 585.
doi: 10.1086/367657 |
18 |
HU J , CHEN L L , TANG Y M , et al. Standardized preparation for fecal microbiota transplantation in pigs[J]. Front Microbiol, 2018, 9, 1328.
doi: 10.3389/fmicb.2018.01328 |
19 |
YANG H , YANG M , FANG S M , et al. Evaluating the profound effect of gut microbiome on host appetite in pigs[J]. BMC Microbiol, 2018, 18 (1): 215.
doi: 10.1186/s12866-018-1364-8 |
20 |
WANG X F , TSAI T , ZUO B , et al. Donor age and body weight determine the effects of fecal microbiota transplantation on growth performance, and fecal microbiota development in recipient pigs[J]. J Anim Sci Biotechnol, 2022, 13 (1): 49.
doi: 10.1186/s40104-022-00696-1 |
21 |
ZHANG T , LU G C , ZHAO Z , et al. Washed microbiota transplantation vs. Manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening[J]. Protein Cell, 2020, 11 (4): 251- 266.
doi: 10.1007/s13238-019-00684-8 |
22 |
CHO Y I , YOON K J . An overview of calf diarrhea-infectious etiology, diagnosis, and intervention[J]. J Vet Sci, 2014, 15 (1): 1- 17.
doi: 10.4142/jvs.2014.15.1.1 |
23 |
MULLISH B H , QURAISHI M N , SEGAL J P , et al. The use of faecal microbiota transplant as treatment for recurrent or refractory clostridium difficile infection and other potential indications: joint british society of gastroenterology (BSG) and healthcare infection society (HIS) guidelines[J]. Gut, 2018, 67 (11): 1920- 1941.
doi: 10.1136/gutjnl-2018-316818 |
24 |
CHAITMAN J , ZIESE A L , PILLA R , et al. Fecal microbial and metabolic profiles in dogs with acute diarrhea receiving either fecal microbiota transplantation or oral metronidazole[J]. Front Vet Sci, 2020, 7, 192.
doi: 10.3389/fvets.2020.00192 |
25 |
WANG X , WU X J , CONG X Y , et al. The functional role of fecal microbiota transplantation on salmonella enteritidis infection in chicks[J]. Vet Microbiol, 2022, 269, 109449.
doi: 10.1016/j.vetmic.2022.109449 |
26 |
FODITSCH C , VAN VLECK PEREIRA R , GANDA E K , et al. Oral administration of faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in preweaned dairy heifers[J]. PLoS One, 2015, 10 (12): e0145485.
doi: 10.1371/journal.pone.0145485 |
27 |
XIANG L , YING Z , XUE M , et al. A novel lactobacillus bulgaricus isolate can maintain the intestinal health, improve the growth performance and reduce the colonization of E. coli O157:H7 in broilers[J]. Br Poult Sci, 2022, 63 (5): 621- 632.
doi: 10.1080/00071668.2022.2062220 |
28 | 任书男, 敖日格乐, 吕文亭, 等. 腹泻犊牛源大肠杆菌对小鼠的致病性[J]. 微生物学通报, 2022, 49 (2): 645- 658. |
REN S N , AO R G L , LV W T , et al. Pathogenicity of Escherichia coli strains isolated from calves with diarrhea to mice[J]. Microbiology China, 2022, 49 (2): 645- 658. | |
29 |
陈浩, 柯美云. 肠易激综合征与炎症关系的研究现状[J]. 国际消化病杂志, 2007, 27 (3): 172-174, 177.
doi: 10.3969/j.issn.1673-534X.2007.03.006 |
CHEN H , KE M Y . Current research situation of the relationship between irritable bowel syndrome and inflammation[J]. International Journal of Digestive Diseases, 2007, 27 (3): 172-174, 177.
doi: 10.3969/j.issn.1673-534X.2007.03.006 |
|
30 | 杨柠芝, 李婷, 王燕, 等. 断奶前后非特异病原性腹泻羔羊生长生理及肠道菌群差异性比较[J]. 中国农业科学, 2021, 54 (2): 422- 434. |
YANG N Z , LI T , WANG Y , et al. Comparison of growth physiology and gut microbiota between healthy and diarrheic lambs in pre-and post-weaning period[J]. Scientia Agricultura Sinica, 2021, 54 (2): 422- 434. | |
31 | ENGELHARDT K R, GRIMBACHER B. IL-10 in humans: lessons from the gut, IL-10/IL-10 receptor deficiencies, and IL-10 polymorphisms[M]//FILLATREAU S, O'GARRA A. Interleukin-10 in Health and Disease. Berlin: Springer, 2014: 1-18. |
32 | GABRYŠOVÁ L, HOWES A, SARAIVA M, et al. The regulation of IL-10 expression[M]//FILLATREAU S, O'GARRA A. Interleukin-10 in Health and Disease. Berlin: Springer, 2014: 157-190. |
33 |
TSAI P Y , ZHANG B K , HE W Q , et al. IL-22 upregulates epithelial claudin-2 to drive diarrhea and enteric pathogen clearance[J]. Cell Host Microbe, 2017, 21 (6): 671- 681.
doi: 10.1016/j.chom.2017.05.009 |
34 |
CELI P , VERLHAC V , PÉREZ CALVO E , et al. Biomarkers of gastrointestinal functionality in animal nutrition and health[J]. Anim Feed Sci Technol, 2019, 250, 9- 31.
doi: 10.1016/j.anifeedsci.2018.07.012 |
35 | 向全航. 菌群发育窗口期早期干预对仔猪肠道菌群与肠道先天性免疫系统发育的影响及机制[D]. 武汉: 华中农业大学, 2020. |
XIANG Q H. Effect and mechanism of intervention during window period on gut microbiota and intestinal innate immune development in piglets[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese) | |
36 |
MA X , ZHANG Y C , XU T T , et al. Early-life intervention using exogenous fecal microbiota alleviates gut injury and reduce inflammation caused by weaning stress in piglets[J]. Front Microbiol, 2021, 12, 671683.
doi: 10.3389/fmicb.2021.671683 |
37 |
ARUMUGAM M , RAES J , PELLETIER E , et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473 (7346): 174- 180.
doi: 10.1038/nature09944 |
38 |
JIN H , YOU L J , ZHAO F Y , et al. Hybrid, ultra-deep metagenomic sequencing enables genomic and functional characterization of low-abundance species in the human gut microbiome[J]. Gut Microbes, 2022, 14 (1): 2021790.
doi: 10.1080/19490976.2021.2021790 |
39 |
PASOLLI E , DE FILIPPIS F , MAURIELLO I E , et al. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome[J]. Nat Commun, 2020, 11 (1): 2610.
doi: 10.1038/s41467-020-16438-8 |
40 |
ZEINELDIN M , ALDRIDGE B , LOWE J . Dysbiosis of the fecal microbiota in feedlot cattle with hemorrhagic diarrhea[J]. Microb Pathogen, 2018, 115, 123- 130.
doi: 10.1016/j.micpath.2017.12.059 |
41 |
SINGH P , TEAL T K , MARSH T L , et al. Intestinal microbial communities associated with acute enteric infections and disease recovery[J]. Microbiome, 2015, 3, 45.
doi: 10.1186/s40168-015-0109-2 |
42 |
PAL D , NASKAR M , BERA A , et al. Chemical synthesis of the pentasaccharide repeating unit of the o-specific polysaccharide from Ruminococcus gnavus[J]. Carbohydr Res, 2021, 507, 108384.
doi: 10.1016/j.carres.2021.108384 |
43 |
CROST E H , COLETTO E , BELL A , et al. Ruminococcus gnavus: friend or foe for human health[J]. FEMS Microbiol Rev, 2023, 47 (2): fuad014.
doi: 10.1093/femsre/fuad014 |
44 |
FAN P X , KIM M , LIU G , et al. The gut microbiota of newborn calves and influence of potential probiotics on reducing diarrheic disease by inhibition of pathogen colonization[J]. Front Microbiol, 2021, 12, 772863.
doi: 10.3389/fmicb.2021.772863 |
45 |
COSTA M C , ARROYO L G , ALLEN-VERCOE E , et al. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16s rRNA gene[J]. PLoS One, 2012, 7 (7): e41484.
doi: 10.1371/journal.pone.0041484 |
46 |
ZHAO L J , LOU H X , PENG Y , et al. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications[J]. Endocrine, 2019, 66 (3): 526- 537.
doi: 10.1007/s12020-019-02103-8 |
47 |
ZHANG X Y , SHEN D Q , FANG Z W , et al. Human gut microbiota changes reveal the progression of glucose intolerance[J]. PLoS One, 2013, 8 (8): e71108.
doi: 10.1371/journal.pone.0071108 |
48 |
FLINT H J , SCOTT K P , DUNCAN S H , et al. Microbial degradation of complex carbohydrates in the gut[J]. Gut Microbes, 2012, 3 (4): 289- 306.
doi: 10.4161/gmic.19897 |
49 |
YU Y B , YANG W J , LI Y Q , et al. Enteroendocrine cells: sensing gut microbiota and regulating inflammatory bowel diseases[J]. Inflamm Bowel Dis, 2020, 26 (1): 11- 20.
doi: 10.1093/ibd/izz217 |
50 |
KOPPEL N , MAINI REKDAL V , BALSKUS E P . Chemical transformation of xenobiotics by the human gut microbiota[J]. Science, 2017, 356 (6344): eaag2770.
doi: 10.1126/science.aag2770 |
51 |
HUANG S M , PANG D R , LI X , et al. A sulfated polysaccharide from Gracilaria lemaneiformis regulates cholesterol and bile acid metabolism in high-fat diet mice[J]. Food Funct, 2019, 10 (6): 3224- 3236.
doi: 10.1039/C9FO00263D |
[1] | 何塔娜, 胡馨匀, 米洁兰, 高立, 张艳萍, 祁小乐, 崔红玉, 杨桂连, 高玉龙. 基于16S rDNA分析饲喂唾液乳杆菌XP132对白羽肉种鸡肠道菌群的影响[J]. 畜牧兽医学报, 2024, 55(9): 4091-4099. |
[2] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
[3] | 李碧波, 吴克, 师晓龙, 闫奕凝, 李嘉豪, 段国庆, 李熊, 任彦鹏, 董佳宁, 张春香, 任有蛇. 羊源Lactobacillus plantarum对腹泻羔羊空肠菌群及肠道黏膜屏障的调控作用[J]. 畜牧兽医学报, 2024, 55(8): 3552-3569. |
[4] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[5] | 程玉婷, 阿比克哈莫, 杨晨, 张丁中, 任云鑫, 岳华, 汤承. 山羊Aichivirus C的分离鉴定及演化分析[J]. 畜牧兽医学报, 2024, 55(8): 3612-3622. |
[6] | 刘维哲, 罗成刚, 袁蓉, 廖艺杰, 文艺悯, 孙莹, 俞恩波, 曹三杰, 黄小波. 一株猪流行性腹泻病毒强毒株的分离与鉴定[J]. 畜牧兽医学报, 2024, 55(7): 3049-3063. |
[7] | 杜红旭, 苏利娟, 何政科, 谭晓燕, 张旭, 马琪, 曹立亭, 陈红伟, 甘玲. 五味子多糖纳米硒的体外抗氧化和肠道菌群调节作用研究[J]. 畜牧兽医学报, 2024, 55(7): 3234-3245. |
[8] | 王玮, 王景松, 郭亚男, 高乐, 王玲玲, 陈灿, 王健霖, 王建东, 马科, 李继东. 宁夏部分地区犊牛腹泻样本大肠杆菌分离菌株的毒力因子检测与分析[J]. 畜牧兽医学报, 2024, 55(7): 3261-3266. |
[9] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[10] | 王吉, 周馨妍, 郭芳瑞, 徐秋容, 武东怡, 毛妍, 袁志航, 易金娥, 文利新, 邬静. 紫花地丁对热应激下肉鸡生长性能、肉品质和肠道菌群的改善作用[J]. 畜牧兽医学报, 2024, 55(6): 2761-2774. |
[11] | 李剑南, 袁利明, 华进联. CD46基因在家畜抗病育种中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1866-1874. |
[12] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[13] | 马茹梦, 赵玉梁, 马明爽, 国桂海, 刘芯孜, 李佳璇, 崔文, 姜艳平, 单智夫, 周晗, 王丽, 乔薪瑗, 唐丽杰, 王晓娜, 李一经. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55(5): 2090-2099. |
[14] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[15] | 王静, 张淑娟, 胡霞, 刘向阳, 张兴翠, 宋振辉. CD44通过影响猪流行性腹泻病毒复制调节钠氢交换体3活性[J]. 畜牧兽医学报, 2024, 55(5): 2176-2185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||