畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (8): 3493-3502.doi: 10.11843/j.issn.0366-6964.2024.08.022
曾明敏1(), 孟军1,2, 曾亚琦1,2, 王建文1,2, 邓海峰3, 任万路1, 薛宇恒1, 尚婷婷1, 高凤1, 姚新奎1,2,*(
)
收稿日期:
2023-12-18
出版日期:
2024-08-23
发布日期:
2024-08-28
通讯作者:
姚新奎
E-mail:1536866543@qq.com;yxk61@126.com
作者简介:
曾明敏(1998-),女,新疆石河子人,硕士生,主要从事动物生产学研究,E-mail:1536866543@qq.com
基金资助:
Mingmin ZENG1(), Jun MENG1,2, Yaqi ZENG1,2, Jianwen WANG1,2, Haifeng DENG3, Wanlu REN1, Yuheng XUE1, Tingting SHANG1, Feng GAO1, Xinkui YAO1,2,*(
)
Received:
2023-12-18
Online:
2024-08-23
Published:
2024-08-28
Contact:
Xinkui YAO
E-mail:1536866543@qq.com;yxk61@126.com
摘要:
旨在利用蛋白质组学技术探究伊犁马妊娠早期血清蛋白质组特征,筛选差异蛋白质并分析其在妊娠中的作用。本研究选取年龄相同、膘情相近的健康伊犁马母马20匹,自然发情后进行人工授精。在母马排卵后第13天进行妊娠诊断,根据B超结果选择妊娠母马与未妊娠母马各3匹并采集其血清样品。利用4D-DIA技术对伊犁马母马血清样品进行蛋白定量定性分析,筛选差异蛋白质并进行GO、KEGG等生物信息学分析。结果显示,共鉴定出823个蛋白质,分子量范围在8~1 010 ku;根据差异倍数绝对值大于1.5倍、P<0.05的阈值,筛选出53种差异显著性蛋白质,其中26个蛋白上调,27个蛋白下调。差异蛋白质主要参与细胞代谢、生物调节、代谢、对刺激的反应、细胞成分组织或生物发生等生物学过程;KEGG富集通路包含蛋白酶体、精氨酸生物合成、PI3K-Akt信号、ECM受体相互作用等与妊娠相关通路。根据GO、KEGG等生物学分析,初步筛选出6种差异显著性蛋白可能与早期妊娠存在关系,并用其绘制蛋白互作网络图,结果显示,CTSS、MMP1、SERPINA5等处在关键节点。研究初步筛选出6种妊娠差异蛋白,为今后筛选马属动物妊娠特异性蛋白及分子调控机制提供了基础资料。
中图分类号:
曾明敏, 孟军, 曾亚琦, 王建文, 邓海峰, 任万路, 薛宇恒, 尚婷婷, 高凤, 姚新奎. 基于4D-DIA技术的伊犁马早期妊娠血清蛋白质组分析[J]. 畜牧兽医学报, 2024, 55(8): 3493-3502.
Mingmin ZENG, Jun MENG, Yaqi ZENG, Jianwen WANG, Haifeng DENG, Wanlu REN, Yuheng XUE, Tingting SHANG, Feng GAO, Xinkui YAO. Analysis of Serum Proteomics in Early Pregnancy of Yili Horses Based on 4D-DIA Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3493-3502.
表 1
妊娠(P)vs.非妊娠(NP)母马血清差异显著蛋白质"
蛋白ID Accession ID | 蛋白质名称 Protein name | 基因 Gene | 上调/下调 Up/Down | 差异倍数 log 2(FC)值 | P值 P value |
F6ZRF6 | SERPIN家族A成员7 | SERPINA7 | ↑ | 0.696 498 | 9.15×10-9 |
F6PPF8 | 钙粘蛋白17 | CDH17 | ↑ | 0.714 742 | 3.54×10-6 |
F7D2I6 | 蛋白质精氨酸甲基转移酶5 | PRMT5 | ↑ | 1.452 295 | 0.000 116 |
F7AWQ9 | 白细胞介素1受体辅助蛋白 | IL1RAP | ↑ | 0.605 578 | 0.000 243 |
F6VUW2 | 组织蛋白酶S | CTSS | ↑ | 0.589 026 | 0.000 274 |
F7C373 | 热休克蛋白家族A(Hsp70)成员9 | HSPA9 | ↑ | 1.169 765 | 0.001 492 |
F6Q4Q1 | 异构核核糖核蛋白K | HNRNPK | ↑ | 1.199 253 | 0.001 955 |
A0A5S7NAP8 | 氯化物通道附件2 | CLCA2 | ↓ | -0.745 096 | 1.62×10-11 |
A0A3Q2HKG3 | 乳转铁蛋白 | LTF | ↓ | -0.668 901 | 9.00×10-6 |
F6V881 | 玻连蛋白 | VTN | ↓ | -0.671 550 | 4.58×10-5 |
F7C0D2 | 脂多糖结合蛋白 | LBP | ↓ | -0.649 453 | 0.000 555 |
A0A3Q2HNU8 | SERPIN家族A成员5 | SERPINA5 | ↓ | -1.558 677 | 0.000 592 |
A0A3Q2HN87 | 硫运载蛋白2 | LCN2 | ↓ | -0.808 099 | 0.002 139 |
F7C349 | 血清淀粉样蛋白P组分 | APCS | ↓ | -1.685 178 | 0.002 163 |
1 |
KACZYNSKI P , GORYSZEWSKA-SZCZUREK E , BARYLA M , et al. Novel insights into conceptus-maternal signaling during pregnancy establishment in pigs[J]. Mol Reprod Dev, 2023, 90 (7): 658- 672.
doi: 10.1002/mrd.23567 |
2 |
DENG L , LI Z , TANG C , et al. Quantitative analysis of the serum proteome during early pregnancy in mares[J]. Anim Sci J, 2022, 93 (1): e13727.
doi: 10.1111/asj.13727 |
3 | 王骁, 陈霞, 张海兰, 等. B超在马发情鉴定和早期妊娠诊断中的应用[J]. 畜牧与兽医, 2018, 50 (4): 17- 21. |
WANG X , CHEN X , ZHANG H L , et al. Application of B-scan in estrus detection and early diagnosis of pregnancy in horses[J]. Animal Husbandry and Veterinary Medicine, 2018, 50 (4): 17- 21. | |
4 |
KLEIN C , SCOGGIN K E , EALY A D , et al. Transcriptional profiling of equine endometrium during the time of maternal recognition of pregnancy[J]. Biol Reprod, 2010, 83 (1): 102- 113.
doi: 10.1095/biolreprod.109.081612 |
5 |
MEIER F , BRUNNER A D , FRANK M , et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition[J]. Nat Methods, 2020, 17 (12): 1229- 1236.
doi: 10.1038/s41592-020-00998-0 |
6 |
PENNINGTON P M , SPLAN R K , JACOBS R D , et al. Influence of reproductive status on equine serum proteome: preliminary results[J]. J Equine Vet Sci, 2021, 105, 103724.
doi: 10.1016/j.jevs.2021.103724 |
7 |
DENG L , HAN Y W , TANG C , et al. Label-free mass spectrometry-based quantitative proteomics analysis of serum proteins during early pregnancy in jennies (Equus asinus)[J]. Front Vet Sci, 2020, 7, 569587.
doi: 10.3389/fvets.2020.569587 |
8 |
ZHAI Y Y , XIA F , SHI L T , et al. Early pregnancy markers in the serum of ewes identified via proteomic and metabolomic analyses[J]. Int J Mol Sci, 2023, 24 (18): 14054.
doi: 10.3390/ijms241814054 |
9 |
THOMSON E E , BELTMAN M E , MCALOON C G , et al. Determining the clinical utility of a single pre-breeding examination for predicting subsequent reproductive performance in seasonal pasture-based dairy heifers[J]. Theriogenology, 2023, 207, 11- 18.
doi: 10.1016/j.theriogenology.2023.05.015 |
10 |
HENNEKE D R , POTTER G D , KREIDER J L , et al. Relationship between condition score, physical measurements and body fat percentage in mares[J]. Equine Vet J, 1983, 15 (4): 371- 372.
doi: 10.1111/j.2042-3306.1983.tb01826.x |
11 |
KIM Y J , CHAMBERS A G , CECCHI F , et al. Targeted data-independent acquisition for mass spectrometric detection of RAS mutations in formalin-fixed, paraffin-embedded tumor biopsies[J]. J Proteomics, 2018, 189, 91- 96.
doi: 10.1016/j.jprot.2018.04.022 |
12 | 梁明月. 妊娠早期奶牛乳外泌体miRNA的变化研究[D]. 杨凌: 西北农林科技大学, 2021. |
LIANG M Y. Varieties of miRNA in milk exosomes of dairy cows in early pregnancy[D]. Yangling: Northwest A&F University, 2021. (in Chinese) | |
13 |
ZHU Y Y . Plasma/serum proteomics based on mass spectrometry[J]. Protein Pept Lett, 2024, 31 (3): 192- 208.
doi: 10.2174/0109298665286952240212053723 |
14 |
VIRDIS S , LUISE D , BOSI P , et al. A meta-analytical approach for evaluating the effect of arginine supplementation on the productive performance of sows during gestation[J]. Anim Feed Sci Technol, 2023, 306, 115807.
doi: 10.1016/j.anifeedsci.2023.115807 |
15 |
BJØRKE-JENSSEN A , UELAND P M , BJØRKE-MONSEN A L . Amniotic fluid arginine from gestational weeks 13 to 15 is a predictor of birth weight, length, and head circumference[J]. Nutrients, 2017, 9 (12): 1357.
doi: 10.3390/nu9121357 |
16 |
MARTÍNEZ P T , NAVAJAS P L , LIETHA D . FAK structure and regulation by membrane interactions and force in focal adhesions[J]. Biomolecules, 2020, 10 (2): 179.
doi: 10.3390/biom10020179 |
17 |
LARSEN M , ARTYM V V , GREEN J A , et al. The matrix reorganized: extracellular matrix remodeling and integrin signaling[J]. Curr Opin Cell Biol, 2006, 18 (5): 463- 471.
doi: 10.1016/j.ceb.2006.08.009 |
18 |
GUO S K , CAO M L , WANG X D , et al. Changes in transcriptomic profiles in different reproductive periods in yaks[J]. Biology, 2021, 10 (12): 1229.
doi: 10.3390/biology10121229 |
19 |
LIU C , LIANG X H , WANG J , et al. Protein O-fucosyltransferase 1 promotes trophoblast cell proliferation through activation of MAPK and PI3K/Akt signaling pathways[J]. Biomed Pharmacother, 2017, 88, 95- 101.
doi: 10.1016/j.biopha.2017.01.026 |
20 |
XU Y L , SUI L L , QIU B T , et al. ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia[J]. Am J Physiol Cell Physiol, 2019, 316 (4): C481- C491.
doi: 10.1152/ajpcell.00404.2018 |
21 |
WANG L J , ZHANG Y , QU H M , et al. Reduced ELABELA expression attenuates trophoblast invasion through the PI3K/AKT/mTOR pathway in early onset preeclampsia[J]. Placenta, 2019, 87, 38- 45.
doi: 10.1016/j.placenta.2019.08.077 |
22 |
LU J M , ZHANG Z Z , MA X , et al. Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy[J]. Exp Eye Res, 2020, 190, 107886.
doi: 10.1016/j.exer.2019.107886 |
23 |
MASHKINA E V , KOVALENKO K A , MARAKHOVSKAYA T A , et al. Association of gene polymorphisms of matrix metalloproteinases with reproductive losses in the first trimester of pregnancy[J]. Russ J Genet, 2016, 52 (8): 853- 859.
doi: 10.1134/S1022795416080081 |
24 |
LIAN I A , TOFT J H , OLSEN G D , et al. Matrix metalloproteinase 1 in pre-eclampsia and fetal growth restriction: reduced gene expression in decidual tissue and protein expression in extravillous trophoblasts[J]. Placenta, 2010, 31 (7): 615- 620.
doi: 10.1016/j.placenta.2010.04.003 |
25 |
GOYAL R , YELLON S M , LONGO L D , et al. Placental gene expression in a rat 'model'of placental insufficiency[J]. Placenta, 2010, 31 (7): 568- 575.
doi: 10.1016/j.placenta.2010.05.004 |
26 | 吕燕, 苗治晶, 丁虹娟. 基质金属蛋白酶在产科领域的研究进展[J]. 医学综述, 2017, 23 (20): 3958- 3962. |
LYU Y , MIAO Z J , DING H J . Research process in the roles of matrix metalloproteases in obstetrics[J]. Medical Recapitulate, 2017, 23 (20): 3958- 3962. | |
27 |
SMYTH P , SASIWACHIRANGKUL J , WILLIAMS R , et al. Cathepsin S (CTSS) activity in health and disease-A treasure trove of untapped clinical potential[J]. Mol Aspects Med, 2022, 88, 101106.
doi: 10.1016/j.mam.2022.101106 |
28 | SONG G H , JIANG Y X , WANG Y L , et al. Modulation of Cathepsin S (CTSS) regulates the secretion of progesterone and estradiol, proliferation, and apoptosis of ovarian granulosa cells in rabbits[J]. Animals (Basel), 2021, 11 (6): 1770. |
29 |
WAGNER L H , AURICH J , MELCHERT M , et al. Low progesterone concentration in early pregnancy is detrimental to conceptus development and pregnancy outcome in horses[J]. Anim Reprod Sci, 2023, 257, 107334.
doi: 10.1016/j.anireprosci.2023.107334 |
30 |
KE R W . Endocrine basis for recurrent pregnancy loss[J]. Obstet Gynecol Clin North Am, 2014, 41 (1): 103- 112.
doi: 10.1016/j.ogc.2013.10.003 |
31 | MURPHY C R . The plasma membrane transformation of uterine epithelial cells during pregnancy[J]. J Reprod Fertil Suppl, 2000, 55, 23- 28. |
32 |
SONG G , BAZER F W , SPENCER T E . Differential expression of cathepsins and cystatin C in ovine uteroplacental tissues[J]. Placenta, 2007, 28 (10): 1091- 1098.
doi: 10.1016/j.placenta.2007.04.004 |
33 |
BAZER F W , WU G Y , SPENCER T E , et al. Novel pathways for implantation and establishment and maintenance of pregnancy in mammals[J]. Mol Hum Reprod, 2010, 16 (3): 135- 152.
doi: 10.1093/molehr/gap095 |
34 |
SUBRAMANIAM S , STANSBERG C , CUNNINGHAM C . The interleukin 1 receptor family[J]. Dev Comp Immunol, 2004, 28 (5): 415- 428.
doi: 10.1016/j.dci.2003.09.016 |
35 |
DEVIREDDY L R , TEODORO J G , RICHARD F A , et al. Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation[J]. Science, 2001, 293 (5531): 829- 834.
doi: 10.1126/science.1061075 |
36 | SEO H , CHOI Y , SHIM J , et al. Regulatory mechanism for expression of IL1B receptors in the uterine endometrium and effects of IL1B on prostaglandin synthetic enzymes during the implantation period in pigs[J]. Biol Reprod, 2012, 87 (2): 31. |
37 |
LIU Y F , DENG W B , LI S Y , et al. Progesterone induces the expression of lipocalin-2 through Akt-c-Myc pathway during mouse decidualization[J]. FEBS Lett, 2016, 590 (16): 2594- 2602.
doi: 10.1002/1873-3468.12304 |
38 |
ASAF S , MAQSOOD F , JALIL J , et al. Lipocalin 2-not only a biomarker: a study of current literature and systematic findings of ongoing clinical trials[J]. Immunol Res, 2023, 71 (3): 287- 313.
doi: 10.1007/s12026-022-09352-2 |
39 |
FLOWER D R . The lipocalin protein family: structure and function[J]. Biochem J, 1996, 318 (1): 1- 14.
doi: 10.1042/bj3180001 |
40 |
HANEDA S , NAGAOKA K , NAMBO Y , et al. Expression of uterine lipocalin 2 and its receptor during early- to mid-pregnancy period in mares[J]. J Reprod Dev, 2017, 63 (2): 127- 133.
doi: 10.1262/jrd.2016-096 |
41 |
FAN M Y , XIONG X F , HAN L , et al. SERPINA5 promotes tumour cell proliferation by modulating the PI3K/AKT/mTOR signalling pathway in gastric cancer[J]. J Cell Mol Med, 2022, 26 (18): 4837- 4846.
doi: 10.1111/jcmm.17514 |
42 |
LONG Y , ZENG S S , GAO F , et al. SERPINA5 may promote the development of preeclampsia by disruption of the uPA/uPAR pathway[J]. Transl Res, 2023, 251, 14- 26.
doi: 10.1016/j.trsl.2022.06.011 |
43 |
ZHANG Y G , ZHANG Y P , ZHAO L M , et al. Plasma SerpinA5 in conjunction with uterine artery pulsatility index and clinical risk factor for the early prediction of preeclampsia[J]. PLoS One, 2021, 16 (10): e0258541.
doi: 10.1371/journal.pone.0258541 |
44 |
VON SCHOULTZ B , STIGBRAND T . Purification of the "pregnancy zone" protein[J]. Acta Obstet Gynecol Scand, 1973, 52 (1): 51- 57.
doi: 10.3109/00016347309158490 |
45 |
SKORNICKA E L , KIYATKINA N , WEBER M C , et al. Pregnancy zone protein is a carrier and modulator of placental protein-14 in T-cell growth and cytokine production[J]. Cell Immunol, 2004, 232 (1-2): 144- 156.
doi: 10.1016/j.cellimm.2005.03.007 |
46 |
DE A K , ALI M A , CHUTIA T , et al. Comparative serum proteome analysis reveals potential early pregnancy-specific protein biomarkers in pigs[J]. Reprod Fertil Dev, 2019, 31 (3): 613- 631.
doi: 10.1071/RD18227 |
[1] | 王怡, 高娟, 胡悦旻, 杨跃飞, 范博钧, 鞠辉明. 短期血清饥饿胁迫对猪骨骼肌卫星细胞代谢及自噬发生的影响[J]. 畜牧兽医学报, 2024, 55(8): 3408-3417. |
[2] | 李婉卿, 曾亚琦, 姚新奎, 王建文, 袁鑫鑫, 孟晨, 孙远方, 彭宣, 孟军. 肉用型伊犁马的血液转录组比较分析[J]. 畜牧兽医学报, 2024, 55(7): 2951-2962. |
[3] | 彭宣, 王彤亮, 孟军, 王建文, 欧阳文, 黄金龙, 黄云江, 杨曦曦, 李婉卿, 曾亚琦, 姚新奎. 2岁伊犁马心脏维度与运动性能的关联性分析[J]. 畜牧兽医学报, 2024, 55(7): 2963-2972. |
[4] | 刘彬, 刘彦, 郑琛, 冯涛. 氨基葡萄糖对断奶仔猪生长性能、抗氧化能力及免疫功能的影响[J]. 畜牧兽医学报, 2024, 55(7): 3246-3254. |
[5] | 罗志斌, 欧慧敏, 李建中, 谭支良, 焦金真. 添加过瘤胃氨基酸低蛋白质饲粮对呼伦贝尔羊生长性能、养分表观消化率及肉品质的影响[J]. 畜牧兽医学报, 2024, 55(6): 2498-2509. |
[6] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
[7] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[8] | 钟朱夏, 胡修忠, 向敏, 余婕, 刘辰晖, 赵胜兰, 万平民, 王定发, 周源, 程蕾. 妊娠相关糖蛋白的生物学功能及其在畜牧生产中的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 874-881. |
[9] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[10] | 苏传琛, 焦静娅, 王永帅, 罗朋娜, 昌兴海, 黄艳群. 导入25%洛岛红鸡血缘对河南斗鸡相关指标的影响[J]. 畜牧兽医学报, 2024, 55(3): 1007-1018. |
[11] | 曹晋康, 张纯, 王佳瑶, 李晓彤, 王鹏宇, 方颖妍, 张昱, 丁宁, 姜力. 中国荷斯坦公牛不同耐冻性精子的蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(3): 1052-1061. |
[12] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[13] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[14] | 姚颖, 周应聪, 杜培岩, 李一娟, 钱文洁, 李柳杨, 余志鹏, 崔燕, 余四九, 樊江峰. 基于TMT技术的牦牛妊娠期血清蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(1): 192-206. |
[15] | 杨恒, 李占鸿, 宋子昂, 高林, 李卓然, 廖德芳, 肖雷, 李华春. 帕利亚姆病毒实时荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(1): 395-400. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||