| [1] | RUSSO T A, JOHNSON J R. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli:ExPEC[J]. J Infect Dis, 2000, 181(5):1753-1754. | 
																													
																						| [2] | RODRIGUEZ-SIEK K E, GIDDINGS C W, DOETKOTT C, et al. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis[J]. Microbiology, 2005, 151(6):2097-2110. | 
																													
																						| [3] | MANGES A R. Escherichia coli and urinary tract infections:the role of poultry-meat[J]. Clin Microbiol Infect, 2016, 22(2):122-129. | 
																													
																						| [4] | BAUCHART P, GERMON P, BRÉE A, et al. Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli——search for factors involved in host specificity or zoonotic potential[J]. Microb Pathog, 2010, 49(3):105-115. | 
																													
																						| [5] | STOCK A M, ROBINSON V L, GOUDREAU P N. Two-component signal transduction[J]. Annu Rev Biochem, 2000, 69:183-215. | 
																													
																						| [6] | XU Y, ZHAO Z, TONG W H, et al. An acid-tolerance response system protecting exponentially growing Escherichia coli[J]. Nat Commun, 2020, 11:1496. | 
																													
																						| [7] | VOGT S L, SCHOLZ R, PENG Y, et al. Characterization of the Citrobacter rodentium Cpx regulon and its role in host infection[J]. Mol Microbiol, 2019, 111(3):700-716. | 
																													
																						| [8] | YAN K, LIU T, DUAN B Z, et al. The CpxAR two-component system contributes to growth, stress resistance, and virulence of Actinobacillus pleuropneu-moniae by upregulating wecA transcription[J]. Front Microbiol, 2020, 11:1026. | 
																													
																						| [9] | LIU M, HAO G J, LI Z, et al. CitAB two-component system-regulated citrate utilization contributes to Vibrio cholerae competitiveness with the gut microbiota[J]. Infect Immun, 2019, 87(3):e00746-18. | 
																													
																						| [10] | DE WULF P, MCGUIRE A M, LIU X Q, et al. Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli[J]. J Biol Chem, 2002, 277(29):26652-26661. | 
																													
																						| [11] | RAIVIO T L, SILHAVY T J. Transduction of envelope stress in Escherichia coli by the Cpx two-component system[J]. J Bacteriol, 1997, 179(24):7724-7733. | 
																													
																						| [12] | HIRAKAWA H, NISHINO K, HIRATA T, et al. Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli[J]. J Bacteriol, 2003, 185(6):1851-1856. | 
																													
																						| [13] | CAO Q, FENG F F, WANG H, et al. Haemophilus parasuis CpxRA two-component system confers bacterial tolerance to environmental stresses and macrolide resistance[J]. Microbiol Res, 2018, 206:177-185. | 
																													
																						| [14] | DE LA CRUZ M A, PÉREZ-MORALES D, PALACIOS I J, et al. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD[J]. Front Microbiol, 2015, 6:807. | 
																													
																						| [15] | DEBNATH I, NORTON J P, BARBER A E, et al. The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli[J]. Infect Immun, 2013, 81(5):1450-1459. | 
																													
																						| [16] | WANG S H, DAI J J, MENG Q M, et al. DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli[J]. Front Microbiol, 2014, 5:588. | 
																													
																						| [17] | DATSENKO K A, WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proc Natl Acad Sci USA, 2000, 97(12):6640-6645. | 
																													
																						| [18] | 黄慧, 刘保光, 孙亚伟, 等. 鼠伤寒沙门菌cpxR和acrB双基因缺失菌株的构建及其对抗菌药物敏感性分析[J]. 畜牧兽医学报, 2016, 47(3):595-602.HUANG H, LIU B G, SUN Y W, et al. Construction of cpxR and acrB double gene deletion strain of salmonella enterica serovar typhimurium and analysis of its susceptibility to antibacterial agents[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(3):595-602. (in Chinese) | 
																													
																						| [19] | 吴同垒, 苏硕青, 李巧玲, 等. 狐源沙门菌cpxR基因缺失菌株的构建及部分表型研究[J]. 中国兽医学报, 2019, 39(3):456-460.WU T L, SU S Q, LI Q L, et al. Construction of cpxR gene-knockout strain of Salmonella and its partial phenotype study[J]. Chinese Journal of Veterinary Science, 2019, 39(3):456-460. (in Chinese) | 
																													
																						| [20] | CLSI. Performance standards for antimicrobial susceptibility testing[M]. 28th ed. Wayne, PA:Clinical and Laboratory Standards Institute, 2018. | 
																													
																						| [21] | YI Z F, WANG D, XIN S H, et al. The CpxR regulates type VI secretion system 2 expression and facilitates the interbacterial competition activity and virulence of avian pathogenic Escherichia coli[J]. Vet Res, 2019, 50:40. | 
																													
																						| [22] | ZHUANG Q Y, WANG S C, LI J P, et al. A clinical survey of common avian infectious diseases in China[J]. Avian Dis, 2014, 58(2):297-302. | 
																													
																						| [23] | MITCHELL N M, JOHNSON J R, JOHNSTON B, et al. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs[J]. Appl Environ Microbiol, 2015, 81(3):1177-1187. | 
																													
																						| [24] | SUBRAMANIAM S, MVLLER V S, HERING N A, et al. Contribution of the Cpx envelope stress system to metabolism and virulence regulation in Salmonella enterica serovar Typhimurium[J]. PLoS One, 2019, 14(2):e0211584. | 
																													
																						| [25] | SHETTY D, ABRAHANTE J E, CHEKABAB S M, et al. Role of CpxR in biofilm development:Expression of key fimbrial, O-antigen and virulence operons of Salmonella enteritidis[J]. Int J Mol Sci, 2019, 20(20):5146. | 
																													
																						| [26] | JUBELIN G, VIANNEY A, BELOIN C, et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli[J]. J Bacteriol, 2005, 187(6):2038-2049. | 
																													
																						| [27] | MATTER L B, ARES M A, ABUNDES-GALLEGOS J, et al. The CpxRA stress response system regulates virulence features of avian pathogenic Escherichia coli[J]. Environ Microbiol, 2018, 20(9):3363-3377. | 
																													
																						| [28] | KURABAYASHI K, HIRAKAWA Y, TANIMOTO K, et al. Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake[J]. J Bacteriol, 2014, 196(2):248-256. | 
																													
																						| [29] | MAHONEY T F, SILHAVY T J. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics[J]. J Bacteriol, 2013, 195(9):1869-1874. | 
																													
																						| [30] | BATCHELOR E, WALTHERS D, KENNEY L J, et al. The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC[J]. J Bacteriol, 2005, 187(16):5723-5731. | 
																													
																						| [31] | SERRUTO D, RAPPUOLI R, SCARSELLI M, et al. Molecular mechanisms of complement evasion:learning from Staphylococci and Meningococci[J]. Nat Rev Microbiol, 2010, 8(6):393-399. | 
																													
																						| [32] | MATSUDA K, CHAUDHARI A A, KIM S W, et al. Physiology, pathogenicity and immunogenicity of lon and/or cpxR deleted mutants of Salmonella Gallinarum as vaccine candidates for fowl typhoid[J]. Vet Res, 2010, 41(5):59. |