畜牧兽医学报 ›› 2022, Vol. 53 ›› Issue (9): 2867-2876.doi: 10.11843/j.issn.0366-6964.2022.09.005
丰鑫1,2,3, 汪铭书1,2,3*, 程安春1,2,3
收稿日期:
2021-12-14
出版日期:
2022-09-23
发布日期:
2022-09-23
通讯作者:
汪铭书,主要从事微生物及免疫学研究,E-mail:mshwang@163.com
作者简介:
丰鑫(1998-),男,贵州毕节人,硕士,主要从事鸭瘟病毒研究,E-mail:18482006335@163.com
基金资助:
FENG Xin1,2,3, WANG Mingshu1,2,3*, CHENG Anchun1,2,3
Received:
2021-12-14
Online:
2022-09-23
Published:
2022-09-23
摘要: 甲型疱疹病毒亚科的疱疹病毒宿主广泛,能感染哺乳类、两栖类和禽类,主要侵害宿主的皮肤、黏膜和神经组织,病毒还会在宿主神经组织潜伏感染,一经感染,难以清除。gC是甲型疱疹病毒亚科的病毒囊膜糖蛋白之一,在病毒感染复制过程中发挥了重要作用。gC与细胞上受体结合帮助病毒吸附至宿主细胞表面、介导低pH条件下病毒入侵上皮细胞、影响病毒基因组的复制。此外,gC帮助病毒逃避补体和抗体的中和,促进病毒的吸附入侵。本文就gC影响病毒感染复制的相关功能进行综述,旨在为研究gC和深入了解甲型疱疹病毒亚科病毒的生命周期,以及gC亚单位疫苗和mRNA疫苗的研究提供参考。
中图分类号:
丰鑫, 汪铭书, 程安春. 甲型疱疹病毒亚科的疱疹病毒囊膜糖蛋白gC对病毒感染复制的影响[J]. 畜牧兽医学报, 2022, 53(9): 2867-2876.
FENG Xin, WANG Mingshu, CHENG Anchun. The Role of Alpha Herpesvirus Envelope Glycoprotein C on Virus Infection and Replication[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2867-2876.
[1] | MCGEOCH D J, RIXON F J, DAVISON A J. Topics in herpesvirus genomics and evolution[J]. Virus Res, 2006, 117(1):90-104. |
[2] | METTENLEITER T C, KLUPP B G, GRANZOW H. Herpesvirus assembly:a tale of two membranes[J]. Curr Opin Microbiol, 2006, 9(4):423-429. |
[3] | LAQUERRE S, ARGNANI R, ANDERSON D B, et al. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread[J]. J Virol, 1998, 72(7):6119-6130. |
[4] | FEYZI E, TRYBALA E, BERGSTRÖM T, et al. Structural requirement of heparan sulfate for interaction with herpes simplex virus type 1 virions and isolated glycoprotein C[J]. J Biol Chem, 1997, 272(40):24850-24857. |
[5] | THUREEN D R, KEELER C L JR. Psittacid herpesvirus 1 and infectious laryngotracheitis virus:Comparative genome sequence analysis of two avian alphaherpesviruses[J]. J Virol, 2006, 80(16):7863-7872. |
[6] | TRYBALA E, ROTH A, JOHANSSON M, et al. Glycosaminoglycan-binding ability is a feature of wild-type strains of herpes simplex virus Type 1[J]. Virology, 2002, 302(2):413-419. |
[7] | DAVISON A J. Evolution of sexually transmitted and sexually transmissible human herpesviruses[J]. Ann NY Acad Sci, 2011, 1230(1):E37-E49. |
[8] | SCHWYZER M, ACKERMANN M. Molecular virology of ruminant herpesviruses[J]. Vet Microbiol, 1996, 53(1-2):17-29. |
[9] | KLUPP B G, HENGARTNER C J, METTENLEITER T C, et al. Complete, annotated sequence of the pseudorabies virus genome[J]. J Virol, 2004, 78(1):424-440. |
[10] | TULMAN E R, AFONSO C L, LU Z, et al. The genome of a very virulent Marek's disease virus[J]. J Virol, 2000, 74(17):7980-7988. |
[11] | YING W, CHENG A C, WANG M S, et al. Comparative genomic analysis of duck enteritis virus strains[J]. J Virol, 2012, 86(24):13841-13842. |
[12] | TAI S H S, NIIKURA M, CHENG H H, et al. Complete genomic sequence and an infectious BAC clone of feline herpesvirus-1 (FHV-1)[J]. Virology, 2010, 401(2):215-227. |
[13] | DAVISON A J, SCOTT J E. The complete DNA sequence of varicella-zoster virus[J]. J Gen Virol, 1986, 67(Pt 9):1759-1816. |
[14] | TAL-SINGER R, PENG C, PONCE DE LEON M, et al. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules[J]. J Virol, 1995, 69(7):4471-4483. |
[15] | SEDLACKOVA L, PERKINS K D, MEYER J, et al. Identification of an ICP27-responsive element in the coding region of a herpes simplex virus type 1 late gene[J]. J Virol, 2010, 84(6):2707-2718. |
[16] | SARRAZIN S, LAMANNA W C, ESKO J D. Heparan sulfate proteoglycans[J]. Cold Spring Harb Perspect Biol, 2011, 3(7):a004952. |
[17] | HEROLD B C, VISALLI R J, SUSMARSKI N, et al. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B[J]. J Gen Viroly1994, 75(Pt 6):1211-1222. |
[18] | LEMBO D, DONALISIO M, LAINE C, et al. Auto-associative heparin nanoassemblies:a biomimetic platform against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV[J]. Eur J Pharmaceut Biopharmaceut, 2014, 88(1):275-282. |
[19] | IMAMURA J, SUZUKI Y, GONDA K, et al. Single particle tracking confirms that multivalent Tat protein transduction domain-induced heparan sulfate proteoglycan cross-linkage activates Rac1 for internalization[J]. J Biol Chem, 2011, 286(12):10581-10592. |
[20] | SHUKLA D, SPEAR P G. Herpesviruses and heparan sulfate:an intimate relationship in aid of viral entry[J]. J Clin Invest, 2001, 108(4):503-510. |
[21] | WIRTZ L, MÖCKEL M, KNEBEL-MÖRSDORF D. Invasion of herpes simplex Virus 1 into murine dermis:role of Nectin-1 and herpesvirus entry mediator as cellular receptors during aging[J]. J Virol, 2020, 94(5):e02046-19. |
[22] | MONTGOMERY R I, WARNER M S, LUM B J, et al. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family[J]. Cell, 1996, 87(3):427-436. |
[23] | EISENBERG R J, ATANASIU D, CAIRNS T M, et al. Herpes virus fusion and entry:a story with many characters[J]. Viruses, 2012, 4(5):800-832. |
[24] | HEROLD B C, WUDUNN D, SOLTYS N, et al. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity[J]. J Virol, 1991, 65(3):1090-1098. |
[25] | AZAB W, TSUJIMURA K, MAEDA K, et al. Glycoprotein C of equine herpesvirus 4 plays a role in viral binding to cell surface heparan sulfate[J]. Virus Res, 2010, 151(1):1-9. |
[26] | RUE C A, RYAN P. A role for glycoprotein C in pseudorabies virus entry that is independent of virus attachment to heparan sulfate and which involves the actin cytoskeleton[J]. Virology, 2003, 307(1):12-21. |
[27] | HU Y, LIU X K, ZOU Z, et al. Glycoprotein C plays a role in the adsorption of duck enteritis virus to chicken embryo fibroblasts cells and in infectivity[J]. Virus Res, 2013, 174(1-2):1-7. |
[28] | KINGSLEY D H, KEELER C L JR. Infectious laryngotracheitis virus, an alpha herpesvirus that does not interact with cell surface heparan sulfate[J]. Virology, 1999, 256(2):213-219. |
[29] | MÅRDBERG K, NYSTRÖM K, TARP M A, et al. Basic amino acids as modulators of an O-linked glycosylation signal of the herpes simplex virus type 1 glycoprotein gC:functional roles in viral infectivity[J]. Glycobiology, 2004, 14(7):571-581. |
[30] | RUX A H, MOORE W T, LAMBRIS J D, et al. Disulfide bond structure determination and biochemical analysis of glycoprotein C from herpes simplex virus[J]. J Virol, 1996, 70(8):5455-5465. |
[31] | MåRDBERG K, TRYBALA E, GLORIOSO J C, et al. Mutational analysis of the major heparan sulfate-binding domain of herpes simplex virus type 1 glycoprotein C[J]. J Gen Virol, 2001, 82(8):1941-1950. |
[32] | FLYNN S J, RYAN P. The receptor-binding domain of pseudorabies virus glycoprotein gC is composed of multiple discrete units that are functionally redundant[J]. J Virol, 1996, 70(3):1355-1364. |
[33] | JENTOFT N. Why are proteins O-glycosylated?[J]. Trends Biochem Sci, 1990, 15(8):291-294. |
[34] | DELGUSTE M, PEERBOOM N, LE BRUN G, et al. Regulatory mechanisms of the mucin-like region on herpes simplex virus during cellular attachment[J]. ACS Chem Biol, 2019, 14(3):534-542. |
[35] | NICOLA A V, HOU J, MAJOR E O, et al. Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway[J]. J Virol, 2005, 79(12):7609-7616. |
[36] | NICOLA A V, MCEVOY A M, STRAUS S E. Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells[J]. J Virol, 2003, 77(9):5324-5332. |
[37] | SARI T K, GIANOPULOS K A, WEED D J, et al. Herpes simplex virus glycoprotein C regulates Low-pH entry[J]. mSphere, 2020, 5(1):e00826-19. |
[38] | WEED D J, DOLLERY S J, KOMALA SARI T, et al. Acidic pH mediates changes in antigenic and oligomeric conformation of herpes simplex virus gB and is a determinant of cell-specific entry[J]. J Virol, 2018, 92(17):e01034-18. |
[39] | WEED D J, PRITCHARD S M, GONZALEZ F, et al. Mildly acidic pH triggers an irreversible conformational change in the fusion domain of herpes simplex virus 1 glycoprotein B and inactivation of viral entry[J]. J Virol, 2017, 91(5):e02123-16. |
[40] | DOLLERY S J, DELBOY M G, NICOLA A V. Low pH-induced conformational change in herpes simplex virus glycoprotein B[J]. J Virol, 2010, 84(8):3759-3766. |
[41] | JAROSINSKI K W, MARGULIS N G, KAMIL J P, et al. Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC[J]. J Virol, 2007, 81(19):10575-10587. |
[42] | JAROSINSKI K W, OSTERRIEDER N. Further analysis of Marek's disease virus horizontal transmission confirms that UL44 (gC) and UL13 protein kinase activity are essential, while US2 is nonessential[J]. J Virol, 2010, 84(15):7911-7916. |
[43] | CHUARD A, COURVOISIER-GUYADER K, RÉMY S, et al. The tegument protein pUL47 of Marek's disease virus is necessary for horizontal transmission and is important for expression of glycoprotein gC[J]. J Virol, 2020, 95(2):e01645-20. |
[44] | JAROSINSKI K W, OSTERRIEDER N. Marek's disease virus expresses multiple UL44 (gC) variants through mRNA splicing that are all required for efficient horizontal transmission[J]. J Virol, 2012, 86(15):7896-7906. |
[45] | HARDY W R, SANDRI-GOLDIN R M. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect[J]. J Virol, 1994, 68(12):7790-7799. |
[46] | PONNURAJ N, TIEN Y T, VEGA-RODRIGUEZ W, et al. The herpesviridae conserved multifunctional infected-cell protein 27 (ICP27) is important but not required for replication and oncogenicity of Marek's disease alphaherpesvirus[J]. J Virol, 2019, 93(4):e01903-18. |
[47] | VEGA-RODRIGUEZ W, XU H, PONNURAJ N, et al. The requirement of glycoprotein C (gC) for interindividual spread is a conserved function of gC for avian herpesviruses[J]. Sci Rep, 2021, 11(1):7753. |
[48] | VEGA-RODRIGUEZ W, PONNURAJ N, GARCIA M, et al. The requirement of glycoprotein c for interindividual spread is functionally conserved within the alphaherpesvirus genus (Mardivirus), but Not the Host (Gallid)[J]. Viruses, 2021, 13(8):1419. |
[49] | LUBINSKI J M, WANG L Y, SOULIKA A M, et al. Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo[J]. J Virol, 1998, 72(10):8257-8263. |
[50] | FRIEDMAN H M, COHEN G H, EISENBERG R J, et al. Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells[J]. Nature, 1984, 309(5969):633-635. |
[51] | HARRISON R A. The properdin pathway:an "alternative activation pathway" or a "critical amplification loop" for C3 and C5 activation?[J]. Semin Immunopathol, 2018, 40(1):15-35. |
[52] | NILSSON B, EKDAHL K N. The tick-over theory revisited:is C3 a contact-activated protein?[J]. Immunobiology, 2012, 217(11):1106-1110. |
[53] | MERLE N S, CHURCH S E, FREMEAUX-BACCHI V, et al. Complement system Part I-molecular mechanisms of activation and regulation[J]. Front Immunol, 2015, 6:262. |
[54] | ARBORE G, KEMPER C, KOLEV M. Intracellular complement-the complosome-in immune cell regulation[J]. Mol Immunol, 2017, 89:2-9. |
[55] | RICKLIN D, REIS E S, LAMBRIS J D. Complement in disease:a defence system turning offensive[J]. Nat Rev Nephrol, 2016, 12(7):383-401. |
[56] | DEMPSEY P W, ALLISON M E, AKKARAJU S, et al. C3 d of complement as a molecular adjuvant:bridging innate and acquired immunity[J]. Science, 1996, 271(5247):348-350. |
[57] | MAYILYAN K R. Complement genetics, deficiencies, and disease associations[J]. Protein Cell, 2012, 3(7):487-496. |
[58] | FRIES L F, FRIEDMAN H M, COHEN G H, et al. Glycoprotein C of Herpes simplex virus 1 is an inhibitor of the complement cascade[J]. J Immunol, 1986, 137(5):1636-1641. |
[59] | KOSTAVASILI I, SAHU A, FRIEDMAN H M, et al. Mechanism of complement inactivation by glycoprotein C of herpes simplex virus[J]. J Immunol, 1997, 158(4):1763-1771. |
[60] | FRIEDMAN H M, WANG L, FISHMAN N O, et al. Immune evasion properties of herpes simplex virus type 1 glycoprotein gC[J]. J Virol, 1996, 70(7):4253-4260. |
[61] | LUBINSKI J, WANG L Y, MASTELLOS D, et al. In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC[J]. J Exp Med, 1999, 190(11):1637-1646. |
[62] | TAL-SINGER R, SEIDEL-DUGAN C, FRIES L, et al. Herpes simplex virus glycoprotein C is a receptor for complement component iC3b[J]. J Infect Dis, 1991, 164(4):750-753. |
[63] | HUEMER H P, LARCHER C, COE N E. Pseudorabies virus glycoprotein III derived from virions and infected cells binds to the third component of complement[J]. Virus Res, 1992, 23(3):271-280. |
[64] | HUEMER H P, NOWOTNY N, CRABB B S, et al. gp13 (EHV-gC):a complement receptor induced by equine herpesviruses[J]. Virus Res, 1995, 37(2):113-126. |
[65] | HUNG S L, PENG C R L N, KOSTAVASILI I, et al. The interaction of glycoprotein C of herpes simplex virus types 1 and 2 with the alternative complement pathway[J]. Virology, 1994, 203(2):299-312. |
[66] | AWASTHI S, BALLIET J W, FLYNN J A, et al. Protection provided by a herpes simplex virus 2 (HSV-2) glycoprotein C and D subunit antigen vaccine against genital HSV-2 infection in HSV-1-seropositive guinea pigs[J]. J Virol, 2014, 88(4):2000-2010. |
[67] | AWASTHI S, MAHAIRAS G G, SHAW C E, et al. A dual-modality herpes simplex virus 2 vaccine for preventing genital herpes by using glycoprotein C and D subunit antigens to induce potent antibody responses and adenovirus vectors containing capsid and tegument proteins as T Cell immunogens[J]. J Virol, 2015, 89(16):8497-8509. |
[68] | AWASTHI S, HOOK L M, SHAW C E, et al. A trivalent subunit antigen glycoprotein vaccine as immunotherapy for genital herpes in the guinea pig genital infection model[J]. Hum Vacc Immun, 2017, 13(12):2785-2793. |
[69] | AWASTHI S, HOOK L M, PARDI N, et al. Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes[J]. Sci Immunol, 2019, 4(39):eaaw7083. |
[70] | EGAN K, HOOK L M, NAUGHTON A, et al. Herpes simplex virus type 2 trivalent protein vaccine containing glycoproteins C, D and E protects guinea pigs against HSV-1 genital infection[J]. Hum Vacc Immun, 2020, 16(9):2109-2113. |
[71] | LUBINSKI J M, LAZEAR H M, AWASTHI S, et al. The herpes simplex virus 1 IgG fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo[J]. J Virol, 2011, 85(7):3239-3249. |
[72] | SARI T K, GIANOPULOS K A, NICOLA A V. Glycoprotein C of herpes simplex Virus 1 shields glycoprotein B from antibody neutralization[J]. J Virol, 2020, 94(5):e01852-19. |
[73] | HELDWEIN E E, LOU H, BENDER F C, et al. Crystal structure of glycoprotein B from herpes simplex virus 1[J]. Science, 2006, 313(5784):217-220. |
[74] | COOPER R S, HELDWEIN E E. Herpesvirus gB:a finely tuned fusion machine[J]. Viruses, 2015, 7(12):6552-6569. |
[75] | AWASTHI S, LUBINSKI J M, FRIEDMAN H M. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine[J]. Vaccine, 2009, 27(49):6845-6853. |
[76] | AWASTHI S, LUBINSKI J M, SHAW C E, et al. Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone[J]. J Virol, 2011, 85(20):10472-10486. |
[77] | HOOK L M, HUANG J L, JIANG M, et al. Blocking antibody access to neutralizing domains on glycoproteins involved in entry as a novel mechanism of immune evasion by herpes simplex virus type 1 glycoproteins C and E[J]. J Virol, 2008, 82(14):6935-6941. |
[78] | METTENLEITER T C, ZSAK L, ZUCKERMANN F, et al. Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus[J]. J Virol, 1990, 64(1):278-286. |
[79] | OKAZAKI K, MATSUZAKI T, SUGAHARA Y, et al. BHV-1 adsorption is mediated by the interaction of glycoprotein gIII with heparinlike moiety on the cell surface[J]. Virology, 1991, 181(2):666-670. |
[80] | OSTERRIEDER N. Construction and characterization of an equine herpesvirus 1 glycoprotein C negative mutant[J]. Virus Res, 1999, 59(2):165-177. |
[81] | MAEDA K, HAYASHI S, TANIOKA Y, et al. Pseudorabies virus (PRV) is protected from complement attack by cellular factors and glycoprotein C (gC)[J]. Virus Res, 2002, 84(1-2):79-87. |
[82] | HIDAKA Y, SAKAI Y, TOH Y, et al. Glycoprotein C of herpes simplex virus type 1 is essential for the virus to evade antibody-independent complement-mediated virus inactivation and lysis of virus-infected cells[J]. J Gen Virol, 1991, 72(Pt 4):915-921. |
[83] | MACLEOD D T, NAKATSUJI T, YAMASAKI K, et al. HSV-1 exploits the innate immune scavenger receptor MARCO to enhance epithelial adsorption and infection[J]. Nat Commun, 2013, 4:1963. |
[84] | GONZÁLEZ-MOTOS V, JVRGENS C, RITTER B, et al. Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration[J]. PLoS Pathog, 2017, 13(5):e1006346. |
[85] | MAEDA K, HORIMOTO T, MIKAMI T. Properties and functions of feline herpesvirus type 1 glycoproteins[J]. J Vet Med Sci, 1998, 60(8):881-888. |
[86] | TRYBALA E, SVENNERHOLM B, BERGSTRÖM T, et al. Herpes simplex virus type 1-induced hemagglutination:glycoprotein C mediates virus binding to erythrocyte surface heparan sulfate[J]. J Virol, 1993, 67(3):1278-1285. |
[87] | OKAZAKI K, KANNO T, KIRIYA S, et al. Hemadsorptive activity of transfected COS-7 cells expressing BHV-1 glycoprotein gIII[J]. Virology, 1993, 193(2):1024-1027. |
[88] | YAMADA S, IMADA T, SHIMIZU M, et al. A mutant of pseudorabies virus with deletion of glycoprotein gIII gene prepared from a Japanese isolate:it fails to agglutinate mouse erythrocytes[J]. Vet Microbiol, 1995, 45(2-3):233-242. |
[89] | ANDOH K, HATTORI S, MAHMOUD H Y A H, et al. The haemagglutination activity of equine herpesvirus type 1 glycoprotein C[J]. Virus Res, 2015, 195:172-176. |
[1] | 杨小峰, 秦小伟, 吕丽华. MNQ的一种衍生物对LPS体外诱导的牛卵巢卵泡颗粒细胞炎性损伤的保护作用[J]. 畜牧兽医学报, 2024, 55(5): 2032-2041. |
[2] | 赵灿奇, 冯宇, 吕浪, 李彦军, 魏玉磊, 丁家波, 陈祥, 蒋卉. 竞争ELISA和间接ELISA方法应用于牛布鲁氏菌病净化的研究[J]. 畜牧兽医学报, 2024, 55(5): 2146-2153. |
[3] | 武上杰, 栾园园, 王明坤, 张贺春, 于波, 马月辉, 蒋琳, 何晓红. 绵羊布鲁氏菌病抗病育种研究进展[J]. 畜牧兽医学报, 2024, 55(3): 882-893. |
[4] | 黄婧洁, 李苗, 陈莹娴, 钟雅兰, 张婷婷, 姜廷超男, 李建成. 基于免疫磁珠净化间接竞争酶联免疫吸附试验检测氟喹诺酮类药物[J]. 畜牧兽医学报, 2023, 54(2): 766-778. |
[5] | 杨安琪, 李嘉诚, 宋颖, 陈欣, 靳荣帅, 赵博昊, 吴信生, 陈阳. CYP19A1对兔卵巢颗粒细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2023, 54(10): 4209-4219. |
[6] | 李晓波, 刘占发, 刘悦, 陈倩, 马月辉, 赵倩君, 叶绍辉. 基于WGCNA与GSEA方法挖掘调控中卫山羊羊毛弯曲相关基因[J]. 畜牧兽医学报, 2022, 53(9): 2930-2943. |
[7] | 赵迪, 康慧敏, 谭晓冬, 刘冉冉, 张正芬, 李华, 赵桂苹. 利用加权基因共表达网络分析筛选天农麻鸡胴体性状候选基因[J]. 畜牧兽医学报, 2022, 53(7): 2130-2140. |
[8] | 吴学敏, 陈如敬, 陈秋勇, 车勇良, 严山, 刘玉涛, 周伦江, 王隆柏. 伪狂犬病病毒变异株gC抗体间接ELISA检测方法的建立及初步应用[J]. 畜牧兽医学报, 2022, 53(6): 2029-2034. |
[9] | 刘同, 杨悠悠, 刘大鹏, 于思梦, 郭占宝, 胡健, 赵金山, 周正奎, 侯水生. 肉鸭胸肌特异挥发性风味物质的鉴定[J]. 畜牧兽医学报, 2022, 53(2): 402-413. |
[10] | 任曼, 刘欣, 唐玉林, 张瑞雪, 秦俊杰, 朱浩, 郭延生. 归芪益母复方制剂对产后奶牛瘤胃微生物和短链脂肪酸的调节[J]. 畜牧兽医学报, 2022, 53(12): 4461-4469. |
[11] | 李武峰, 邱丽霞, 关家伟, 李丽, 杜敏. 基于WGCNA技术研究驴肉嫩度基因及代谢物调控网络[J]. 畜牧兽医学报, 2022, 53(11): 3827-3841. |
[12] | 令狐远凤, 潘永, 杨阳, 段世宇, 张家莉, 张宝太, 杨琦. 鼠伤寒沙门菌伴侣蛋白Hfq与小RNA GcvB结合位点的初步分析[J]. 畜牧兽医学报, 2022, 53(11): 4110-4115. |
[13] | 冉宏标, 王会, 柴志欣, 王嘉博, 张明, 蔡欣, 钟金城. miR-138靶向PGC-1α调控牦牛肌内前体脂肪细胞增殖及分化[J]. 畜牧兽医学报, 2022, 53(10): 3434-3447. |
[14] | 谢黎卿, 杨洋, 彭远义, 李能章. 病原微生物荚膜多糖的生物学功能[J]. 畜牧兽医学报, 2021, 52(3): 576-587. |
[15] | 胡月, 高雁怩, 加尔肯, 车传忠, 王旭蕾, 姜平, 冉多良, 刘建华. 新疆部分地区马疱疹病毒1型感染的血清学调查[J]. 畜牧兽医学报, 2021, 52(3): 845-850. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||