畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (12): 2964-2971.doi: 10.11843/j.issn.0366-6964.2020.12.006
刘丹丹1, 崔常勇2, 张弛1, 刘明江1,3*
收稿日期:
2020-06-01
出版日期:
2020-12-25
发布日期:
2020-12-23
通讯作者:
刘明江,主要从事奶牛乳房炎的防治研究,E-mail:mjliu1@163.com
作者简介:
刘丹丹(1996-),女,重庆垫江人,硕士,主要从事奶牛乳房炎的防治研究,E-mail:dandanliuo@163.com
基金资助:
LIU Dandan1, CUI Changyong2, ZHANG Chi1, LIU Mingjiang1,3*
Received:
2020-06-01
Online:
2020-12-25
Published:
2020-12-23
摘要: 金黄色葡萄球菌(Staphylococcus aureus,SA)型奶牛乳腺炎是一种较难控制的慢性、亚临床型传染病,给奶牛养殖业带来巨大的经济损失。多种SA免疫逃避机制在乳腺炎发生、发展过程中起重要作用,且SA的免疫逃避机制多与菌体毒力因子相关。本文对近年研究的奶牛乳腺炎SA的免疫逃避机制进行了综述,以期为SA型奶牛乳腺炎的防治研究提供参考。
中图分类号:
刘丹丹, 崔常勇, 张弛, 刘明江. 奶牛乳腺炎金黄色葡萄球菌免疫逃避机制研究进展[J]. 畜牧兽医学报, 2020, 51(12): 2964-2971.
LIU Dandan, CUI Changyong, ZHANG Chi, LIU Mingjiang. Research Progress on the Staphylococcus aureus Immune Evasion in Bovine Mastitis[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(12): 2964-2971.
[1] | HU Q L,CUI X J,TAO L,et al.Staphylococcus aureus induces apoptosis in primary bovine mammary epithelial cells through Fas-FADD death receptor-linked caspase-8 signaling[J].DNA Cell Biol,2014,33(6):388-397. |
[2] | ZADOKS R N,MIDDLETON J R,MCDOUGALL S,et al.Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans[J].J Mammary Gland Biol Neoplasia,2011,16(4):357-372. |
[3] | GRUET P,MAINCENT P,BERTHELOT X,et al.Bovine mastitis and intramammary drug delivery:review and perspectives[J].Adv Drug Deliv Rev,2001,50(3):245-259. |
[4] | OVIEDO-BOYSO J,VALDEZ-ALARCÓN J J,CAJERO-JUÁREZ M,et al.Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis[J].J Infect,2007,54(4):399-409. |
[5] | FLUIT A C.Livestock-associated Staphylococcus aureus[J].Clin Microbiol Infect,2012,18(8):735-744. |
[6] | MATUSZEWSKA M,MURRAY G G R,HARRISON E M,et al.The evolutionary genomics of host specificity in Staphylococcus aureus[J].Trends Microbiol,2020,28(6):465-477. |
[7] | MURPHY M P,NIEDZIELA D A,LEONARD F C,et al.The in vitro host cell immune response to bovine-adapted Staphylococcus aureus varies according to bacterial lineage[J].Sci Rep,2019,9(1):6134. |
[8] | HOEKSTRA J,RUTTEN V P M G,LAM T J G M,et al.Activation of a bovine mammary epithelial cell line by ruminant-associated Staphylococcus aureus is lineage dependent[J].Microorganisms,2019,7(12):688. |
[9] | 鲍燕.金黄色葡萄球菌Pfs的功能性研究及金葡萄感染的靶向性治疗[D].合肥:中国科学技术大学,2012.BAO Y.Functional research of Pfs and target treatment of infection of Staphylococcus aureus[D].Hefei:University of Science and Technology of China,2012.(in Chinese) |
[10] | BISCHOFF M,DUNMAN P,KORMANEC J,et al.Microarray-based analysis of the Staphylococcus aureus σB regulon[J].J Bacteriol,2004,186(13):4085-4099. |
[11] | MARBACH H,MAYER K,VOGL C,et al.Within-host evolution of bovine Staphylococcus aureus selects for a SigB-deficient pathotype characterized by reduced virulence but enhanced proteolytic activity and biofilm formation[J].Sci Rep,2019,9(1):13479. |
[12] | GONCHEVA M I,FLANNAGAN R S,STERLING B E,et al.Stress-induced inactivation of the Staphylococcus aureus purine biosynthesis repressor leads to hypervirulence[J].Nat Commun,2019,10:775. |
[13] | SAUSE W E,BALASUBRAMANIAN D,IRNOV I,et al.The purine biosynthesis regulator PurR moonlights as a virulence regulator in Staphylococcus aureus[J].Proc Natl Acad Sci U S A,2019,116(27):13563-13572. |
[14] | 彭琦.purN对金黄色葡萄球菌持留菌形成和毒力影响的研究[D].兰州:兰州大学,2019.PENG Q.Study on the effects of purN on persister formation and virulence of Staphylococcus aureus[D].Lanzhou:Lanzhou University,2019.(in Chinese) |
[15] | CHEN X,ALONZO III F.Bacterial lipolysis of immune-activating ligands promotes evasion of innate defenses[J].Proc Natl Acad Sci U S A,2019,116(9):3764-3773. |
[16] | TAN X,COUREUIL M,CHARBIT A,et al.Multitasking actors of Staphylococcus aureus metabolism and virulence[J].Trends Microbiol,2020,28(1):6-9. |
[17] | GRAYCZYK J P,HARVEY C J,LACZKOVICH I,et al.A lipoylated metabolic protein released by Staphylococcus aureus suppresses macrophage activation[J].Cell Host Microbe,2017,22(5):678-687.e9. |
[18] | SCHUSTER C F,BERTRAM R.Toxin-antitoxin systems of Staphylococcus aureus[J].Toxins,2016,8(5):140. |
[19] | 王臣,宣劲松,冯银刚.细菌中Ⅰ型毒素-抗毒素系统的研究进展[J].生物化学与生物物理进展,2016,43(10):952-961.WANG C,XUAN J S,FENG Y G.The progress of researches on bacterial type Ⅰ Toxin-Antitoxin systems[J].Progress in Biochemistry and Biophysics,2016,43(10):952-961.(in Chinese) |
[20] | GERMAIN-AMIOT N,AUGAGNEUR Y,CAMBERLEIN E,et al.A novel Staphylococcus aureus cis-trans type I toxin-antitoxin module with dual effects on bacteria and host cells[J].Nucleic Acids Res,2019,47(4):1759-1773. |
[21] | RIFFAUD C,PINEL-MARIE M L,PASCREAU G,et al.Functionality and cross-regulation of the four SprG/SprF type I toxin-antitoxin systems in Staphylococcus aureus[J].Nucleic Acids Res,2019,47(4):1740-1758. |
[22] | 宋娟.金黄色葡萄球菌小菌落突变株所致相关感染的研究进展[J].中国感染与化疗杂志,2018,18(4):440-444.SONG J.Research update on the infections caused by small colony variants of Staphylococcus aureus[J].Chinese Journal of Infection and Chemotherapy,2018,18(4):440-444.(in Chinese) |
[23] | 张立梅.奶牛乳房炎性金葡菌毒力基因和耐药性及其与SCVs致病力差异[D].北京:中国农业大学,2018.ZHANG L M.Virulence and resistance characteristics of Staphylococcus aureus isolated from bovine mastitis and its pathogenic difference with SCVs[D].Beijing:China Agricultural University,2018.(in Chinese) |
[24] | ATALLA H,GYLES C,MALLARD B.Staphylococcus aureus small colony variants (SCVs) and their role in disease[J].Anim Health Res Rev,2011,12(1):33-45. |
[25] | WONG FOK LUNG T,MONK I R,ACKER K P,et al.Staphylococcus aureus small colony variants impair host immunity by activating host cell glycolysis and inducing necroptosis[J].Nat Microbiol,2020,5(1):141-153. |
[26] | 刘修权,曲伟杰,高健,等.金黄色葡萄球菌小菌落突变株研究进展[J].中国兽医杂志,2011,47(3):54-58.LIU X Q,QU W J,GAO J,et al.Research progress on small colony mutants of Staphylococcus aureus[J].Chinese Journal of Veterinary Medicine,2011,47(3):54-58.(in Chinese) |
[27] | 熊甘爽,ALKASIR R,仲亮,等.奶牛乳房炎金黄色葡萄球菌小菌落突变株的表型鉴定及其遗传基础分析[J].畜牧与兽医,2020,52(5):64-72.XIONG G S,ALKASIR R,ZHONG L,et al.Phenotypic identification and genetic basis of Staphylo coccus SCV associated with persistent bovine mastitis[J].Animal Husbandry & Veterinary Medicine,2020,52(5):64-72.(in Chinese) |
[28] | HOEKSTRA J,RUTTEN V,SOMMELING L,et al.High production of LukMF' in Staphylococcus aureus field strains is associated with clinical bovine mastitis[J].Toxins,2018,10(5):200. |
[29] | VRIELING M,KOYMANS K J,HEESTERBEEK D A C,et al.Bovine Staphylococcus aureus secretes the leukocidin LukMF' to kill migrating neutrophils through CCR1[J].mBio,2015,6(3):e00335-15. |
[30] | LUBKIN A,LEE W L,ALONZO III F,et al.Staphylococcus aureus leukocidins target endothelial DARC to cause lethality in mice[J].Cell Host Microbe,2019,25(3):463-470.e9. |
[31] | ALONZO III F,KOZHAYA L,RAWLINGS S A,et al.CCR5 is a receptor for Staphylococcus aureus leukotoxin ED[J].Nature,2013,493(7430):51-55. |
[32] | SPAULDING A R,SALGADO-PABÓN W,KOHLER P L,et al.Staphylococcal and streptococcal superantigen exotoxins[J].Clin Microbiol Rev,2013,26(3):422-447. |
[33] | WILSON G J,TUFFS S W,WEE B A,et al.Bovine Staphylococcus aureus superantigens stimulate the entire T cell repertoire of cattle[J].Infect Immun,2018,86(11):e00505-18. |
[34] | FANG R D,CUI J C,CUI T T,et al.Staphylococcal enterotoxin c is an important virulence factor for mastitis[J].Toxins,2019,11(3):141. |
[35] | LIU Y X,CHEN W,ALI T,et al.Staphylococcal enterotoxin H induced apoptosis of bovine mammary epithelial cells in vitro[J].Toxins,2014,6(12):3552-3567. |
[36] | FERENS W A,BOHACH G A.Persistence of Staphylococcus aureus on mucosal membranes:superantigens and internalization by host cells[J].J Lab Clin Med,2000,135(3):225-230. |
[37] | HAYES S M,BIGGS T C,GOLDIE S P,et al.Staphylococcus aureus internalization in mast cells in nasal polyps:characterization of interactions and potential mechanisms[J].J Allergy Clin Immunol,2020,145(1):147-159. |
[38] | FREER J H,ARBUTHNOTI J P.Toxins of Staphylococcus aureus[J].Pharmacol Ther,1982,19(1):55-106. |
[39] | HUSMANN M,BECKMANN E,BOLLER K,et al.Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis[J].FEBS Lett,2009,583(2):337-344. |
[40] | SHAH J,ROUAUD F,GUERRERA D,et al.A dock-and-lock mechanism clusters ADAM10 at cell-cell junctions to promote α-toxin cytotoxicity[J].Cell Rep,2018,25(8):2132-2147.e7. |
[41] | VON HOVEN G,HUSMANN M.Staphylococcus aureus α-toxin's close contacts ensure the kill[J].Trends Microbiol,2019,27(2):89-90. |
[42] | LEE B,OLANIYI R,KWIECINSKI J M,et al.Staphylococcus aureus toxin suppresses antigen-specific T cell responses[J].J Clin Invest,2020,130(3):1122-1127. |
[43] | PAPAYANNOPOULOS V.Neutrophil extracellular traps in immunity and disease[J].Nat Rev Immunol,2018,18(2):134-147. |
[44] | THAMMAVONGSA V,MISSIAKAS D M,SCHNEEWIND O.Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death[J].Science,2013,342(6160):863-866. |
[45] | WINSTEL V,MISSIAKAS D,SCHNEEWIND O.Staphylococcus aureus targets the purine salvage pathway to kill phagocytes[J].Proc Natl Acad Sci U S A,2018,115(26):6846-6851. |
[46] | ASHRAF S,CHENG J,ZHAO X.Clumping factor A of Staphylococcus aureus interacts with AnnexinA2 on mammary epithelial cells[J].Sci Rep,2017,7:40608. |
[47] | CAI J,LI J,ZHOU Y Q,et al.Staphylococcus aureus facilitates its survival in bovine macrophages by blocking autophagic flux[J].J Cell Mol Med,2020,24(6):3460-3468. |
[48] | WANG H,ZHOU Y Q,ZHU Q C,et al.Staphylococcus aureus induces autophagy in bovine mammary epithelial cells and the formation of autophagosomes facilitates intracellular replication of Staph.aureus[J].J Dairy Sci,2019,102(9):8264-8272. |
[49] | WELLNITZ O,ZBINDEN C,HUANG X,et al.Short communication:differential loss of bovine mammary epithelial barrier integrity in response to lipopoly-saccharide and lipoteichoic acid[J].J Dairy Sci,2016,99(6):4851-4856. |
[50] | CASTILHO I G,DANTAS S T A,LANGONI H,et al.Host-pathogen interactions in bovine mammary epithelial cells and HeLa cells by Staphylococcus aureus isolated from subclinical bovine mastitis[J].J Dairy Sci,2017,100(8):6414-6421. |
[51] | WINSTEL V,XIA G Q,PESCHEL A.Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus[J].Int J Med Microbiol,2014,304(3-4):215-221. |
[52] | GERLACH D,GUO Y L,DE CASTRO C,et al.Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity[J].Nature,2018,563(7733):705-709. |
[53] | DU TOIT A.Changing your sugar coat[J].Nat Rev Microbiol,2019,17(2):64-65. |
[54] | MISSIAKAS D.Staphylococcus aureus TarP:a brick in the wall or rosetta stone?[J].Cell Host Microbe,2019,25(2):182-183. |
[55] | PASSALACQUA K D,O'RIORDAN M X.MRSA in stealth mode evades antibody recognition[J].Trends Immunol,2019,40(2):85-87. |
[56] | TARTAGLIA N R,BREYNE K,MEYER E,et al.Staphylococcus aureus extracellular vesicles elicit an immunostimulatory response in vivo on the murine mammary gland[J].Front Cell Infect Microbiol,2018,8:277. |
[57] | WANG X G,EAGEN W J,LEE J C.Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles[J].Proc Natl Acad Sci U S A,2020,117(6):3174-3184. |
[58] | SCHWARTZ K,SYED A K,STEPHENSON R E,et al.Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms[J].PLoS Pathog,2012,8(6):e1002744. |
[59] | DEPLANCHE M,ALEKSEEVA L,SEMENOV-SKAYA K,et al.Staphylococcus aureus phenol-soluble modulins impair interleukin expression in bovine mammary epithelial cells[J].Infect Immun,2016,84(6):1682-1692. |
[60] | SCHLATTERER K,BECK C,HANZELMANN D,et al.The Mechanism behind bacterial lipoprotein release:phenol-soluble modulins mediate Toll-like receptor 2 activation via extracellular vesicle release from Staphylococcus aureus[J].mBio,2018,9(6):e01851-18. |
[61] | TAYEB-FLIGELMAN E,TABACHNIKOV O,MOSHE A,et al.The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril[J].Science,2017,355(6327):831-833. |
[62] | YAO Z H,CARY B P,BINGMAN C A,et al.Use of a stereochemical strategy to probe the mechanism of phenol-soluble modulin α3 toxicity[J].J Am Chem Soc,2019,141(19):7660-7664. |
[63] | HOU X C,ZHANG X F,ZHAO W Y,et al.Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis[J].Nat Nanotechnol,2020,15(1):41-46. |
[64] | PANG X,LIU X,CHENG Y,et al.Sono-immuno-therapeutic nanocapturer to combat multidrug-resistant bacterial infections[J].Adv Mater,2019,31(35):1902530. |
[65] | WANG C,WANG Y L,ZHANG L L,et al.Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections[J].Adv Mater,2018,30(46):1804023. |
[66] | LIU Y,BAI P,WOISCHNIG A K,et al.Immuno-mimetic designer cells protect mice from MRSA infection[J].Cell,2018,174(2):259-270.e11. |
[67] | BARAL P,UMANS B D,LI L,et al.Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia[J].Nat Med,2018,24(4):417-426. |
[68] | CHUNG L K,RAFFATELLU M.Probiotic fengycins dis(Agr)ee with Staphylococcus aureus colonization[J].Cell Res,2019,29(2):93-94. |
[69] | YORK A.Silencing Staphylococcus aureus with probiotics[J].Nat Rev Microbiol,2018,16(12):715. |
[1] | 和晓兰, 赵艳坤, 孟璐, 刘慧敏, 高姣姣, 郑楠. 金黄色葡萄球菌异质性耐药研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1432-1445. |
[2] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[3] | 吴自豪, 蔡依龙, 陀海欣, 陈伟. 1株马乳源PVL+ST22型金黄色葡萄球菌致病性分析[J]. 畜牧兽医学报, 2024, 55(2): 718-726. |
[4] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[5] | 郭心雨, 王昊天, 张雪梅, 王小龙, 李和平, 杨彦宾, 钟凯. 牛乳来源外泌体对巨噬细胞极化调控作用的研究[J]. 畜牧兽医学报, 2023, 54(11): 4754-4765. |
[6] | 江南松, 吉星, 王亚新, 孙城涛, 汪洋, 陈红梅, 程龙飞, 黄瑜, 吴聪明. 猪源ST9型耐甲氧西林金黄色葡萄球菌中前噬菌体的流行状况与转导分析[J]. 畜牧兽医学报, 2023, 54(1): 338-350. |
[7] | 丰鑫, 汪铭书, 程安春. 甲型疱疹病毒亚科的疱疹病毒囊膜糖蛋白gC对病毒感染复制的影响[J]. 畜牧兽医学报, 2022, 53(9): 2867-2876. |
[8] | 卢婉青, 赵莎莎, 蒋松宏, 童智子, 黄丹妮, 郭建华, 吴俊伟, 周洋. 金黄色葡萄球菌对BV2细胞IFN-α生成的影响[J]. 畜牧兽医学报, 2022, 53(8): 2633-2641. |
[9] | 毛彦妮, 常佳伟, 李娜, 王鑫, 康馨匀, 马强, 马靓, 王桂琴. 金黄色葡萄球菌在生物被膜态与浮游态的转录组差异表达分析[J]. 畜牧兽医学报, 2022, 53(8): 2697-2707. |
[10] | 王迪, 俞英. 奶牛金葡菌乳房炎抗性的转录组及表观遗传学研究进展[J]. 畜牧兽医学报, 2022, 53(2): 329-338. |
[11] | 张金柠, 钱梦樱, 唐永杰, 米思远, 师科荣, 俞英. 金黄色葡萄球菌表面蛋白A对奶牛乳腺上皮细胞的黏附作用[J]. 畜牧兽医学报, 2021, 52(5): 1369-1377. |
[12] | 谢黎卿, 杨洋, 彭远义, 李能章. 病原微生物荚膜多糖的生物学功能[J]. 畜牧兽医学报, 2021, 52(3): 576-587. |
[13] | 伍迎欢, 杨丹茹, 赵燕英. 异体移植炎症因子1通过核因子κB信号促进牛乳腺上皮细胞炎症因子的释放[J]. 畜牧兽医学报, 2021, 52(3): 782-788. |
[14] | 黄雅琳, 程安春, 汪铭书. 囊膜糖蛋白gE对α疱疹病毒毒力的影响[J]. 畜牧兽医学报, 2020, 51(7): 1506-1514. |
[15] | 马强, 杨蕊, 万佳宏, 常佳伟, 魏彦琴, 王桂琴. 宁夏地区牛源金黄色葡萄球菌β-内酰胺酶的分析及作用方式的研究[J]. 畜牧兽医学报, 2020, 51(5): 1138-1148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||