畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4311-4324.doi: 10.11843/j.issn.0366-6964.2024.10.007
石庆珍1(), 徐鸿洋2, 张燕3, 张毅1, 王雅春1, 韩建永2, 姜力1,*(
)
收稿日期:
2024-04-03
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
姜力
E-mail:sqz20000515@163.com;lijiang@cau.edu.cn
作者简介:
石庆珍(1999-), 女, 侗族, 贵州黎平人, 硕士生, 主要从事动物分子遗传育种研究, E-mail: sqz20000515@163.com
基金资助:
Qingzhen SHI1(), Hongyang XU2, Yan ZHANG3, Yi ZHANG1, Yachun WANG1, Jianyong HAN2, Li JIANG1,*(
)
Received:
2024-04-03
Online:
2024-10-23
Published:
2024-11-04
Contact:
Li JIANG
E-mail:sqz20000515@163.com;lijiang@cau.edu.cn
摘要:
旨在用不同方法对微量细胞全基因组遗传变异进行检测和比较分析。本研究首先以3、5、7、10个猪耳缘成纤维细胞为试验材料,利用不同方法提取微量细胞基因组,进行全基因组测序(whole genome sequencing, WGS),比较不同细胞数及不同提取方法之间的遗传变异检测性能。随后利用牛囊胚的5个和7个滋养外胚层细胞获得的基因组进行全基因组测序和SNP芯片技术的比较分析,每组均进行3次重复。结果表明,针对不同细胞数,基于全基因组扩增技术(whole genomic amplification, WGA) 的MDA (multiple displacement amplification) 方法均比其他方法的DNA产物浓度、测序质量及SNP检出性能效果更优。使用REPLI-g® Single Cell Kit扩增7、10细胞数的DNA浓度显著高于3、5细胞数,但质量评估的各项性能基本无显著差异,且不同细胞数检测到的SNP位点数量相似。5、7细胞数的Illumina Bovine GGP芯片SNP位点call rate分别为74.09%和81.52%。全基因组测序相较于芯片可以获得更丰富的遗传变异信息,但两种检测手段共同检测到的SNP以及基因型相同的位点数占比较低。综上所述,本研究系统比较了不同细胞数下不同微量细胞基因组提取方法以及不同全基因组遗传变异检测技术的各项性能,结果显示利用REPLI-g® Single Cell Kit扩增7细胞进行二代测序可得到较为准确且稳定的结果,本研究建立了一套较为可靠的家畜胚胎微量细胞样品基因组提取和遗传变异检测方案,为将来实现准确的胚胎基因组选择和胚胎质量评估具有重要的意义和价值。
中图分类号:
石庆珍, 徐鸿洋, 张燕, 张毅, 王雅春, 韩建永, 姜力. 基于不同方法的微量细胞全基因组遗传变异检测和比较分析[J]. 畜牧兽医学报, 2024, 55(10): 4311-4324.
Qingzhen SHI, Hongyang XU, Yan ZHANG, Yi ZHANG, Yachun WANG, Jianyong HAN, Li JIANG. Detection and Comparative Analysis of Genomic Genetic Variations in Trace Cells Using Different Methods[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4311-4324.
表 1
不同试剂盒获得7、10细胞数DNA浓度结果"
细胞数 Cell number | EasyPure Micro Genomic DNA Kit | TIANamp Micro DNA Kit | MagicPure Microbiome DNA Isolation Kit | MALBAC® Single Cell WGA Kit | GenomePlex® Whole Genome Amplification | REPLI-g® Single Cell Kit |
7 | 0.05±0.06de | 0.25±0.03d | 0.04±0.03e | 14.03±0.40b | 8.86±0.87c | 747.33±25.17a |
10 | 0.01±0.00b | 0.24±0.05b | 0.12±0.03b | 17.07±5.68b | 26.33±6.71b | 800.67±79.41a |
表 2
7细胞数测序数据量及质量"
项目 Item | EasyPure Micro Genomic DNA Kit | TIANamp Micro DNA Kit | MagicPure Microbiome DNA Isolation Kit | MALBAC® Single Cell WGA Kit | GenomePlex® Whole Genome Amplification | REPLI-g® Single Cell Kit |
原始碱基数/Gb Raw bases | 5.57±1.94 | 6.60±9.94 | 5.01±6.65b | 7.83±3.86 | 7.10±1.54 | 8.96±1.10a |
过滤后碱基/Gb Clean bases | 5.55±1.93 | 6.00±9.27 | 4.79±5.83b | 7.43±2.50 | 7.00±1.52 | 8.87±1.08a |
过滤后比例/% Clean rate | 99.58±0.15 | 91.04±3.95 | 95.56±1.19 | 94.93±1.92 | 98.56±0.31 | 98.95±0.27 |
Q20/% | 96.35±0.17a | 96.64±0.13a | 96.84±0.24a | 96.89±0.06a | 94.43±0.96b | 96.89±0.31a |
GC/% | 46.58±0.84abc | 48.20±5.68 | 41.95±1.12 | 46.30±0.59b | 41.49±0.28c | 40.08±0.26d |
表 3
10细胞数测序数据量及质量"
项目 Item | EasyPure Micro Genomic DNA Kit | TIANamp Micro DNA Kit | MagicPure Microbiome DNA Isolation Kit | MALBAC® Single Cell WGA Kit | GenomePlex® Whole Genome Amplification | REPLI-g® Single Cell Kit |
原始碱基数/Gb Raw bases | 6.60±3.50 | 6.35±1.47 | 5.76±6.46 | 9.19±1.36 | 8.13±1.57 | 7.71±1.09 |
过滤后碱基/Gb Clean bases | 6.54±3.30 | 5.66±1.46 | 5.47±6.25 | 8.44±1.37 | 7.96±1.52 | 7.64±1.08 |
过滤后比例/% Clean rate | 99.12±0.48a | 88.87±3.93 | 94.92±0.26b | 91.63±2.30 | 97.92±0.28a | 99.07±0.16a |
Q20/% | 95.92±1.01ab | 96.53±0.23a | 96.88±0.19a | 97.03±0.17a | 94.30±0.12b | 97.01±0.04a |
GC/% | 41.45±0.10bc | 48.78±1.54 | 42.55±0.22b | 46.44±0.13a | 41.35±0.07bc | 39.95±0.32c |
表 4
7细胞数测序数据参考基因组比对质量评估"
项目 Item | EasyPure Micro Genomic DNA Kit | TIANamp Micro DNA Kit | MagicPure Microbiome DNA Isolation Kit | MALBAC® Single Cell WGA Kit | GenomePlex® Whole Genome Amplification | REPLI-g® Single Cell Kit |
平均深度/X Mean | 1.45±0.78bc | 0.58±0.41c | 1.45±0.62bc | 2.78±0.08ab | 2.53±0.55ab | 3.53±0.44a |
覆盖度/% Coverage | 38.33±18.73 | 2.03±0.95d | 35.87±14.19 | 51.87±1.22b | 35.10±1.10c | 83.53±1.75a |
比对率/% Mapped rate | 68.97±13.59 | 38.51±16.15 | 78.43±24.07 | 98.19±0.16 | 97.44±0.49 | 98.81±0.14 |
双端比对率/% Pair mapped rate | 62.34±14.20 | 32.51±14.22 | 74.40±24.00 | 84.99±1.74 | 86.94±1.63 | 88.22±0.26 |
表 5
10细胞数测序数据参考基因组比对质量评估"
项目 Item | EasyPure Micro Genomic DNA Kit | TIANamp Micro DNA Kit | MagicPure Microbiome DNA Isolation Kit | MALBAC® Single Cell WGA Kit | GenomePlex® Whole Genome Amplification | REPLI-g® Single Cell Kit |
平均深度/X Mean | 1.33±0.51b | 1.04±0.11c | 1.96±0.26 | 3.14±0.51a | 2.85±0.56a | 3.04±0.43a |
覆盖度/% Coverage | 14.83±5.00c | 2.37±0.47c | 43.20±12.55 | 51.67±1.88b | 54.90±4.67b | 80.23±4.50a |
比对率/% Mapped rate | 58.00±14.12 | 56.13±11.63 | 90.90±1.90 | 98.03±0.58 | 97.77±0.17b | 98.84±0.09a |
双端比对率/% Pair mapped rate | 50.74±14.83 | 50.99±11.07 | 86.74±2.08 | 85.11±0.59b | 84.45±1.06 | 88.17±0.42a |
表 6
不同试剂盒3、5、7、10细胞数的变异检测结果"
细胞数 Cell number | 项目 Item | TIANamp Micro DNA Kit | MagicPure Microbiome DNA Isolation Kit | REPLI-g® Single Cell Kit |
3 | 检出的SNP数量Number of detected SNPs | 11 928 | 1 456 232 | 10 496 024 |
占dbSNP库比例/% Percentage of dbSNP | 49.86 | 73.34 | 82.40 | |
5 | 检出的SNP数量Number of detected SNPs | 50 271 | 329 523 | 11 264 639 |
占dbSNP库比例/% Percentage of dbSNP | 61.91 | 68.21 | 81.94 | |
7 | 检出的SNP数量Number of detected SNPs | 51 742 | 1 547 788 | 11 190 573 |
占dbSNP库比例/% Percentage of dbSNP | 47.56 | 70.55 | 82.40 | |
10 | 检出的SNP数量Number of detected SNPs | 80 375 | 2 050 007 | 10 387 060 |
占dbSNP库比例/% Percentage of dbSNP | 54.86 | 72.69 | 82.46 |
1 | 王腾飞, 张燕, 王彦平, 等. 奶牛活体采卵-体外受精效率的影响因素研究[J]. 中国畜牧兽医, 2021, 48 (2): 574- 580. |
WANG T F , ZHANG Y , WANG Y P , et al. Study on the influencing factors of in vitro fertilization efficiency in dairy cows[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48 (2): 574- 580. | |
2 | 徐华, 车瑞香, 朱捷. 牛OPU-IVF技术发展现状和趋势[J]. 中国奶牛, 2023, (2): 19- 24. |
XU H , CHE R X , ZHU J . Status and trends in the development of OPU-IVF technology in cattle[J]. China Dairy Cattle, 2023, (2): 19- 24. | |
3 | VIANA J H M . 2020 statistics of embryo production and transfer in domestic farm animals[J]. Embryo Technol Newsl, 2021, 39 (4): 24- 38. |
4 |
FUJⅡ T , NAITO A , HIRAYAMA H , et al. Potential of preimplantation genomic selection for carcass traits in Japanese Black cattle[J]. J Reprod Dev, 2019, 65 (3): 251- 258.
doi: 10.1262/jrd.2019-009 |
5 |
BOGLIOTTI Y S , WU J , VILARINO M , et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts[J]. Proc Natl Acad Sci U S A, 2018, 115 (9): 2090- 2095.
doi: 10.1073/pnas.1716161115 |
6 |
HOU Z C , AN L , HAN J Y , et al. Revolutionize livestock breeding in the future: an animal embryo-stem cell breeding system in a dish[J]. J Anim Sci Biotechnol, 2018, 9, 90.
doi: 10.1186/s40104-018-0304-7 |
7 |
GOSZCZYNSKI D E , CHENG H , DEMYDA-PEYRÁS S , et al. In vitro breeding: application of embryonic stem cells to animal production[J]. Biol Reprod, 2019, 100 (4): 885- 895.
doi: 10.1093/biolre/ioy256 |
8 | 高山凤, 肖轩, 张玲羽, 等. 单细胞测序技术在生殖研究中的应用[J]. 中国细胞生物学学报, 2020, 42 (12): 2234- 2243. |
GAO S F , XIAO X , ZHANG L Y , et al. The application of single-cell sequencing technology in reproductive research[J]. Chinese Journal of Cell Biology, 2020, 42 (12): 2234- 2243. | |
9 |
RHEE M , LIGHT Y K , MEAGHER R J , et al. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples[J]. PLoS One, 2016, 11 (5): e0153699.
doi: 10.1371/journal.pone.0153699 |
10 |
SHOJAEI SAADI H A , VIGNEAULT C , SARGOLZAEI M , et al. Impact of whole-genome amplification on the reliability of pre-transfer cattle embryo breeding value estimates[J]. BMC Genomics, 2014, 15 (1): 889.
doi: 10.1186/1471-2164-15-889 |
11 |
TELENIUS H , CARTER N P , BEBB C E , et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer[J]. Genomics, 1992, 13 (3): 718- 725.
doi: 10.1016/0888-7543(92)90147-K |
12 |
DEAN F B , NELSON J R , GIESLER T L , et al. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification[J]. Genome Res, 2001, 11 (6): 1095- 1099.
doi: 10.1101/gr.180501 |
13 |
DEAN F B , HOSONO S , FANG L H , et al. Comprehensive human genome amplification using multiple displacement amplification[J]. Proc Natl Acad Sci U S A, 2002, 99 (8): 5261- 5266.
doi: 10.1073/pnas.082089499 |
14 | 汤志成, 梁伟锦. FW-超微量磁珠法提取石蜡包埋胚胎组织DNA检验1例[J]. 广东公安科技, 2024, 32 (1): 61- 62. |
TANG Z C , LIANG W J . A case of DNA testing of paraffin-embedded embryonic tissue extracted by FW-ultra-micro magnetic bead method[J]. Guangdong Gongan Keji, 2024, 32 (1): 61- 62. | |
15 |
TURNER K J , SILVESTRI G , BLACK D H , et al. Karyomapping for simultaneous genomic evaluation and aneuploidy screening of preimplantation bovine embryos: the first live-born calves[J]. Theriogenology, 2019, 125, 249- 258.
doi: 10.1016/j.theriogenology.2018.11.014 |
16 |
SILVESTRI G , CANEDO-RIBEIRO C , SERRANO-ALBAL M , et al. Preimplantation genetic testing for aneuploidy improves live birth rates with in vitro produced bovine embryos: a blind retrospective study[J]. Cells, 2021, 10 (9): 2284.
doi: 10.3390/cells10092284 |
17 |
HOU Y , FAN W , YAN L Y , et al. Genome analyses of single human oocytes[J]. Cell, 2013, 155 (7): 1492- 1506.
doi: 10.1016/j.cell.2013.11.040 |
18 |
LI H , HANDSAKER B , WYSOKER A , et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25 (16): 2078- 2079.
doi: 10.1093/bioinformatics/btp352 |
19 |
LI H , DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25 (14): 1754- 1760.
doi: 10.1093/bioinformatics/btp324 |
20 | VAN DER AUWERA G A , CARNEIRO M O , HARTL C , et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline[J]. Curr Protoc Bioinformatics, 2013, 43 (1110): 11.10.1- 11.10.33. |
21 |
DANECEK P , MCCARTHY S A . BCFtools/csq: haplotype-aware variant consequences[J]. Bioinformatics, 2017, 33 (13): 2037- 2039.
doi: 10.1093/bioinformatics/btx100 |
22 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
23 | LIU Y , LIANG S M , WANG B , et al. Advances in single-cell sequencing technology and its application in poultry science[J]. Genes (Basel), 2022, 13 (12): 2211. |
24 | YAO K , GONZÁLEZ-ESCALONA N , HOFFMANN M . Multiple displacement amplification as a solution for low copy number plasmid sequencing[J]. Front Microbiol, 2021, 12, 617487. |
25 | 于婷, 王云云, 费嘉, 等. 3种单细胞全基因组扩增方法对1~4 Mb拷贝数变异检测性能的研究[J]. 分子诊断与治疗杂志, 2022, 14 (9): 1549- 1553. |
YU T , WANG Y Y , FEI J , et al. The performance of three commonly single-cell whole genome amplification methods for the detection of 1~4 Mb copy number variation[J]. Journal of Molecular Diagnostics and Therapy, 2022, 14 (9): 1549- 1553. | |
26 | HE F , ZHOU W J , CAI R , et al. Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping[J]. J Hum Genet, 2018, 63 (4): 407- 416. |
27 | ZHANG X Y , LIANG B , XU X Y , et al. The comparison of the performance of four whole genome amplification kits on ion proton platform in copy number variation detection[J]. Biosci Rep, 2017, 37 (4): BSR20170252. |
28 | 胡智辉, 王欢, 衡诺, 等. 高通量SNP芯片在牛体外早期胚胎染色体质量鉴定中的初步应用[J]. 畜牧兽医学报, 2022, 53 (11): 3866- 3879. |
HU Z H , WANG H , HENG N , et al. Preliminary application of high throughput SNP chip in chromosome quality identification of bovine early in vitro embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (11): 3866- 3879. | |
29 | 李钰华, 黄杰, 姬晓伟, 等. NGS panel与全基因组SNP芯片在胚胎植入前地贫检测中的应用比较[J]. 分子诊断与治疗杂志, 2022, 14 (11): 1832-1835, 1840. |
LI Y H , HUANG J , JI X W , et al. Comparative study of NGS panel and whole genome SNP microarray in pre-implantation genetic testing of thalassemia[J]. Journal of Molecular Diagnostics and Therapy, 2022, 14 (11): 1832-1835, 1840. | |
30 | CHEN C Y , XING D , TAN L Z , et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI)[J]. Science, 2017, 356 (6334): 189- 194. |
31 | CHU W K , EDGE P , LEE H S , et al. Ultraaccurate genome sequencing and haplotyping of single human cells[J]. Proc Natl Acad Sci U S A, 2017, 114 (47): 12512- 12517. |
32 | ZHOU Y , JIA E T , QIAO Y , et al. Low bias multiple displacement amplification with confinement effect based on agarose gel[J]. Anal Bioanal Chem, 2021, 413 (17): 4397- 4405. |
33 | ZHOU X X , XU Y , ZHU L B , et al. Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in limited DNA sequencing based on tube and droplet[J]. Micromachines (Basel), 2020, 11 (7): 645. |
[1] | 刘思宇, 张曼, 张岩, 魏稚彤, 祁兴磊, 高腾云, 刘贤, 梁栋, 付彤. 基于重测序数据评估南阳牛保种效果[J]. 畜牧兽医学报, 2024, 55(9): 3876-3886. |
[2] | 戴舒颖, 刘青, 李爱国, 余博, 陈洪波. 牛体外胚胎生产过程中培养液添加物研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3309-3320. |
[3] | 张涛, 李佳芪, 胥磊, 王丹, 张梦华, 张涛, 闫梦婕, 王玮韬, 范守民, 黄锡霞. 基于全基因组重测序数据的新疆褐牛基因组结构变异检测及群体结构分析[J]. 畜牧兽医学报, 2024, 55(8): 3427-3435. |
[4] | 牛一凡, 李崇阳, 杨柏高, 张培培, 张航, 冯肖艺, 曹建华, 余洲, 马友记, 赵学明. 不同单细胞全基因组扩增体系扩增牛微量血液DNA效果评价[J]. 畜牧兽医学报, 2024, 55(8): 3436-3445. |
[5] | 郭子骄, 郑伟杰, 孙伟, 吴宝江, 包向男, 张琪, 贺巾锋, 包斯琴, 赵高平, 王子馨, 韩博, 李喜和, 孙东晓. 荷斯坦奶牛胚胎基因组遗传评估研究[J]. 畜牧兽医学报, 2024, 55(7): 2940-2950. |
[6] | 陈莹, 陈大勇, 乌日嘎, 仇春娟, 范利宏, 包梅荣, 岳媛, 梁红艳, 张家新, 田见晖, 安磊, 汪立芹. 肉羊体外胚胎生产技术规模化应用中品种的影响[J]. 畜牧兽医学报, 2024, 55(6): 2451-2459. |
[7] | 张航, 张培培, 杨柏高, 冯肖艺, 牛一凡, 余洲, 曹建华, 万鹏程, 赵学明. IGF1、CoQ10、MT联合添加缓解热应激对牛IVF囊胚的影响[J]. 畜牧兽医学报, 2024, 55(6): 2474-2485. |
[8] | 邓梏男, 张家祺, 保志鹏, 陈涛云, 喻琦胜, 丁露, 朱晨曦, 王怡, 任玉鹏, 贺超, 张斌. 猫疱疹病毒1型的检测及一株分离毒株的致病性[J]. 畜牧兽医学报, 2024, 55(5): 2253-2258. |
[9] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[10] | 李钰浚, 何翃闳, 杨丽雪, 杨小耿, 李键, 张慧珠. 线粒体自噬调控哺乳动物胚胎发育的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 905-912. |
[11] | 宋科林, 闫尊强, 王鹏飞, 程文昊, 李杰, 白雅琴, 孙国虎, 滚双宝. 基于SNP芯片分析徽县青泥黑猪遗传多样性和遗传结构[J]. 畜牧兽医学报, 2024, 55(3): 995-1006. |
[12] | 苏文楠, 刘佳琪, 钟嘉诚, 陈济铛, 朱婉君, 张溢珊, 张济培. 鹅源副鸡禽杆菌全基因组重测序及比较基因组学分析[J]. 畜牧兽医学报, 2024, 55(3): 1208-1216. |
[13] | 任钰为, 陈星, 林燕宁, 黄潇仙, 洪玲玲, 王峰, 孙瑞萍, 张艳, 刘海隆, 郑心力, 晁哲. 基于全基因组重测序研究文昌鸡产蛋性能的影响因素[J]. 畜牧兽医学报, 2024, 55(2): 502-514. |
[14] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[15] | 林燕, 黄敏, 李秀金, 张续勐, 黄运茂, 田允波, 伍仲平. 利用全基因组重测序数据检测8个鸭品种基因组拷贝数变异[J]. 畜牧兽医学报, 2023, 54(9): 3700-3709. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||