[1] |
JAMALI H, BARKEMA H W, JACQUES M, et al. Invited review:incidence, risk factors, and effects of clinical mastitis recurrence in dairy cows[J]. J Dairy Sci, 2018, 101(6):4729-4746.
|
[2] |
赵 欣, 王 莹, 李春亭, 等. 蒲公英提取物对LPS诱导小鼠乳腺炎的减轻效应及其机制分析[J]. 畜牧兽医学报, 2022, 53(8):2773-2781.ZHAO X, WANG Y, LI C T, et al. Alleviating effect and mechanism of dandelion extract on LPS-induced mastitis in mice[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8):2773-2781. (in Chinese)
|
[3] |
王洪海, 王海霞, 刘 丽, 等. 奶牛乳腺炎诊断方法的综合分析[J]. 北方牧业, 2022(15):27.WANG H H, WANG H X, LIU L, et al. Comprehensive analysis of diagnostic methods of dairy cow mastitis[J]. Northern Animal Husbandry, 2022(15):27. (in Chinese)
|
[4] |
KEHRLI M E Jr, SHUSTER D E. Factors affecting milk somatic cells and their role in health of the bovine mammary gland[J]. J Dairy Sci, 1994, 77(2):619-627.
|
[5] |
KUMAR N, MANIMARAN A, KUMARESAN A, et al. Mastitis effects on reproductive performance in dairy cattle:a review[J]. Trop Anim Health Prod, 2017, 49(4):663-673.
|
[6] |
SICA A, ERRENI M, ALLAVENA P, et al. Macrophage polarization in pathology[J]. Cell Mol Life Sci, 2015, 72(21):4111-4126.
|
[7] |
BASHIR S, SHARMA Y, ELAHI A, et al. Macrophage polarization:the link between inflammation and related diseases[J]. Inflamm Res, 2016, 65(1):1-11.
|
[8] |
TETTA C, GHIGO E, SILENGO L, et al. Extracellular vesicles as an emerging mechanism of cell-to-cell communication[J]. Endocrine, 2013, 44(1):11-19.
|
[9] |
MILANE L, SINGH A, MATTHEOLABAKIS G, et al. Exosome mediated communication within the tumor microenvironment[J]. J Controlled Release, 2015, 219:278-294.
|
[10] |
LO SICCO C, REVERBERI D, BALBI C, et al. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects:endorsement of macrophage polarization[J]. Stem Cells Trans Med, 2017, 6(3):1018-1028.
|
[11] |
RAINARD P, RIOLLET C. Innate immunity of the bovine mammary gland[J]. Vet Res, 2006, 37(3):369-400.
|
[12] |
AGHAMOHAMMADI M, HAINE D, KELTON D F, et al. Herd-level mastitis-associated costs on Canadian dairy farms[J]. Front Vet Sci, 2018, 5:100.
|
[13] |
罗仍卓么, 王晋鹏, 焦 鹏, 等. 奶牛乳腺炎模型的建立及炎症相关因子基因mRNA转录水平的分析[J]. 畜牧兽医学报, 2022, 53(8): 2763-2772.LUORENG Z M, WANG J P, JIAO P, et al. Construction of dairy cow mastitis model and analysis of mRNA transcription level of inflammation related cytokine genes[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2763-2772.(in Chinese)
|
[14] |
GONÇALVES J L, LYMAN R L, HOCKETT M, et al. Using milk leukocyte differentials for diagnosis of subclinical bovine mastitis[J]. J Dairy Res, 2017, 84(3):309-317.
|
[15] |
PULLIAM L, SUN B, MUSTAPIC M, et al. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer’s disease[J]. J Neurovirol, 2019, 25(5):702-709.
|
[16] |
ZEMPLENI J, SUKREET S, ZHOU F, et al. Milk-derived exosomes and metabolic regulation[J]. Annu Rev Anim Biosci, 2019, 7:245-262.
|
[17] |
SCHOTTENFELD D, BEEBE-DIMMER J. Chronic inflammation:a common and important factor in the pathogenesis of neoplasia[J]. CA:Cancer J Clin, 2006, 56(2):69-83.
|
[18] |
应航洁, 史丽云. 巨噬细胞极性转化及其分子调控机制[J]. 医学综述, 2014, 20(17):3095-3097.YING H J, SHI L Y. Macrophage polarization and its molecular regulatory mechanism[J]. Medical Recapitulate, 2014, 20(17):3095-3097. (in Chinese)
|
[19] |
JIAO Y, ZHANG T, ZHANG C M, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J]. Crit Care, 2021, 25(1):356.
|
[20] |
刘文涛, 王新月, 杨 毅, 等. 骨髓间充质干细胞来源的外泌体诱导巨噬细胞向M1型极化[J]. 中国组织化学与细胞化学杂志, 2022, 31(3):232-238.LIU W T, WANG X Y, YANG Y, et al. Bone marrow mesenchymal stem cell-derived exosomes induce polarization of macrophages into M1 phenotype[J]. Chinese Journal of Histochemistry and Cytochemistry, 2022, 31(3):232-238. (in Chinese)
|
[21] |
HYVÄRINEN K, HOLOPAINEN M, SKIRDENKO V, et al. Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of Interleukin (IL)-23 and IL-22[J]. Front Immunol, 2018, 9:771.
|
[22] |
ADMYRE C, JOHANSSON S M, QAZI K R, et al. Exosomes with immune modulatory features are present in human breast milk[J]. J Immunol, 2007, 179(3):1969-1978.
|
[23] |
应易恬, 杨 璟, 严冰璇, 等. 乳腺炎对牛奶外泌体功能的影响:基于乳腺上皮细胞的观察[J]. 浙江大学学报:农业与生命科学版, 2020, 46(3):383-390.YING Y T, YANG J, YAN B X, et al. Effect of mastitis on the function of milk-derived exosomes:observations from mammary epithelial cells[J]. Journal of Zhejiang University:Agriculture & Life Sciences, 2020, 46(3):383-390. (in Chinese)
|
[24] |
REINHARDT T A, SACCO R E, NONNECKE B J, et al. Bovine milk proteome:quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis[J]. J Proteomics, 2013, 82:141-154.
|
[25] |
TI D J, HAO H J, TONG C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b[J]. J Transl Med, 2015, 13(1):308.
|
[26] |
JAGUIN M, HOULBERT N, FARDEL O, et al. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin[J]. Cell Immunol, 2013, 281(1):51-61.
|
[27] |
ATHMAN J J, WANG Y, MCDONALD D J, et al. Bacterial membrane vesicles mediate the release of Mycobacterium tuberculosis lipoglycans and lipoproteins from infected macrophages[J]. J Immunol, 2015, 195(3):1044-1053.
|