[1] |
FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer incidence and mortality worldwide:sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5):E359-E386.
|
[2] |
MERLO D F, ROSSI L, PELLEGRINO C, et al. Cancer incidence in pet dogs:findings of the animal tumor registry of Genoa, Italy[J]. J Vet Intern Med, 2008, 22(4):976-984.
|
[3] |
UVA P, AURISICCHIO L, WATTERS J, et al. Comparative expression pathway analysis of human and canine mammary tumors[J]. BMC Genomics, 2009, 10:135.
|
[4] |
VAFAEI R, SAMADI M, HOSSEINZADEH A, et al. Comparison of mucin-1 in human breast cancer and canine mammary gland tumor:a review study[J]. Cancer Cell Int, 2022, 22(1):14.
|
[5] |
STRANDBERG J D, GOODMAN D G. Animal model of human disease:canine mammary neoplasia[J]. Am J Pathol, 1974, 75(1):225-228.
|
[6] |
LILIENFELD A M. The epidemiology of breast cancer[J]. Cancer Res, 1963, 23:1503-1513.
|
[7] |
ȽUNKIEWICZ W, KIEȽBOWICZ Z, KALISIAK K, et al. Effect of hyperbaric oxygen therapy on the healing of postoperative wounds in bitches after hemimastectomy[J]. Pol J Vet Sci, 2020, 23(4):495-499.
|
[8] |
KRISTIANSEN V M, PEÑA L, DÍEZ CÓRDOVA L, et al. Effect of ovariohysterectomy at the time of tumor removal in dogs with mammary carcinomas:a randomized controlled trial[J]. J Vet Intern Med, 2016, 30(1):230-241.
|
[9] |
HELLMÉN E, BERGSTRÖM R, HOLMBERG L, et al. Prognostic factors in canine mammary tumors:a multivariate study of 202 consecutive cases[J]. Vet Pathol, 1993, 30(1):20-27.
|
[10] |
GOURLE J, PÉREZ ALENZA M D. Incidence and prognosis of canine mammary tumours[J]. J Small Anim Pract, 2000, 41(10):476.
|
[11] |
PEREZ ALENZA M D, PEÑA L, DEL CASTILLO N, et al. Factors influencing the incidence and prognosis of canine mammary tumours[J]. J Small Anim Pract, 2000, 41(7):287-291.
|
[12] |
GUO G W, GUI Y T, GAO S J, et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma[J]. Nat Genet, 2012, 44(1):17-19.
|
[13] |
PLEASANCE E D, CHEETHAM R K, STEPHENS P J, et al. A comprehensive catalogue of somatic mutations from a human cancer genome[J]. Nature, 2010, 463(7278):191-196.
|
[14] |
BERGER M F, LAWRENCE M S, DEMICHELIS F, et al. The genomic complexity of primary human prostate cancer[J]. Nature, 2011, 470(7333):214-220.
|
[15] |
MARDIS E R, DING L, DOOLING D J, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome[J]. N Engl J Med, 2009, 361(11):1058-1066.
|
[16] |
LEY T J, MARDIS E R, DING L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome[J]. Nature, 2008, 456(7218):66-72.
|
[17] |
LIBERTI M V, LOCASALE J W. The Warburg effect:how does it benefit cancer cells?[J] Trends Biochem Sci, 2016, 41(3):211-218.
|
[18] |
GOLDSCHMIDT M, PEÑA L, RASOTTO R, et al. Classification and grading of canine mammary tumors[J]. Vet Pathol, 2011, 48(1):117-131.
|
[19] |
SCHNEIDER R, DORN C R, TAYLOR D O N. Factors influencing canine mammary cancer development and postsurgical survival[J]. J Natl Cancer Inst, 1969, 43(6):1249-1261.
|
[20] |
JITPEAN S, HAGMAN R, STRÖM HOLST B, et al. Breed variations in the incidence of pyometra and mammary tumours in Swedish dogs[J]. Reprod Domest Anim, 2012, 47(s6):347-350.
|
[21] |
MOE L. Population-based incidence of mammary tumours in some dog breeds[J]. J Reprod Fertil Suppl, 2001, 57:439-443.
|
[22] |
SLEECKX N, DE ROOSTER H, VELDHUIS KROEZE E J B, et al. Canine mammary tumours, an overview[J]. Reprod Domest Anim, 2011, 46(6):1112-1131.
|
[23] |
NUNES F C, DAMASCENO K A, DE CAMPOS C B, et al. Mixed tumors of the canine mammary glands:evaluation of prognostic factors, treatment, and overall survival[J]. Vet Anim Sci, 2019, 7:100039.
|
[24] |
CANADAS A, FRANÇA M, PEREIRA C, et al. Canine mammary tumors:comparison of classification and grading methods in a survival study[J]. Vet Pathol, 2019, 56(2):208-219.
|
[25] |
HE R Q, XIONG D D, MA J, et al. The Clinicopathological significance and correlative signaling pathways of an autophagy-related gene, Ambra1, in breast cancer:a study of 25 microarray RNA-Seq datasets and in-house gene silencing[J]. Cell Physiol Biochem, 2018, 51(3):1027-1040.
|
[26] |
HANAHAN D, WEINBERG R A. The hallmarks of cancer[J]. Cell, 2000, 100(1):57-70.
|
[27] |
VANDER HEIDEN M G, DEBERARDINIS R J. Understanding the intersections between metabolism and cancer biology[J]. Cell, 2017, 168(4):657-669.
|
[28] |
LEE H C, CHANG C M, CHI C W. Somatic mutations of mitochondrial DNA in aging and cancer progression[J]. Ageing Res Rev, 2010, 9 Suppl:S47-S58.
|
[29] |
BRANDON M, BALDI P, WALLACE D C. Mitochondrial mutations in cancer[J]. Oncogene, 2006, 25(34):4647-4662.
|
[30] |
VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033.
|
[31] |
GROVER-MCKAY M, WALSH S A, SEFTOR E A, et al. Role for glucose transporter 1 protein in human breast cancer[J]. Pathol Oncol Res, 1998, 4(2):115-120.
|
[32] |
SAKASHITA M, AOYAMA N, MINAMI R, et al. Glut1 expression in T1 and T2 stage colorectal carcinomas:its relationship to clinicopathological features[J]. Eur J Cancer, 2001, 37(2):204-209.
|
[33] |
WU M, NEILSON A, SWIFT A L, et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells[J]. Am J Physiol Cell Physiol, 2007, 292(1):C125-C136.
|
[34] |
WILSON J E. Isozymes of mammalian hexokinase:structure, subcellular localization and metabolic function[J]. J Exp Biol, 2003, 206(12):2049-2057.
|
[35] |
PERRIN-COCON L, VIDALAIN P O, JACQUEMIN C, et al. A hexokinase isoenzyme switch in human liver cancer cells promotes lipogenesis and enhances innate immunity[J]. Commun Biol, 2021, 4(1):217.
|
[36] |
LIU Y L, XIANG F, HUANG Y M, et al. Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells[J]. Oncotarget, 2017, 8(15):25372-25383.
|
[37] |
WANG L, XIONG H, WU F X, et al. Hexokinase 2-mediated Warburg effect is required for PTEN-and p53-deficiency-driven prostate cancer growth[J]. Cell Rep, 2014, 8(5):1461-1474.
|
[38] |
WU Z, WU J, ZHAO Q, et al. Emerging roles of aerobic glycolysis in breast cancer[J]. Clin Transl Oncol, 2020, 22(5):631-646.
|
[39] |
JAYASRI K, PADMAJA K, SAIBABA M. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors[J]. Vet World, 2016, 9(12):1489-1492.
|
[40] |
PEDERSEN P L. Voltage dependent anion channels (VDACs):a brief introduction with a focus on the outer mitochondrial compartment's roles together with hexokinase-2 in the"Warburg effect"in cancer[J]. J Bioenerg Biomembr, 2008, 40(3):123-126.
|
[41] |
WOLF A, AGNIHOTRI S, MICALLEF J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme[J]. J Exp Med, 2011, 208(2):313-326.
|
[42] |
BALINSKY D, PLATZ C E, LEWIS J W. Enzyme activities in normal, dysplastic, and cancerous human breast tissues[J]. J Natl Cancer Inst, 1984, 72(2):217-224.
|
[43] |
PALMIERI D, FITZGERALD D, SHREEVE S M, et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis[J]. Mol Cancer Res, 2009, 7(9):1438-1445.
|