畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (6): 2252-2263.doi: 10.11843/j.issn.0366-6964.2023.06.005
陈松彪1,2,3, 尚珂1,2,3, 杜付熙1,2,3, 余祖华1,2,3, 李静1,2,3, 贾艳艳1,2,3, 廖成水1,2,3, 张春杰1,2,3, 丁轲1,2,3*, 程相朝1,2,3*
收稿日期:
2022-10-26
出版日期:
2023-06-23
发布日期:
2023-06-16
通讯作者:
丁轲,主要从事动物微生态研究,E-mail:keding19@163.com;程相朝,主要从事免疫病理学研究,E-mail:chengxch@126.com
作者简介:
陈松彪(1990-),男,河南信阳人,博士,主要从事免疫病理学研究,E-mail:chensongbiao@126.com;尚珂(1989-),女,河南新乡人,博士,主要从事免疫病理学研究,E-mail:shangke0624@163.com
基金资助:
CHEN Songbiao1,2,3, SHANG Ke1,2,3, DU Fuxi1,2,3, YU Zuhua1,2,3, LI Jing1,2,3, JIA Yanyan1,2,3, LIAO Chengshui1,2,3, ZHANG Chunjie1,2,3, DING Ke1,2,3*, CHENG Xiangchao1,2,3*
Received:
2022-10-26
Online:
2023-06-23
Published:
2023-06-16
摘要: VI型分泌系统(type VI secretion system,T6SS)是革兰阴性菌中广泛存在的一种"分泌装置"和"杀伤机器",其功能是将细菌毒素输送至原核或真核细胞中从而抑制/杀灭它们。T6SS在沙门菌致病过程中发挥着重要作用,能够独立编码5套T6SSs(T6SS-1~T6SS-5),分别由沙门菌毒力岛6(SPI-6)、毒力岛19(SPI-19)、毒力岛20(SPI-20)、毒力岛21(SPI-21)和毒力岛22(SPI-22)编码。T6SS参与沙门菌的种间竞争、生物被膜形成、金属离子摄取运输以及与宿主细胞相互作用,在沙门菌生活周期中发挥不可或缺的作用。本文主要综述沙门菌T6SS组装、基因组结构特征以及分泌调控网络最新研究进展,为深入研究沙门菌致病机制以及开发新的抗菌策略提供理论指导。
中图分类号:
陈松彪, 尚珂, 杜付熙, 余祖华, 李静, 贾艳艳, 廖成水, 张春杰, 丁轲, 程相朝. 沙门菌VI型分泌系统组装、结构特征和分泌调控网络的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2252-2263.
CHEN Songbiao, SHANG Ke, DU Fuxi, YU Zuhua, LI Jing, JIA Yanyan, LIAO Chengshui, ZHANG Chunjie, DING Ke, CHENG Xiangchao. Research Process of Assembly, Structural Features, and Secretion Regulatory Networks of Type VI Secretion System in Salmonella[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2252-2263.
[1] | FERNANDES S A, TAVECHIO A T, GHILARDI Ȃ C R, et al. Salmonella enterica serotypes from human and nonhuman sources in Sao Paulo State, Brazil, 2004-2020[J]. Rev Inst Med Trop Sao Paulo, 2022, 64:e66. |
[2] | 王晓利, 杜付玉, 廖成水. Ⅲ型分泌系统在沙门菌囊泡形成中的作用研究进展[J]. 中国预防兽医学报, 2021, 43(1):106-109.WANG X L, DU F Y, LIAO C S. Research progress on the role of the type Ⅲ secretion system in Salmonella-containing vacuole[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(1):106-109. (in Chinese) |
[3] | PUKATZKI S, MA A T, STURTEVANT D, et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system[J]. Proc Natl Acad Sci U S A, 2006, 103(5):1528-1533. |
[4] | LU D, SHANG G, YU Q, et al. Expression, purification and preliminary crystallographic analysis of the T6SS effector protein Tse3 from Pseudomonas aeruginosa[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2013, 69(Pt 5):524-527. |
[5] | MARCHI M, BOUTIN M, GAZENGEL K, et al. Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots[J]. Environ Microbiol Rep, 2013, 5(3):393-403. |
[6] | WANG X, WANG Q Y, XIAO J F, et al. Edwardsiella tarda T6SS component evpP is regulated by esrB and iron, and plays essential roles in the invasion of fish[J]. Fish Shellfish Immunol, 2009, 27(3):469-477. |
[7] | HESPANHOL J T, SANCHEZ-LIMACHE D E, NICASTRO G G, et al. Antibacterial T6SS effectors with a VRR-Nuc domain are structure-specific nucleases[J]. Elife, 2022, 11:e82437. |
[8] | JURĖNAS D, CASCALES E. T6SS:killing two bugs with one stone[J]. Trends Microbiol, 2022, 30(1):1-2. |
[9] | LI C F, ZHU L F, WANG D D, et al. T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer[J]. ISME J, 2022, 16(2):500-510. |
[10] | 杨建社, 王帅涛, 牛艳婷, 等. 铜绿假单胞菌T6SS的组装、分泌、功能和调控[J]. 微生物学报, 2021, 61(9):2607-2627.YANG J S, WANG S T, NIU Y T, et al. Assembly, secretion, function, and regulation of T6SS in Pseudomonas aeruginosa[J]. Acta Microbiologica Sinica, 2021, 61(9):2607-2627. (in Chinese) |
[11] | BLONDEL C J, JIMÉNEZ J C, CONTRERAS I, et al. Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes[J]. BMC Genomics, 2009, 10:354. |
[12] | BOYER F, FICHANT G, BERTHOD J, et al. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis:what can be learned from available microbial genomic resources?[J]. BMC Genomics, 2009, 10:104. |
[13] | BINGLE L E H, BAILEY C M, PALLEN M J. Type VI secretion:a beginner's guide[J]. Curr Opin Microbiol, 2008, 11(1):3-8. |
[14] | WANG S H, YANG D H, WU X J, et al. The ferric uptake regulator represses type VI secretion system function by binding directly to the clpV promoter in Salmonella enterica serovar typhimurium[J]. Infect Immun, 2019, 87(10):e00562-19. |
[15] | XIAN H H, YUAN Y, YIN C, et al. The SPI-19 encoded T6SS is required for Salmonella pullorum survival within avian macrophages and initial colonization in chicken dependent on inhibition of host immune response[J]. Vet Microbiol, 2020, 250:108867. |
[16] | YU K W, XUE P, FU Y, et al. T6SS mediated stress responses for bacterial environmental survival and host adaptation[J]. Int J Mol Sci, 2021, 22(2):478. |
[17] | ZHU L F, XU L, WANG C G, et al. T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese[J]. Proc Natl Acad Sci U S A, 2021, 118(42):e2103526118. |
[18] | SANA T G, FLAUGNATTI N, LUGO K A, et al. Salmonella typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut[J]. Proc Natl Acad Sci U S A, 2016, 113(34):E5044-E5051. |
[19] | ZHANG H, ZHANG H, GAO Z Q, et al. Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein[J]. J Biol Chem, 2013, 288(8):5928-5939. |
[20] | NAVARRO-GARCIA F, RUIZ-PEREZ F, CATALDI Á, et al. Type VI secretion system in pathogenic Escherichia coli:structure, role in virulence, and acquisition[J]. Front Microbiol, 2019, 10:1965. |
[21] | MOUGOUS J D, CUFF M E, RAUNSER S, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus[J]. Science, 2006, 312(5779):1526-1530. |
[22] | SPÍNOLA-AMILIBIA M, DAVÓ-SIGUERO I, RUIZ F M, et al. The structure of VgrG1 from Pseudomonas aeruginosa, the needle tip of the bacterial type VI secretion system[J]. Acta Crystallogr D Struct Biol, 2016, 72(Pt 1):22-33. |
[23] | RENAULT M G, BEAS J Z, DOUZI B, et al. The gp27-like hub of VgrG serves as adaptor to promote Hcp tube assembly[J]. J Mol Biol, 2018, 430(18 Pt B):3143-3156. |
[24] | SHNEIDER M M, BUTH S A, HO B T, et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike[J]. Nature, 2013, 500(7462):350-353. |
[25] | 姚丰华, 张钰, 朱国强. 沙门菌Ⅵ型分泌系统研究进展[J]. 中国预防兽医学报, 2014, 36(6):493-497.YAO F H, ZHANG Y, ZHU G Q. Research process on Salmonella secretion systems[J]. Chinese Journal of Preventive Veterinary Medicine, 2014, 36(6):493-497. (in Chinese) |
[26] | GUEGUEN E, WILLS N M, ATKINS J F, et al. Transcriptional frameshifting rescues Citrobacter rodentium type VI secretion by the production of two length variants from the prematurely interrupted tssM gene[J]. PLoS Genet, 2014, 10(12):e1004869. |
[27] | JOURNET L, CASCALES E. The type VI secretion system in Escherichia coli and related species[J]. EcoSal Plus, 2016, doi:10. 1128/ecosalplus. ESP-0009-2015. |
[28] | CIANFANELLI F R, MONLEZUN L, COULTHURST S J. Aim, load, fire:the type VI secretion system, a bacterial nanoweapon[J]. Trends Microbiol, 2016, 24(1):51-62. |
[29] | LIANG X Y, PEI T T, LI H, et al. VgrG-dependent effectors and chaperones modulate the assembly of the type VI secretion system[J]. PLoS Pathog, 2021, 17(12):e1010116. |
[30] | 宋祥军, 沈啸, 蒋胡艳, 等. 禽致病性大肠杆菌Hcp2b对雏鸡气管黏膜细胞因子-细胞因子受体相互作用通路的影响[J]. 畜牧兽医学报, 2021, 52(3): 742-751.SONG X J, SHEN X, JIANG H Y, et al. Effect of avian pathogenic Escherichia coli Hcp2b on the cytokine-cytokine receptor interaction pathway in chick tracheal mucosa[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 742-751. (in Chinese) |
[31] | BRUNET Y R, KHODR A, LOGGER L, et al. H-NS silencing of the Salmonella pathogenicity island 6-encoded type VI secretion system limits Salmonella enterica serovar typhimurium interbacterial killing[J]. Infect Immun, 2015, 83(7):2738-2750. |
[32] | SIBINELLI-SOUSA S, HESPANHOL J T, NICASTRO G G, et al. A family of T6SS antibacterial effectors related to l, d-transpeptidases targets the peptidoglycan[J]. Cell Rep, 2020, 31(12):107813. |
[33] | WANG P, DONG J F, LI R Q, et al. Roles of the Hcp family proteins in the pathogenicity of Salmonella typhimurium 14028s[J]. Virulence, 2020, 11(1):1716-1726. |
[34] | ZHENG L M, WANG S H, LING M Y, et al. Salmonella enteritidis Hcp distribute in the cytoplasm and regulate TNF signaling pathway in BHK-21 cells[J]. 3 Biotech, 2020, 10(7):301. |
[35] | SCHLIEKER C, ZENTGRAF H, DERSCH P, et al. ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria[J]. Biol Chem, 2005, 386(11):1115-1127. |
[36] | MULDER D T, COOPER C A, COOMBES B K. Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium[J]. Infect Immun, 2012, 80(6):1996-2007. |
[37] | AHMAD S, TSANG K K, SACHAR K, et al. Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones[J]. Elife, 2020, 9:e62816. |
[38] | PARSONS D A, HEFFRON F. sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence[J]. Infect Immun, 2005, 73(7):4338-4345. |
[39] | KLUMPP J, FUCHS T M. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages[J]. Microbiology (Reading), 2007, 153(Pt 4):1207-1220. |
[40] | SHRIVASTAVA S, MANDE S S. Identification and functional characterization of gene components of Type VI secretion system in bacterial genomes[J]. PLoS One, 2008, 3(8):e2955. |
[41] | MOUGOUS J D, GIFFORD C A, RAMSDELL T L, et al. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa[J]. Nat Cell Biol, 2007, 9(7):797-803. |
[42] | THOMSON N R, CLAYTON D J, WINDHORST D, et al. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella gallinarum 287/91 provides insights into evolutionary and host adaptation pathways[J]. Genome Res, 2008, 18(10):1624-1637. |
[43] | SCHROLL C, HUANG K S, AHMED S, et al. The SPI-19 encoded type-six secretion-systems (T6SS) of Salmonella enterica serovars Gallinarum and Dublin play different roles during infection[J]. Vet Microbiol, 2019, 230:23-31. |
[44] | SHAH D H, LEE M J, PARK J H, et al. Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis[J]. Microbiology (Reading), 2005, 151(Pt 12):3957-3968. |
[45] | YEATS C, FINN R D, BATEMAN A. The PASTA domain:a β-lactam-binding domain[J]. Trends Biochem Sci, 2002, 27(9):438-440. |
[46] | PARRET A H A, DE MOT R. Escherichia coli's uropathogenic-specific protein:a bacteriocin promoting infectivity?[J]. Microbiology (Reading), 2002, 148(Pt 6):1604-1606. |
[47] | FOOKES M, SCHROEDER G N, LANGRIDGE G C, et al. Salmonella bongori provides insights into the evolution of the Salmonellae[J]. PLoS Pathog, 2011, 7(8):e1002191. |
[48] | WANG X Y, ZHU S L, ZHAO J H, et al. Genetic boundaries delineate the potential human pathogen Salmonella bongori into discrete lineages:divergence and speciation[J]. BMC Genomics, 2019, 20(1):930. |
[49] | LESIC B, STARKEY M, HE J, et al. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis[J]. Microbiology (Reading), 2009, 155(Pt 9):2845-2855. |
[50] | ZHENG J, LEUNG K Y. Dissection of a type VI secretion system in Edwardsiella tarda[J]. Mol Microbiol, 2007, 66(5):1192-1206. |
[51] | CHEN L H, ZOU Y R, SHE P F, et al. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa[J]. Microbiol Res, 2015, 172:19-25. |
[52] | LEUNG K Y, SIAME B A, SNOWBALL H, et al. Type VI secretion regulation:crosstalk and intracellular communication[J]. Curr Opin Microbiol, 2011, 14(1):9-15. |
[53] | LEE A K, DETWEILER C S, FALKOW S. OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2[J]. J Bacteriol, 2000, 182(3):771-781. |
[54] | 戴鹏, 扬溢, 赵亚荣, 等. 沙门氏菌群体感应系统研究进展[J]. 生物加工过程, 2019, 17(3):257-263, 323.DAI P, YANG Y, ZHAO Y R, et al. Research progress in quorum sensing system in Salmonella[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(3):257-263, 323. (in Chinese) |
[55] | SHOLPAN A, LAMAS A, CEPEDA A, et al. Salmonella spp. quorum sensing:an overview from environmental persistence to host cell invasion[J]. AIMS Microbiol, 2021, 7(2):238-256. |
[56] | DUNLAP P V. Quorum regulation of luminescence in Vibrio fischeri[J]. J Mol Microbiol Biotechnol, 1999, 1(1):5-12. |
[57] | LI S J, WU S J, REN Y X, et al. Characterization of differentiated autoregulation of LuxI/LuxR-type quorum sensing system in Pseudoalteromonas[J]. Biochem Biophys Res Commun, 2022, 590:177-183. |
[58] | WANG W J, ZHANG J, TAO H, et al. E. coli biosensor based on modular GFP and luxI/luxR cyclic amplification circuit for sensitive detection of lysine[J]. Anal Bioanal Chem, 2022, 414(29-30):8299-8307. |
[59] | ZHANG X J, LIU B B, DING X Y, et al. Regulatory mechanisms between quorum sensing and virulence in Salmonella[J]. Microorganisms, 2022, 10(11):2211. |
[60] | WALTERS M, SPERANDIO V. Quorum sensing in Escherichia coli and Salmonella[J]. Int J Med Microbiol, 2006, 296(2-3):125-131. |
[61] | HEGAZY W A H, SALEM I M, ALOTAIBI H F, et al. Terazosin interferes with quorum sensing and type three secretion system and diminishes the bacterial espionage to mitigate the Salmonella typhimurium pathogenesis[J]. Antibiotics (Basel), 2022, 11(4):465. |
[62] | DAS C, DUTTA A, RAJASINGH H, et al. Understanding the sequential activation of Type III and Type VI secretion systems in Salmonella typhimurium using Boolean modeling[J]. Gut Pathog, 2013, 5(1):28. |
[63] | 杨登辉. 沙门菌密度感应系统对六型分泌系统调控的相关研究[D]. 洛阳:河南科技大学, 2015.YANG D H. Study on regulation of Type Ⅵ secretion system by the quorum sensing system[D]. Luoyang:Henan University of Science and Technology, 2015. (in Chinese) |
[64] | 钟璐嘉, 蒋文灿, 李鑫, 等. 细菌Ⅵ型分泌系统结构和功能的研究进展[J]. 中国兽医学报, 2021, 41(7):1419-1424, 1443.ZHONG L J, JIANG W C, LI X, et al. Research progress of structure and function of bacterial type Ⅵ secretion system[J]. Chinese Journal of Veterinary Science, 2021, 41(7):1419-1424, 1443. (in Chinese) |
[65] | WANG T T, SI M R, SONG Y H, et al. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity[J]. PLoS Pathog, 2015, 11(7):e1005020. |
[66] | DESHAZER D. A novel contact-independent T6SS that maintains redox homeostasis via Zn2+ and Mn2+acquisition is conserved in the Burkholderia pseudomallei complex[J]. Microbiol Res, 2019, 226:48-54. |
[67] | SI M R, WANG Y, ZHANG B, et al. The Type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition[J]. Cell Rep, 2017, 20(4):949-959. |
[68] | BERAUD M, KOLB A, MONTEIL V, et al. A proteomic analysis reveals differential regulation of the σS-dependent yciGFE(katN) locus by YncC and H-NS in Salmonella and Escherichia coli K-12[J]. Mol Cell Proteomics, 2010, 9(12):2601-2616. |
[69] | GROISMAN E A, DUPREY A, CHOI J. How the PhoP/PhoQ system controls virulence and Mg2+ homeostasis:lessons in signal transduction, pathogenesis, physiology, and evolution[J]. Microbiol Mol Biol Rev, 2021, 85(3):e0017620. |
[70] | PALMER A D, KIM K, SLAUCH J M. PhoP-mediated repression of the SPI1 Type 3 secretion system in Salmonella enterica serovar typhimurium[J]. J Bacteriol, 2019, 201(16):e00264-19. |
[71] | KO D, CHOI S H. Mechanistic understanding of antibiotic resistance mediated by EnvZ/OmpR two-component system in Salmonella enterica serovar Enteritidis[J]. J Antimicrob Chemother, 2022, 77(9):2419-2428. |
[72] | RODRIGUEZ C R, SCHECHTER L M, LEE C A. Detection and characterization of the S. typhimurium HilA protein[J]. BMC Microbiol, 2002, 2:31. |
[73] | TOMLJENOVIC-BERUBE A M, MULDER D T, WHITESIDE M D, et al. Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system[J]. PLoS Genet, 2010, 6(3):e1000875. |
[74] | GARMENDIA J, BEUZON C R, RUIZ-ALBERT J, et al. The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system[J]. Microbiology (Reading), 2003, 149(Pt 9):2385-2396. |
[75] | RAY S, PANDEY N K, KUSHWAHA G S, et al. Structural investigation on SPI-6-associated Salmonella typhimurium VirG-like stress protein that promotes pathogen survival in macrophages[J].Protein Sci, 2022, 31(4):835-849. |
[76] | VANDERWAAL K, DEEN J. Global trends in infectious diseases of swine[J]. Proc Natl Acad Sci U S A, 2018, 115(45):11495-11500. |
[77] | GAO X P, MU Z X, QIN B, et al. Structure-based prototype peptides targeting the Pseudomonas aeruginosa type VI secretion system effector as a novel antibacterial strategy[J]. Front Cell Infect Microbiol, 2017, 7:411. |
[78] | BARRETTO L A F, FOWLER C C. Identification of a putative T6SS immunity islet in Salmonella typhi[J]. Pathogens, 2020, 9(7):559. |
[1] | 郑琳, 魏炳栋, 滑峰, 陈龙, 丁媛. 裂解性噬菌体对肉仔鸡感染肠炎沙门菌的治疗效果[J]. 畜牧兽医学报, 2024, 55(3): 1314-1327. |
[2] | 王栋, 柳可欣, 何炎峻, 邓守翔, 刘云, 马卫明. 饲粮中添加腐殖酸钠对鼠伤寒沙门菌感染肉鸡肝组织炎症和抗氧化能力的影响[J]. 畜牧兽医学报, 2024, 55(2): 629-639. |
[3] | 李兆龙, 孔祥瑞, 林锋强, 王秀萍, 赵冉, 彭小莉, 陈常颂. 冠突散囊菌Ec-12上清抑制小鼠的伤寒沙门菌机制的初步分析[J]. 畜牧兽医学报, 2024, 55(2): 739-750. |
[4] | 张萍, 庄林林, 张笛, 董永毅, 盛中伟, 王成明, 徐步, 窦新红, 龚建森. 沙门菌分子检测方法的研究进展[J]. 畜牧兽医学报, 2023, 54(8): 3217-3229. |
[5] | 张倩文, 刘玉梅, 石丽辉, 梁文军, 李梦云, 王玉琴, 张自强. 生产母兔沙门菌感染的病理学变化及其药物敏感性分析[J]. 畜牧兽医学报, 2023, 54(8): 3510-3518. |
[6] | 孙瑜凡, 于盼元, 陈虹宇, 谭怡青, 陈夏冰, 张腾飞, 高婷, 周锐, 黎璐. 二甲酸钾预防沙门菌感染小鼠的效果评价及对肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2101-2113. |
[7] | 秦蕾, 吴慧敏, 徐琦琦, 陈万昭, 王东, 李宏博, 夏盼盼, 刘泽鹏, 夏利宁. 外源MDR鼠伤寒沙门菌对健康小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2023, 54(5): 2158-2169. |
[8] | 田艳红, 于江旭, 焦宇洲, 高东阳, 蔡旭旺. 沙门菌脂多糖的结构修饰及其效应的研究进展[J]. 畜牧兽医学报, 2023, 54(4): 1392-1402. |
[9] | 李德豪, 李宜穗, 马静云, 孙媛, 张祥斌. 一株沙门菌温和噬菌体PEA2-3生物学特性及基因组分析[J]. 畜牧兽医学报, 2023, 54(4): 1632-1640. |
[10] | 姚敏, 石博妹, 黄廷华. 沙门菌SptP调控巨噬细胞MAPK-CDK6-RB通路的初步分析[J]. 畜牧兽医学报, 2023, 54(3): 1187-1198. |
[11] | 蒋增海, 滕霖, 贺安文, 刘言言, 乐敏, 何启盖. 猪产业链中鼠伤寒沙门菌及沙门菌血清型4,[5],12:i:-基因组学分析[J]. 畜牧兽医学报, 2023, 54(3): 1199-1209. |
[12] | 李莉莉, 陈凯风, 陈兵, 周洲平, 王南威, 瞿孝云, 徐成刚, 廖明, 张建民. STM1827在鼠伤寒沙门菌生物被膜形成及环境应激中的调控作用[J]. 畜牧兽医学报, 2023, 54(12): 5207-5217. |
[13] | 韩生义, 李玲霞, 李淑萍, 胡国元, 李生庆. 沙门菌噬菌体SP3的生物学特性及基因组分析[J]. 畜牧兽医学报, 2023, 54(12): 5228-5239. |
[14] | 杨梦林, 郑世奇, 彭凯, 王玮, 黄燕华, 彭杰. 鸽源鼠伤寒沙门菌的分离鉴定及致病性分析[J]. 畜牧兽医学报, 2023, 54(11): 4880-4888. |
[15] | 武周慧, 王瑜, 杜衡, 王之文, 肖爽, 武金亮, 王真. 替拉扎明对多重耐药沙门菌抗菌增敏活性分析[J]. 畜牧兽医学报, 2023, 54(10): 4362-4371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||