畜牧兽医学报 ›› 2020, Vol. 51 ›› Issue (7): 1506-1514.doi: 10.11843/j.issn.0366-6964.2020.07.004
黄雅琳1,2,3, 程安春1,2,3, 汪铭书1,2,3*
收稿日期:
2019-12-20
出版日期:
2020-07-25
发布日期:
2020-07-22
通讯作者:
汪铭书,主要从事预防兽医学研究,E-mail:mshwang@163.com
作者简介:
黄雅琳(1995-),女,辽宁盘锦人,硕士,主要从事鸭疱疹病毒研究,E-mail:18227585961@163.com
基金资助:
HUANG Yalin1,2,3, CHENG Anchun1,2,3, WANG Mingshu1,2,3*
Received:
2019-12-20
Online:
2020-07-25
Published:
2020-07-22
摘要: 近年来,α疱疹病毒的囊膜糖蛋白gE在病毒细胞间传递、神经系统入侵、免疫逃避等方面的研究取得新的进展。gE能促进合胞体形成,影响病毒的顺行、逆行神经传导,也是第一个报道可以抑制浆细胞样树突状细胞产生Ⅰ型干扰素的病毒蛋白。本文对α疱疹病毒囊膜糖蛋白gE与毒力之间的关系进行阐述,以期为α疱疹病毒gE的功能研究提供参考。
中图分类号:
黄雅琳, 程安春, 汪铭书. 囊膜糖蛋白gE对α疱疹病毒毒力的影响[J]. 畜牧兽医学报, 2020, 51(7): 1506-1514.
HUANG Yalin, CHENG Anchun, WANG Mingshu. Effect of Alphaherpesvirus Glycoprotein gE on Virulence[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1506-1514.
[1] | FARNSWORTH A, GOLDSMITH K, JOHNSON D C. Herpes simplex virus glycoproteins gD and gE/gI serve essential but redundant functions during acquisition of the virion envelope in the cytoplasm[J]. J Virol, 2003, 77(15):8481-8494. |
[2] | FARNSWORTH A, JOHNSON D C. Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread[J]. J Virol, 2006, 80(7):3167-3179. |
[3] | LUBINSKI J M, LAZEAR H M, AWASTHI S, et al. The herpes simplex virus 1 IgG Fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo[J]. J Virol, 2011, 85(7):3239-3249. |
[4] | MCGRAW H M, AWASTHI S, WOJCECHOWSKYJ J A, et al. Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not US9[J]. J Virol, 2009, 83(17):8315-8326. |
[5] | ZHU Z, HAO Y, GERSHON M D, et al. Targeting of glycoprotein I(gE) of varicella-zoster virus to the trans-Golgi network by an AYRV sequence and an acidic amino acid-rich patch in the cytosolic domain of the molecule[J]. J Virol, 1996, 70(10):6563-6575. |
[6] | OLSON J K, BISHOP G A, GROSE C. Varicella-zoster virus Fc receptor gE glycoprotein:serine/threonine and tyrosine phosphorylation of monomeric and dimeric forms[J]. J Virol, 1997, 71(1):110-119. |
[7] | TIRABASSI R S, ENQUIST L W. Mutation of the YXXL endocytosis motif in the cytoplasmic tail ofpseudorabies virus gE[J]. J Virol, 1999, 73(4):2717-2728. |
[8] | BERARDUCCI B, RAJAMANI J, REICHELT M, et al. Deletion of the first cysteine-rich region of the varicella-zoster virus glycoprotein E ectodomain abolishes the gE and gI interaction and differentially affects cell-cell spread and viral entry[J]. J Virol, 2009, 83(1):228-240. |
[9] | SPRAGUE E R, WANG C, BAKER D, et al. Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging[J]. PLoS Biol, 2006, 4(6):e148. |
[10] | MO C J, LEE J, SOMMER M H, et al. Varicella-zoster virus infection facilitates VZV glycoprotein E trafficking to the membrane surface of melanoma cells[J]. J Med Virol, 2003, 70(S1):S56-S58 |
[11] | JOHNSON D C, WEBB M, WISNER T W, et al. Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread[J]. J Virol, 2001, 75(2):821-833. |
[12] | WAN L, MOLLOY S S, THOMAS L, et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization[J]. Cell, 1998, 94(2):205-216. |
[13] | CAMPADELLI-FIUME G, MENOTTI L, AVITABILE E, et al. Viral and cellular contributions to herpes simplex virus entry into the cell[J]. Curr Opin Virol, 2012, 2(1):28-36. |
[14] | HEMING J D, CONWAY J F, HOMA F L. Herpesvirus capsid assembly and DNA packaging[J]. Adv Anat Embryol Cell Biol, 2017, 223:119-142. |
[15] | RADTKE K, KIENEKE D, WOLFSTEIN A, et al. Plus-and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures[J]. PLoS Pathog, 2010, 6(7):e1000991. |
[16] | FARNSWORTH A, WISNER T W, JOHNSON D C. Cytoplasmic residues of herpes simplex virus glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 and UL11 to gE and gD[J]. J Virol, 2007, 81(1):319-331. |
[17] | HAN J, CHADHA P, MECKES D G J, et al. Interaction and interdependent packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus[J]. J Virol, 2011, 85(18):9437-9446. |
[18] | MO C J, SCHNEEBERGER E E, ARVIN A M. Glycoprotein E of varicella-zoster virus enhances cell-cell contact in polarized epithelial cells[J]. J Virol, 2000, 74(23):11377-11387. |
[19] | POLCICOVA K, GOLDSMITH K, RAINISH B L, et al. The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread:evidence for gE/gI receptors[J]. J Virol, 2005, 79(18):11990-12001. |
[20] | CARPENTER J E, JACKSON W, DE SOUZA G A, et al. Insulin-degrading enzyme binds to the nonglycosylated precursor of varicella-zoster virus gE protein found in the endoplasmic reticulum[J]. J Virol, 2010, 84(2):847-855. |
[21] | LI Q X, ALI M A, COHEN J I. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread[J]. Cell, 2006, 127(2):305-316. |
[22] | LI Q X, ALI M A, WANG K N, et al. Insulin degrading enzyme induces a conformational change in varicella-zoster virus gE, and enhances virus infectivity and stability[J]. PLoS One, 2010, 5(6):e11327. |
[23] | BERARDUCCI B, RAJAMANI J, ZERBONI L, et al. Functions of the unique N-terminal region of glycoprotein E in the pathogenesis of varicella-zoster virus infection[J]. Proc Natl Acad Sci USA, 2010, 107(1):282-287. |
[24] | YEH P C, HAN J, CHADHA P, et al. Direct and specific binding of the UL16 tegument protein of herpes simplex virus to the cytoplasmic tail of glycoprotein E[J]. J Virol, 2011, 85(18):9425-9436. |
[25] | HAN J, CHADHA P, STARKEY J L, et al. Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail[J]. Proc Natl Acad Sci USA, 2012, 109(48):19798-19803. |
[26] | CARMICHAEL J C, WILLS J W. Differential requirements for gE, gI, and UL16 among herpes simplex virus 1 syncytial variants suggest unique modes of dysregulating the mechanism of cell-to-cell spread[J]. J Virol, 2019, 93(15):e00494-19. |
[27] | OWEN D J, CRUMP C M, GRAHAM S C. Tegument assembly and secondary envelopment of alphaherpesviruses[J]. Viruses, 2015, 7(9):5084-5114. |
[28] | ROLLER R J, HAUGO A C, YANG K, et al. The herpes simplex virus 1 UL51 gene product has cell type-specific functions in cell-to-cell spread[J]. J Virol, 2014, 88(8):4058-4068. |
[29] | ROLLER R J, FETTERS R. The herpes simplex virus 1 UL51 protein interacts with the UL7 protein and plays a role in its recruitment into the virion[J]. J Virol, 2015, 89(6):3112-3122. |
[30] | FEUTZ E, MCLELAND-WIESER H, MA J L, et al. Functional interactions between herpes simplex virus pUL51, pUL7 and gE reveal cell-specific mechanisms for epithelial cell-to-cell spread[J]. Virology, 2019, 537:84-96. |
[31] | STYLIANOU J, MARINGER K, COOK R, et al. Virion incorporation of the herpes simplex virus type 1 tegument protein VP22 occurs via glycoprotein E-specific recruitment to the late secretory pathway[J]. J Virol, 2009, 83(10):5204-5218. |
[32] | MARINGER K, STYLIANOU J, ELLIOTT G. A network of protein interactions around the herpes simplex virus tegument protein VP22[J]. J Virol, 2012, 86(23):12971-12982. |
[33] | CHOULJENKO D V, KIM I J, CHOULJENKO V N, et al. Functional hierarchy of herpes simplex virus 1 viral glycoproteins in cytoplasmic virion envelopment and egress[J]. J Virol, 2012, 86(8):4262-4270. |
[34] | SUN H P, OLSEN H S, MÉRIGEON E Y, et al. Recombinant human IgG1 based Fc multimers, with limited FcR binding capacity, can effectively inhibit complement-mediated disease[J]. J Autoimmun, 2017, 84:97-108. |
[35] | QUAST I, KELLER C W, MAURER M A, et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity[J]. J Clin Invest, 2015, 125(11):4160-4170. |
[36] | JENKS J A, GOODWIN M L, PERMAR S R. The roles of host and viral antibody Fc receptors in herpes simplex virus (HSV) and human cytomegalovirus (HCMV) infections and immunity[J]. Front Immunol, 2019, 10:2110. |
[37] | BOURNAZOS S, DILILLO D J, RAVETCH J V. The role of Fc-FcγR interactions in IgG-mediated microbial neutralization[J]. J Exp Med, 2015, 212(9):1361-1369. |
[38] | LEE C H, ROMAIN G, YAN W P, et al. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions[J]. Nat Immunol, 2017, 18(8):889-898. |
[39] | SPRAGUE E R, MARTIN W L, BJORKMAN P J. pH dependence and stoichiometry of binding to the Fc region of IgG by the herpes simplex virus Fc receptor gE-gI[J]. J Biol Chem, 2004, 279(14):14184-14193. |
[40] | NDJAMEN B, FARLEY A H, LEE T, et al. The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface[J]. PLoS Pathog, 2014, 10(3):e1003961. |
[41] | PONTES M S, DEVRIENDT B, FAVOREEL H W. Pseudorabies virus triggers glycoprotein gE-mediated ERK1/2 activation and ERK1/2-dependent migratory behavior in T cells[J]. J Virol, 2015, 89(4):2149-2156. |
[42] | PONTES M S, VAN WAESBERGHE C, NAUWYNCK H, et al. Pseudorabies virus glycoprotein gE triggers ERK1/2 phosphorylation and degradation of the pro-apoptotic protein Bim in epithelial cells[J]. Virus Res, 2016, 213:214-218. |
[43] | LAMOTE J A S, KESTENS M, VAN WAESBERGHE C, et al. The pseudorabies virus glycoprotein gE/gI complex suppresses type I interferon production by plasmacytoid dendritic cells[J]. J Virol, 2017, 91(7):e02276-16. |
[44] | NORDÉN R, NILSSON J, SAMUELSSON E, et al. Recombinant glycoprotein E of varicella zoster virus contains glycan-peptide motifs that modulate B cell epitopes into discrete immunological signatures[J]. Int J Mol Sci, 2019, 20(4):E954. |
[45] | EVERETT R D. The spatial organization of DNA virus genomes in the nucleus[J]. PLoS Pathog, 2013, 9(6):e1003386. |
[46] | TAYLOR M P, ENQUIST L W. Axonal spread of neuroinvasive viral infections[J]. Trends Microbiol, 2015, 23(5):283-288. |
[47] | LIU Z F, BRUM M C, DOSTER A, et al. A bovine herpesvirus type 1 mutant virus specifying a carboxyl-terminal truncation of glycoprotein E is defective in anterograde neuronal transport in rabbits and calves[J]. J Virol, 2008, 82(15):7432-7442. |
[48] | CHOWDHURY S I, COATS J, NEIS R A, et al. A bovine herpesvirus type 1 mutant virus with truncated glycoprotein E cytoplasmic tail has defective anterograde neuronal transport in rabbit dorsal root ganglia primary neuronal cultures in a microfluidic chamber system[J]. J Neurovirol, 2010, 16(6):457-465. |
[49] | HOWARD P W, WRIGHT C C, HOWARD T, et al. Herpes simplex virus gE/gI extracellular domains promote axonal transport and spread from neurons to epithelial cells[J]. J Virol, 2014, 88(19):11178-11186. |
[50] | MCGRAW H M, FRIEDMAN H M. Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neurites[J]. J Virol, 2009, 83(10):4791-4799. |
[51] | WANG F S, ZUMBRUN E E, HUANG J L, et al. Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from theneuron cell body into axons[J]. Virology, 2010, 405(2):269-279. |
[52] | KRATCHMAROV R, KRAMER T, GRECO T M, et al. Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons[J]. J Virol, 2013, 87(17):9431-9440. |
[53] | AWASTHI S, FRIEDMAN H M. Molecular association of herpes simplex virus type 1 glycoprotein E with membrane protein Us9[J]. Arch Virol, 2016, 161(11):3203-3213. |
[54] | DURAINE G, WISNER T W, HOWARD P, et al. Herpes simplex virus gE/gI and US9 promote both envelopment and sorting of virus particles in the cytoplasm of neurons, two processes that precede anterograde transport in axons[J]. J Virol, 2017, 91(11):e00050-17. |
[55] | HOWARD P W, HOWARD T L, JOHNSON D C. Herpes simplex virus membrane proteins gE/gI and US9 act cooperatively to promote transport of capsids and glycoproteins from neuron cell bodies into initial axon segments[J]. J Virol, 2013, 87(1):403-414. |
[56] | CH'NG T H, ENQUIST L W. Neuron-to-cell spread of pseudorabies virus in a compartmentedneuronal culture system[J]. J Virol, 2005, 79(17):10875-10889. |
[57] | DANIEL G R, SOLLARS P J, PICKARD G E, et al. Pseudorabies virus fast axonal transport occurs by a pUS9-independent mechanism[J]. J Virol, 2015, 89(15):8088-8091. |
[58] | LYMAN M G, FEIERBACH B, CURANOVIC D, et al. Pseudorabies virus Us9 directs axonal sorting of viral capsids[J]. J Virol, 2007, 81(20):11363-11371. |
[59] | SUN Y, LIANG W, LIU Q Y, et al. Epidemiological and genetic characteristics of swine pseudorabies virus in mainland China between 2012 and 2017[J]. PeerJ, 2018, 6:e5785. |
[60] | WANG Y B, QIAO S L, LI X W, et al. Molecular epidemiology of outbreak-associated pseudorabies virus (PRV) strains in central China[J]. Virus Genes, 2015, 50(3):401-409. |
[61] | TONG W, LIU F, ZHENG H, et al. Emergence of a pseudorabies virus variant with increased virulence to piglets[J]. Vet Microbiol, 2015, 181(3-4):236-240. |
[62] | FAN J D, ZENG X D, ZHANG G Q, et al. Molecular characterization and phylogenetic analysis of pseudorabies virus variants isolated from Guangdong province of southern China during 2013-2014[J]. J Vet Sci, 2016, 17(3):369-375. |
[63] | WU X M, CHEN Q Y, CHEN R J, et al. Pathogenicity and whole genome sequence analysis of a pseudorabies virus strain FJ-2012 isolated from Fujian, southern China[J]. Can J Infect Dis Med Microbiol, 2017, 2017:9073172. |
[64] | GU Z Q, HOU C C, SUN H F, et al. Emergence of highly virulent pseudorabies virus in southern China[J]. Can J Vet Res, 2015, 79(3):221-228. |
[65] | DONG J, GU Z Q, JIN L, et al. Polymorphisms affecting the gE and gI proteins partly contribute to the virulence of a newly-emergent highly virulent Chinese pseudorabies virus[J]. Virology, 2018, 519:42-52. |
[1] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[2] | 宋艳, 袁永丰, 钱虹宇, 李鑫灿, 罗洪艳, 王芝英, 周作勇. 羊伪结核棒状杆菌的分离鉴定及部分生物学特性分析[J]. 畜牧兽医学报, 2024, 55(2): 680-687. |
[3] | 刘鑫欢, 恽佳蕾, 毛立, 李基棕, 郝飞, 何苗锋, 杨蕾蕾, 张纹纹, 程子龙, 孙敏, 刘茂军, 王少辉, 白娟, 李文良. 羊腹泻样本中大肠杆菌的分离、毒力基因与耐药性分析[J]. 畜牧兽医学报, 2023, 54(8): 3445-3454. |
[4] | 丁晓艳, 何久香, 周晓杨, 周伃欣, 李晋涛. 非洲猪瘟病毒感染相关调控基因以及毒力基因初步筛选[J]. 畜牧兽医学报, 2023, 54(7): 2964-2971. |
[5] | 赵菲菲, 李杰, 韩宁, 谢仕廷, 曾振灵. 分离自屠宰场的肺炎克雷伯菌的耐药性分析[J]. 畜牧兽医学报, 2023, 54(7): 3044-3053. |
[6] | 姜美涵, 魏金涛, 呙于明, 郭双双, 杜恩存. 植物精油对产气荚膜梭菌感染肉仔鸡肠道损伤、肠道菌群CAZy谱和eggNOG通路的影响[J]. 畜牧兽医学报, 2023, 54(6): 2448-2457. |
[7] | 蒋增海, 滕霖, 贺安文, 刘言言, 乐敏, 何启盖. 猪产业链中鼠伤寒沙门菌及沙门菌血清型4,[5],12:i:-基因组学分析[J]. 畜牧兽医学报, 2023, 54(3): 1199-1209. |
[8] | 卢碧凯, 袁秀芳, 徐丽华, 余斌, 苏菲, 叶十一, 陈怡洁, 蒋利明, 张晖, 李军星. 胸膜肺炎放线杆菌分离株血清型的PCR鉴定和Apx毒素基因检测[J]. 畜牧兽医学报, 2023, 54(3): 1341-1346. |
[9] | 支岩, 梅晨, 刘珍邑, 乌云格日乐, 王宏俊, 胡格. 副鸡禽杆菌毒力因子研究进展[J]. 畜牧兽医学报, 2023, 54(12): 4934-4942. |
[10] | 王佳宁, 张自强, 孔德婧, 冯彩彩, 张飞可, 刘玉梅. 家兔肺炎克雷伯菌的分离鉴定[J]. 畜牧兽医学报, 2023, 54(12): 5198-5206. |
[11] | 肖金龙, 王浩, 万全, 沈珏, 张博, 赵维薇, 邓静, 王喜, 赵汝, 肖鹏, 高洪. 撒坝猪源E. coli高致病性毒力岛通过NLRP3/ASC/Caspase-1途径诱导IPEC-J2细胞焦亡[J]. 畜牧兽医学报, 2023, 54(12): 5218-5227. |
[12] | 杨梦林, 郑世奇, 彭凯, 王玮, 黄燕华, 彭杰. 鸽源鼠伤寒沙门菌的分离鉴定及致病性分析[J]. 畜牧兽医学报, 2023, 54(11): 4880-4888. |
[13] | 张凯川, 王晋宇, 李守军, 贾坤. 广东省羊源肺炎克雷伯菌遗传进化与毒力基因及耐药性分析[J]. 畜牧兽医学报, 2023, 54(1): 328-337. |
[14] | 丰鑫, 汪铭书, 程安春. 甲型疱疹病毒亚科的疱疹病毒囊膜糖蛋白gC对病毒感染复制的影响[J]. 畜牧兽医学报, 2022, 53(9): 2867-2876. |
[15] | 王喜, 李珂, 李廷翠, 严红亚, 赵蓉, 常志顺, 廖明, 孙敏华, 信爱国. 75株蛋鸡源沙门菌的MLST分型与耐药性分析[J]. 畜牧兽医学报, 2022, 53(5): 1626-1631. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||